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Abstract

We study the problem of optimally hedging exotic derivatives positions using a com-
bination of dynamic trading strategies in underlying stocks and static positions in vanilla
options when the performance is quantified by a convex risk measure. We establish condi-
tions for the existence of an optimal static position for general convex risk measures, and
then analyze in detail the case of shortfall risk with a power loss function. Here we find
conditions for uniqueness of the static hedge. We illustrate the computational challenge
of computing the market-adjusted risk measure in a simple diffusion model for an option
on a non-traded asset.

1 Introduction

Many recent papers have analyzed the stochastic control problem of portfolio optimization
under exponential utility:

sup
θ

E

[

−e−γ(VT −G)
]

.

Here, given a filtered probability space (Ω,F ,F, P ), G is the bounded FT -measurable payoff

of a derivative security, VT =
∫ T
0 θt dSt is the terminal value of following a trading strategy θ

in some underlying stocks S, and γ > 0 is a risk-aversion coefficient. Typically, this problem
is an intermediate step in finding the (seller’s) indifference price of the claim G. We refer, for
instance, to [8, 24] and the collection [6].

Recast as a hedging problem

inf
θ

1

γ
log E

[

e−γ(VT −G)
]

,

this can be viewed as to optimally hedge with respect to the so-called entropic risk measure

eγ(X) =
1

γ
log
(

E
[

e−γX
])

, X ∈ L∞(P ). (1.1)
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Some nice properties of this functional eγ : L∞(P ) → R, namely monotonicity, translation
invariance and convexity have been adopted as axioms for the class of convex risk measures
proposed by Föllmer & Schied [13] (see Definition 2.1 below). In moving away from the
entropic risk measure to this more general class, while the axiomatic properties are kept,
other convenient features may be sacrificed, especially in terms of analytical and computational
tractability.

Our goal here is to analyze a specific hedging problem (static-dynamic hedging of exotic
options), which we found to be quite tractable under the entropic risk measure [20, 18, 19],
under other convex risk measures, and specifically the shortfall risk measure.

Static-Dynamic Hedging of Exotic Options

Exotic options are non-standard options, which may be variations of standard (vanilla) calls
and puts, like barrier options, or tailored according to clients’ needs. These options are mostly
traded in over-the-counter (OTC) markets. It is common to think of hedging strategies as
trading the underlying stock and bank account appropriately. In continuous-time models, the
hedging portfolio is re-balanced at every instant, and this type of hedging is called dynamic
hedging. There is an alternative approach to hedge exotic options, which is less known, called
static hedging. The idea of static hedging was introduced in [5] and it involves trading other
liquid options. Trading occurs at some start time and the initial position is held throughout,
which is why these hedges are called static.

In our approach, the investor, who assesses the risks associated with his financial position
by a convex risk measure, chooses an optimal combined strategy. The static hedging compo-
nent is buying or selling standard options at initiation, and the dynamic hedging component
is following a stock-bank account trading strategy which is re-balanced continuously during
the life of the options. We allow the investor to trade the standard options only statically,
whereas she can trade the underlying stock and bank account continuously because of i) the
higher transaction costs associated with option trading compared to stock and bond trading,
and ii) lesser liquidity in derivatives markets, but we do not explicitly model either of these
frictions here.

We will assume that the market is incomplete, therefore not all the risks are hedgeable
through trading the underlying stock. If the market were complete, given sufficient initial
capital, all claims could be replicated by trading the stock dynamically, and any position
in the standard option could be synthesized with such a trading strategy. Static derivatives
hedges do not add anything to dynamic hedges in complete markets, but of course they are
very valuable tools in realistic incomplete market models, where there may be risk factors that
cannot be eliminated just by dynamic trading of the underlying stock. Exotic options can be
vulnerable to these risk factors, for example volatility risk. As standard options, in general,
will also be exposed to similar risk factors, they can be exploited to hedge these risks. By
incorporating static hedges, we enlarge the set of feasible hedging strategies that the investor
can choose from and allow for a better hedging performance.

In Section 2, we set up the problem and give sufficient conditions on an abstract convex
risk measure for existence of an optimal static-dynamic hedge of the exotic options position.
Uniqueness is related to strict convexity of a certain value function and it is not simple to
give useful conditions for it in general; rather, we focus on a sub-class of convex risk measures.
For practical purposes, it seems there are two concrete classes of convex-but-not-coherent risk
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measures: the entropic risk measure related to exponential utility, and shortfall risk. (There
are also risk measures with more abstract definitions in terms of, for example, their penalty
functions, or acceptance sets, or drivers of BSDEs; see [3, 22]). In Section 3, we analyze the
problem under shortfall risk measures, which are of the form

ρ(X) = inf

{

m ∈ R | E

[

1

p
((−m−X)+)p

]

≤ ξ

}

, X ∈ L∞

for some ξ > 0 and p > 1. We establish a sufficient condition for uniqueness of an optimal
static hedge, depending on whether a dual optimization problem is solved by an equivalent
(martingale) measure. A simple one-period example suggests the condition is not necessary.

In Section 5, we look at the computational problem in the case of dynamic hedging of an
option on a non-traded asset in a diffusion model, and under a shortfall risk measure. In this
case, passing to the conjugate in the threshold level makes the problem amenable to dynamic
programming methods (Section 4), and we give a numerical solution of the associated HJB
equation. We conclude in Section 6.

2 Problem Formulation & Analysis

We consider an investor who has x dollars along with a short position in an exotic option, with
payoff Ge, that matures at time T . The investor tries to minimize the risks due to this option
position by trading the underlying stock and bonds dynamically, and vanilla options available
in the market statically. We denote the stock price process (St)0≤t≤T , and the payoffs of the
vanilla options by G = (G1, . . . , Gn), and we assume that G and Ge are bounded. A possible
combined trading strategy is identified by ((θt)0≤t≤T , λ) where θt is the number of underlying
assets held at time t and λ = (λ1, . . . , λn) denotes the number of options sold initially. The
investor assesses the risk of a given trading strategy and initial wealth by

ρ

(

−λ ·G−Ge +

∫ T

0
θ dS + x+ λ · g

)

, (2.1)

where ρ is a convex risk measure, defined below, g = (g1, · · · , gn) is the market price vector
of G, and “·” denotes the the usual inner product on R

n. Here, we assume for simplicity that
the vanilla options also mature at time T and that the market uses a linear pricing rule. Note
that λ takes values in R

n and its components can be negative to imply long positions in G.
Our problem is the minimization of (2.1) over (θ, λ).

2.1 Convex Risk Measures

We start with a filtered probability space (Ω,F ,F, P ), where F = (Ft)0≤t≤T satisfies the
usual conditions, and a locally bounded semimartingale, S = (St)0≤t≤T , that models the price
process of the underlying asset.

Following the axiomatic framework for coherent risk measures introduced in [1], the theory
of convex risk measures is developed in [13] over the linear space of all bounded functions. In
this generality, no prior probability measure is assumed and duality results are with respect
to the set of finitely additive and non-negative set functions. We shall restrict ourselves to the
case where there is a prior probability measure P , and risk measures are defined for bounded
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random variables in L∞ = L∞(P ). Under a further continuity assumption on ρ, the duality
formulas are then in terms of sets of probability measures. We denote by Pa = Pa(P ) the set
of probability measures that are absolutely continuous with respect to P .

We assume zero interest rates and consider the riskiness in terms of values at time T .

Definition 2.1. A mapping ρ : L∞ 7→ R is called a convex risk measure if it satisfies the
following for all X,Y ∈ L∞:

• Monotonicity: If X ≤ Y , ρ(X) ≥ ρ(Y ).

• Translation Invariance: If m ∈ R, then ρ(X +m) = ρ(X) −m.

• Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for 0 ≤ λ ≤ 1.

A convex risk measure is coherent if it also satisfies:

• Positive Homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X).

A classical example of a convex (but not coherent) risk measure is related to exponential
utility (also called the entropic risk measure) as given in (1.1). Another example, shortfall
risk, is analyzed in detail in Section 3.

Assumption 2.2. We shall assume throughout that our primary convex risk measure ρ is
continuous from below and law-invariant. In other words,

Xn ր X ⇒ ρ(Xn) ց ρ(X),

and
ρ(X) = ρ(Y ), if X = Y P − a.s.

The dual representation for coherent risk measures goes back to [1]. In the case of convex
risk measures it is given in [13], and recalled in the following theorem.

Theorem 2.3. (From Theorem 4.15, Propositions 4.14 & 4.21, and Lemma 4.30 in [13]) Any
convex risk measure ρ on L∞ that satisfies Assumption 2.2 has the dual representation

ρ(X) = max
Q∈Pa

(

E
Q[−X] − α(Q)

)

, ∀X ∈ L∞, (2.2)

where the minimal convex penalty function α : Pa → R ∪ {+∞} is given by

α(Q) = sup
X∈L∞

(

E
Q[−X] − ρ(X)

)

, ∀Q ∈ Pa. (2.3)

The risk measure ρ is coherent if and only if the penalty function takes the form

α(Q) =

{

0 if Q ∈ Q
+∞ otherwise.

(2.4)

for some convex subset Q of Pa.
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Proof. This result is given in Theorem 4.15 and Proposition 4.15 of [13] for a larger set, the
set of finitely additive set functions, instead of Pa. Under Assumption 2.2, Proposition 4.21
in [13] concludes that any Q with finite penalty is σ-additive, and is a probability measure.
Therefore any additive set function which is not σ-additive but only finitely additive cannot
attain the maximum. When there is a prior measure P , under Assumption 2.2, Lemma 4.30
in [13] states that measures that are not absolutely continuous with respect to P have infinite
penalty, hence cannot attain the maximum.

Remark 2.4. Working on L∞ may be a little restrictive from a practical point of view,
especially when we wish to consider unbounded derivatives positions such as call options.
Many authors have investigated extension to Lp-spaces, and we refer for instance to [10, 26, 28]
for recent results in this direction. Typically, if the risk measure is not real-valued, such as
the entropic risk measure, an extra assumption of lower semicontinuity is required in order to
obtain a nice dual representation. The implications for some of the dynamic hedging problems
considered in the current paper are investigated under Lp convex risk measures in [29].

2.2 Dynamic Hedging

We call a predictable and S-integrable process (θt)0≤t≤T admissible if the process
(

∫ t
0 θu dS

)

is uniformly bounded from below by a constant. We denote the corresponding set of terminal
values by

H =

{
∫ T

0
θ dS | θ admissible

}

,

and the set of almost surely bounded, super-hedgeable claims by

C = (H− L+
0 ) ∩ L∞. (2.5)

Definition 2.5. For X ∈ L∞, we define

u(X) = inf
Y ∈C

ρ(−X + Y ). (2.6)

It turns out that u has a very convenient dual representation. Let Ma ⊂ Pa (resp.
Me ⊂ Pe) be the set of measures absolutely continuous (resp. equivalent) to P under which
S is a local martingale. We note that, as in [27, Proposition 5.1], Me is dense in Ma in the
norm topology of L1(P ).

Definition 2.6. We define

Ma
f = {Q ∈ Ma |α(Q) <∞}, Me

f = {Q ∈ Me |α(Q) <∞}.

Assumption 2.7. Given a convex risk measure satisfying Assumption 2.2, we assume that
Me

f is non empty.

In general, it is difficult to find useful conditions guaranteeing this except in relatively
trivial cases such as finite probability spaces.

Proposition 2.8. Under Assumptions 2.2 and 2.7, u has the dual representation

u(X) = max
Q∈Ma

f

(

E
Q[X] − α(Q)

)

, ∀X ∈ L∞. (2.7)

5



Proof. Consider the coherent risk measure ν−C associated with the convex set −C and defined
by

ν−C(−X) = inf{m ∈ R | ∃V ∈ −C,m+X ≥ V, P − a.s.}.
By point 3 following [3, Definition 1.5], the minimal penalty function α−C(Q) is +∞ if Q does
not belong to the polar cone

{Q ∈ Pa | E
Q[H] ≤ 0,∀H ∈ C}, (2.8)

and zero otherwise. Since the set in (2.8) is well-known to be Ma (see for example [27,
Proposition 5.1]), we have

α−C(Q) = ∞1(Ma)c(Q),

where 0 × ∞ = 0. From [3, Corollary 3.6], the function X 7→ u(−X) = infY ∈C ρ(X + Y ) ,
the inf-convolution of ρ and ν−C, is a new convex risk measure which inherits continuity from
below from ρ. The penalty function after inf-convolution is the sum of the penalty functions
α and α−C . Arguing as in the proof of Theorem 2.3 for the convex risk measure u(−X), leads
to (2.7).

For a given λ, the value function of the optimal dynamic hedging problem is

inf
Y ∈C

ρ(x+ λ · g + Y − λ ·G−Ge) = u(λ ·G+Ge) − λ · g − x. (2.9)

The problem of the investor is thus to minimize the right hand side in (2.9) over static
derivatives positions λ. This problem is evidently independent of x, so we shall take x = 0 in
the sequel.

Therefore, we need to find the Fenchel-Legendre transform at the level g of the function
λ 7→ u(λ · G + Ge). Alternatively, one could define the indifference price h(X) of a claim
X ∈ L∞(FT ) as the smallest compensation at time zero for an investor to undertake an
obligation of paying X at maturity, such that he or she is indifferent in terms of the risk. By
translation invariance, this is just the additional capital requirement to equate u(X) and u(0),
so h(X) = u(X)−u(0). The static part of the optimal combined hedge is equivalent therefore
to minimizing h(Ge + λ · G) − λ · g, that is, to find the Fenchel-Legendre transform of the
indifference price as function of quantity λ at the market price g.

Existence and uniquness of an optimal static hedge λ∗ reduce therefore to studying the con-
vexity, strict convexity and large |λ| slope asymptotics of the indifference price, or equivalently
u(λ ·G+Ge), as a function of the static position λ ∈ R

n.

2.3 Existence of an Optimal Static Hedging Position

Our first step establishes convexity of u as a function of the static holding λ.

Proposition 2.9. Under Assumptions 2.2 and 2.7, the function λ 7→ u(λ ·G+Ge) is convex.

Proof. Note that
λ 7→ E

Q[Ge + λ ·G] − α(Q)

is affine in λ, and u being a supremum of affine functions on R
n over absolutely continuous

probability measures, we conclude the convexity of λ 7→ u(λ ·G+Ge).
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For risk measures with strictly convex penalty function, we can now establish differentia-
bility and a condition on the market price vector g for existence of an optimal static hedge.

Assumption 2.10. Assume that α is strictly convex on Ma
f .

Note that under this assumption, the maximizer in Theorem 2.3 is unique.

Theorem 2.11. Under Assumptions 2.2, 2.7 and 2.10, the function λ 7→ u(Ge + λ · G) is
continuously differentiable on R

n and its gradient is

∇u(Ge + λ ·G) = E
Qλ

[G], (2.10)

where Qλ is the unique maximizer of E
Q[Ge +λ ·G]−α(Q) over Ma

f . Moreover, the function
φ(t) := u(Ge + tλ ·G) is convex, differentiable and

lim
t→+∞

φ′(t) = lim
t→+∞

φ(t)

t
= sup

Q∈Me
f

E
Q[λ ·G] (2.11)

lim
t→−∞

φ′(t) = lim
t→−∞

φ(t)

t
= inf

Q∈Me
f

E
Q[λ ·G]. (2.12)

In preparation for the proof of Theorem 2.11, we first recall the following definition and
proposition in [2].

Definition 2.12. For a risk tolerance coefficient γ > 0, let ργ denote the dilated risk measure
associated with ρ, defined by

ργ(X) = γρ

(

1

γ
X

)

, ∀X ∈ L∞.

Proposition 2.13. (From Proposition 3.10 in [2]) Suppose that ρ(0) = 0. Then ρ∞ :=
limγ→∞ ργ is a coherent risk measure and

ρ∞(X) = sup
{Q∈Pa |α(Q)=0}

E
Q[−X].

On the other hand, ρ0 = limγ→0 ργ is simply the “super-pricing rule” of −X:

ρ0(X) = sup
{Q∈Pa |α(Q)<∞}

E
Q[−X].

The following definition and lemma will also be useful.

Definition 2.14. Given a convex risk measure ρ satisfying Assumption 2.2, and Y ∈ L∞

with ρ(Y ) <∞, we define the mapping ρY : L∞ 7→ R as

ρY (X) = ρ(X + Y + ρ(Y )), for all X ∈ L∞. (2.13)

Lemma 2.15. For a given convex risk measure ρ, ρY as defined above is a convex risk measure,
and is normalized such that ρY (0) = 0. Moreover, the minimal penalty function αY associated
with ρY , is related to the minimal penalty function α associated with ρ, via

αY (Q) = α(Q) + E
Q[Y ] + ρ(Y ). (2.14)
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Proof. It is simple to show that ρY satisfies the assertions in Definition 2.1. From (2.3), the
minimal penalty function associated with ρY , αY , is given by

αY (Q) = sup
X∈L∞

(

E
Q[−X] − ρY (X)

)

,

= sup
X∈L∞

(

E
Q[−X] − ρ(X + Y )

)

+ ρ(Y ),

= sup
Z∈L∞

(

E
Q[−Z] − ρ(Z)

)

+ E
Q[Y ] + ρ(Y ),

= α(Q) + E
Q[Y ] + ρ(Y ), ∀Q ∈ Pa,

which establishes (2.14).

Proof of Theorem 2.11. For λ ∈ R
n define

ρ̃λ(X) := u(λ ·G+Ge −X) − u(λ ·G+Ge), X ∈ L∞.

Using Lemma 2.15, we easily verify that ρ̃λ is a convex risk measure, normalized such that
ρ̃λ(0) = 0, and whose penalty function is

α̃λ(Q) = α(Q) − E
Q[λ ·G+Ge] + u(λ ·G+Ge) for Q ∈ Ma

f

and α̃λ(Q) = +∞ when Q 6∈ Ma
f . Notice that α̃λ(Q) ≥ 0 for all Q. As α, and hence α̃λ, is

strictly convex, equality holds for a unique measure Qλ ∈ Ma
f , which is then also the unique

maximizer of E
Q[Ge + λ ·G] − α(Q).

Now fix µ ∈ R
n and ǫ ∈ R\{0}. We can write

u((λ+ ǫµ) ·G+Ge) − u(λ ·G+Ge)

ǫ
=

1

ǫ
ρ̃λ(−ǫµG). (2.15)

As ǫ decreases to zero, Proposition 2.13 applied to the risk measure ρ̃λ and γ = 1/ǫ shows
that (2.15) converges to

sup{EQ[µ ·G] | Q ∈ Me
f , α̃λ(Q) = 0} = E

Qλ

[µ ·G].

As ǫ increases to zero, the same Proposition applied to γ = −1/ǫ instead shows that (2.15)
converges to

− sup{EQ[−µ ·G] | Q ∈ Me
f , α̃λ(Q) = 0} = E

Qλ

[µ ·G].

This proves the first part of the proposition.
As for the second part, it follows from the first part that φ is convex and continuously

differentiable. The first equality in (2.11) holds by convexity. The second equality is obtained
by setting µ = λ, letting ǫ → +∞ in (2.15) and applying Proposition 2.13 to γ = ǫ and
X = λ · G +Ge. Indeed, α̃λ(Q) < ∞ iff Q ∈ Ma

f . Thus (2.11) holds and (2.12) is proved in
the same way.

Corollary 2.16. Under Assumptions 2.2, 2.7, and 2.10, the minimizer of

λ 7→ u(λ ·G+Ge) − λ · g

exists if
inf

Q∈Me
f

E
Q[λ ·G] < λ · g < sup

Q∈Me
f

E
Q[λ ·G] ∀λ ∈ R

n \ {0}. (2.16)
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The condition (2.16) on the market price vector g is sufficient to guarantee no static
arbitrage opportunities among the hedging instruments G. In the case of the risk measure
associated with exponential utility (equation (1.1)), the existence of a minimizer whenever g
is a no arbitrage price vector (that is, condition (2.16) with the inf and sup taken over the set
Me) follows from the L1(P )-denseness of {dQ

dP | Q ∈ Me
f} in {dQ

dP | Q ∈ Me}, for the particular
case that Me

f is the set of equivalent local martingale measures with finite relative entropy.
Uniqueness of the minimizer in that case follows from the strict convexity of u. We refer to
[18] for details and references. In the remainder of the paper we analyze specifically a family
of convex-but-not-coherent risk measures, namely shortfall risk with power loss function.

3 Shortfall Risk

We consider the shortfall risk at level ξ > 0, with power loss, which is defined as

ρ(X) = inf{m ∈ R | E[ℓ(−m−X)] ≤ ξ}, X ∈ L∞ (3.1)

where

ℓ(x) =

{ 1
px

p x ≥ 0,

0 x < 0,
(3.2)

with p > 1.

Remark 3.1. The choice ℓ(x) = eγx for some γ > 0 in (3.1) leads to

ρ(X) =
1

γ
log
(

E
[

e−γX
])

− 1

γ
log ξ,

which is the entropic risk measure eγ(X) defined in (1.1), up to a constant depending on ξ.
The analog of the main result of this section, Theorem 3.2 below, in the case of the entropic
risk measure, is Theorem 5.1 in [18].

3.1 Uniqueness of the Static Hedging Position

Clearly ρ is law invariant and, by Proposition 4.104 of [13], it is continuous from below, and
so satisfies Assumption 2.2. Its dual representation is

ρ(X) = max
Q∈Pa

(

E
Q[−X] − (pξ)1/pHq(Q|P )

)

, X ∈ L∞,

where q > 1 is the conjugate exponent: 1
p + 1

q = 1, and

Hq(Q|P ) :=

(

E

[(

dQ

dP

)q])1/q

, (3.3)

the q-distance between Q and P : see Example 4.109 in [13].
We define

Ma
q =

{

Q ∈ Ma
∣

∣

dQ

dP
∈ Lq(P )

}

,

and similarly Me
q for Lq-integrable equivalent local martingale measures. We will throughout

assume that Me
q is nonempty. It follows from Minkowski’s inequality (see e.g. [14], Exercise
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3.2.7) that Hq is strictly convex on Ma
q , hence Assumption 2.10 is satisfied. In view of

Proposition 2.8, we have

u(X) = max
Q∈Ma

q

U(Q,X) where U(Q,X) = E
Q[X] − (pξ)1/pHq(Q|P ), (3.4)

and the maximizer is unique.
Our next result gives a condition for the uniqueness of the optimal static hedging position.

Theorem 3.2. Assume that S is continuous, and that for all λ ∈ R
n \ {0},

inf
Q∈Me

q

E
Q[λ ·G] < sup

Q∈Me
q

E
Q[λ ·G]. (3.5)

Then the map λ 7→ u(Ge +λ ·G) is differentiable. Furthermore if, for λ∗ ∈ R
n, the maximizing

measure Q∗ ∈ Ma
q in (3.4) with X = Ge +λ∗ ·G, is in fact an equivalent measure (Q∗ ∈ Me

q),
then λ 7→ u(Ge + λ ·G) is strictly convex at λ∗.

It follows that, given an optimal static hedge λ∗, it is unique if the associated maximizing
measure Q∗ ∈ Me

q.

Remark 3.3. The maximizing measure Q∗ is not automatically in Me
q (see the example in

Section 3.3). This is in contrast with the case of the entropic risk measure, where the infinite
slope of the entropy function x log x at x = 0 forces the maximizing measure to be equivalent.

Remark 3.4. Moreover, even if Q∗ 6∈ Me
q, λ 7→ u(Ge + λ ·G) may still be strictly convex at

λ∗. Again, see the example in Section 3.3.

To proceed, we need the following two lemmas whose proofs are given below.

Lemma 3.5. Given X ∈ L∞ and Q ∈ Ma
q define Z = Z(Q,X) ∈ Lq by

Z(Q,X) = X − (pξ)
1

p E

[(

dQ

dP

)q]− 1

p
(

dQ

dP

)q−1

. (3.6)

Then the following hold:

(a) E
Q[Z(Q,X)] = U(Q,X) for all Q ∈ Ma

q , where U(Q,X) is given by (3.4);

(b) a given measure Q∗ ∈ Ma
q is the unique maximizer of U(Q,X) over Q ∈ Ma

q iff

E
Q[Z(Q∗,X)] ≤ E

Q∗
[Z(Q∗,X)] for all Q ∈ Ma

q .

The lemma says that we can linearize the optimization problem in (3.4). See Figure 1.

Lemma 3.6. Let H1,H2 ∈ Lp, with H1 − H2 bounded, and suppose there exists Q∗ ∈ Me
q

such that
E

Q[H i] ≤ E
Q∗

[H i] = 0 for i = 1, 2 and all Q ∈ Ma
q .

Then E
Q[H1] = E

Q[H2] for all Q ∈ Ma
q .
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EQ[Z]=0

EQ[Z]=const.<0

U(Q,X)=const.

Me
f

 

 

Q*

Figure 1: Illustration of Lemma 3.5(b). Here, Z = Z(Q∗, X).

Proof of Theorem 3.2. We have already seen that Assumptions 2.2, 2.7 and 2.10 are satisfied,
so Theorem 2.11 implies that λ 7→ u(λ·G+Ge) is convex and differentiable on R

n. Its gradient

is ∇u(Ge + λ ·G) = E
Qλ

[G], where Qλ ∈ Ma
q is the unique maximizer of

ψ(Q;λ) := E
Q[Ge + λ ·G] − (pξ)1/pHq(Q|P ) (3.7)

over Ma
q .

To prove strict convexity of λ 7→ u(λ · G +Ge) at λ∗, we argue by contradiction: assume
there exist λ1 6= λ2 such that λ∗ lies in the interior of the line segment between λ1 and λ2,
and that λ 7→ u(Ge + λ ·G) is affine on this segment. Denote by Q1 = Qλ1

and Q2 = Qλ2

the
unique maximizers over Ma

q of ψ(·;λ1) and ψ(·;λ2) respectively. It follows from (3.7) that

(

ψ(λ1;Q1) − ψ(λ1;Q2)
)

+
(

ψ(λ2;Q2) − ψ(λ2;Q1)
)

= (λ1 − λ2)
(

E
Q1

[G] − E
Q2

[G]
)

.

The right hand side is equal to zero by the linearity assumption and the gradient formula above.
The left hand side is the sum of two nonnegative terms since ψ(λi; ·) attains its maximum at
Qi. These maxima being unique then implies that Q1 = Q2 = Q∗.

Next, we define

H i = Z(Q∗, Ge + λi ·G) − u(Ge + λi ·G), i = 1, 2,

with Z(Q,X) as in (3.6). As Q∗ maximizes U(Q,Ge + λi ·G), with u(Ge + λi ·G) being the
maximum value, Lemma 3.5 yields E

Q[H i] ≤ E
Q∗

[H i] = 0 for all Q ∈ Ma
q . As H1 − H2 is

bounded, Lemma 3.6 shows that E
Q[H1 −H2] = 0 for all Q ∈ Ma

q . But this means precisely

that EQ[(λ1 − λ2) · G] does not depend on Q ∈ Me
q, which contradicts (3.5) and completes

the proof.

11



3.2 Proofs of Lemma 3.5 and Lemma 3.6

We now prove the two lemmas.

Proof of Lemma 3.5. The proof of (a) is a simple computation. To prove (b) we fix Q∗, Q ∈
Ma

q and set φ(t) = U((1 − t)Q∗ + tQ,X) for 0 ≤ t ≤ 1. Then φ is concave on [0, 1], hence
admits one-sided derivatives everywhere. A direct computation shows that

φ′(0+) = EQ[Z(Q∗,X)] −EQ∗

[Z(Q∗,X)].

On the one hand, if Q∗ is the maximizer of U(·,X), then φ′(0+) ≤ 0 for any choice of Q. On
the other hand, if Q∗ is not the maximizer, then we may pick Q such that φ(1) > φ(0). The
concavity of φ then gives φ′(0+) > 0.

Lemma 3.6 is taken from Theorem 1.2 in [9]. It is re-written here in a modified form:
the theorem in [9] concerns attainable claims, but the argument works for “approximately
super- and sub-hedgeable claims”, which is what we need. We give the modified proof for
completeness. First we need a definition and lemma, cf. [9, p.747].

Definition 3.7. We call a predictable process a simple p-admissible integrand for S if it is a
linear combination of processes of the form

θ = f1]T1,T2],

where T1 and T2 are finite stopping times dominated by some Un, where (Un)∞n=1 is a localizing
sequence for S; and f ∈ L∞(Ω,FT1

, P ). We define

Ks
p =

{
∫ T

0
θu dSu | θ simple p-admissible

}

⊂ Lp(P ).

Lemma 3.8.

H ∈ Ks
p − Lp

+(P )
Lp(P ) ⇐⇒ E

Q[H] ≤ 0, for all Q ∈ Ma
q ;

H ∈ Ks
p + Lp

+(P )
Lp(P ) ⇐⇒ E

Q[H] ≥ 0, for all Q ∈ Ma
q .

Proof. Follows from a simple modification of the proofs of (i) ⇐⇒ (iii′) in [9, Theorem 1.2].

Proof of Lemma 3.6. Adapting the approach in the proof of [9, Theorem 1.2], we proceed in

three steps, first to show that H i ∈ Ks
p − Lp

+(P )
Lp(P )

, then that H i ∈ Ks
p

L1(Q∗)
, and finally

that H1 −H2 ∈ Ks
p

Lp(P )
. The first step follows from Lemma 3.8. Since Lp(P ) ⊂ L1(Q∗) (by

Hölder’s inequality), we have that H i ∈ Ks
p − L1

+(Q∗)
L1(Q∗)

, and there exist two sequences
(H i

n)∞n=1 ∈ Ks
p , i = 1, 2 such that

lim
n→∞

E
Q∗

(H i −H i
n)− = 0, i = 1, 2.

From the facts that elements of Ks
p have Q∗-expectation zero, and that E

Q∗
[H i] = 0, we

deduce
lim

n→∞
E

Q∗|H i −H i
n| = 0, i = 1, 2,

12



in other words the H i are in the L1(Q∗) closure of Ks
p . Then H̃ := H1 − H2 is also in the

L1(Q∗) closure of Ks
p, and is bounded by hypothesis.

For the last step, we may identify H̃ with a uniformly integrable martingale (ht)t≥0 by
letting ht = E

Q∗
[H̃ |Ft], and applying Corollary 2.5.2 in [30] to exhibit a predictable integrand

ϕ such that
∫ T
0 ϕu dSu = H̃. Note that

∫ t
0 ϕu dSu = E

Q∗
[H̃ |Ft] is bounded in absolute

value by ||H̃||∞. Since we assumed that S is continuous, we can apply Lemma 2.3 in [9] to

find a sequence (ϕn)∞n=1 of ∞-admissible simple integrands such that
∫ T
0 ϕn

u dSu converges to
∫ T
0 ϕu dSu = H̃ in Lp(P ). Therefore H̃ is also in Ks

p
Lp(P )

. But then Lemma 3.8 implies that

E
Q[H̃] = 0 for all Q ∈ Ma

q , and the conclusion of the lemma follows.

3.3 A Simple Example

We present a simple one-period quadrinomial tree example that demonstrates that even if
the maximizing measure Q∗ in (3.4) with X = Ge + λ∗ · G is in Ma

q , but not in Me
q, then

λ 7→ u(Ge +λ ·G) may still be strictly convex at λ∗. In other words, the condition in Theorem
3.2 that the maximizing measure is not only absolutely continuous (with respect to P ) but
also equivalent, is sufficient, but not necessary for strict convexity.

The probability space has four elements: Ω = {ω1, ω2, ω3, ω4} . The current stock price is
S0 = 4, and at the end of the single period, ST (Ω) = {7, 5, 3, 1}, with historical probabilities

P ({ω1}) =
1

2
, P ({ω2}) =

1

4
, P ({ω3}) =

1

8
, P ({ω4}) =

1

8
.

The exotic option Ge and the single static hedging instrument G have payoffs

Ge(Ω) = {−40,−20,−20,−40}, G(Ω) = {3,−1, 1, 3}.
The absolutely continuous martingale measures Q ∈ Ma

q are parametrized by (q1, q2, q3, q4) ∈
[0, 1]4, with the (probability and martingale) constraints

q1 + q2 + q3 + q4 = 1, 7q1 + 5q2 + 3q3 + q4 = 4.

This is conveniently represented as (q2, q3) ∈ ∆, where ∆ is the convex subset of [0, 1]2 shown
in Figure 2.

We choose p = q = 2 and the shortfall threshold level ξ such that the optimization problem
(3.4) is

w(λ) := u(Ge + λG) = max
Q∈Ma

q

E
Q[Ge + λG] −H2(Q | P ),

which, in the quadrinomial model, becomes of the form

w(λ) = max
(q2,q3)∈∆

L(q2, q3) −
√

Q(q2, q3),

for some affine function L, and quadratic function Q.
It is straightforward, but tedious, to see that for any λ ∈ R, the optimizing measure is

always attained on the boundary of ∆, and so is absolutely continuous, but not equivalent.
In particular, there exist finite λ1 < λ2 < λ3 < λ4 such that the optimizer (q∗2 , q

∗
3) is either

on the edges σ1 and σ2 in Figure 2, or at the vertices (3
4 , 0), (1

2 ,
1
2) or (0, 3

4), depending on
where λ lies. In particular, when the optimizer is stuck at a vertex while λ increases, w(λ) is
affine, and while λ moves between vertices, w(λ) is strictly convex. This is summarized in the
following table and Figure 3.
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Figure 2: Ma

q
in the quadrinomial model. The interior of the polygon represents Me

q
.

λ (q∗2, q
∗
3) w(λ) w′(λ)

−∞ < λ ≤ λ1 at (3
4 , 0) affine = SubH

λ1 < λ < λ2 on σ1 strictly convex ∈ (SubH, 0)
λ2 ≤ λ ≤ λ3 at (1

2 ,
1
2) affine 0

λ3 < λ < λ4 on σ2 strictly convex ∈ (0,SupH)
λ4 ≤ λ <∞ at (0, 3

4) affine = SupH

The sub- and super-hedging prices of G are given by

SubH = −1.5, SupH = 1.5.

A numerical computation yields

λ1 ≈ −4.62, λ2 ≈ −1.25, λ3 ≈ 3.93, λ4 ≈ 4.69.

3.4 A Comparison to Utility Maximization and Partial Hedging

The problem of dynamically hedging a derivatives position, say G, using the underlying se-
curities (i.e. the stocks) so as to minimize an expected loss was studied in [7, 12], among
others. Specifically, defining Vt = v +

∫ t
0 θu dSu, where θ is an admissible strategy, and v > 0

the initial wealth (the hedging cost), the basic partial hedging problem is to find

inf
θ

E[ℓ(G− VT )],

under the constraint Vt ≥ 0 for all t ∈ [0, T ], for some given decreasing convex loss function
ℓ. This is closely related to utility maximization problems with a random endowment, for
example

U(v, λ) = sup
θ

E[U(VT + λG)].
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Figure 3: Graph w(λ) showing regions where it is affine and where it is strictly convex, where the
maximum is attained on ∆, and where the slope attains the sub- and super-hedging prices.

Here, twice differentiability of U (and associated utility prices) as a function of the quantity
λ, and as λ ↓ 0, are studied in [23] for quite general utility functions U . When U is strictly
concave, strict concavity of U follows directly. For convex risk measures, this is not so clear,
as can be seen from the example of the entropic risk measure (1.1), where the log is a concave
function of the expectation of a convex loss function.

For the case of a one-sided loss function such as in (3.2), only shortfalls are considered,
and there is no utility for overshooting the target. We refer to [7, 12], and also [21] for analysis
and asymptotic approximations under diffusion stochastic volatility models, [4] for the duality
theory addressing the non-smoothness of ℓ, and [26] for generalizations when expected shortfall
is replaced by a convex risk measure of the shortfall.

In general, the solution to the partial hedging problem depends on the initial hedging
capital v. In this paper, we choose to minimize the hedging error under a convex risk measure
ρ constructed on L∞(P ). The optimization is first over dynamic trading strategies whose
terminal values VT ∈ C, the set of almost surely bounded, super-hedgeable claims, defined in
(2.5), without the restriction that the wealth process V remains positive; and then over static
positions λ ∈ R

n in G. In terms of the associated acceptance set of the convex risk measure ρ,
namely A = {X ∈ L∞(P ) | ρ(X) ≤ 0}, we seek to minimize the amount of money that needs
to be added to the position for the risk to be acceptable:

inf
λ∈Rn

inf
VT ∈C

inf{m ∈ R | VT − (Ge + λ · (G− g)) ∈ A}.

The optimal hedging strategy θ (if it exists) is then independent of the initial capital v: any
remaining required start-up cost is simply borrowed at initiation of the hedge.

Finally, one could consider minimization of risk measures induced by the hedging instru-
ments (other than cash), for example

inf
λ∈Rn

inf{VT ∈ C | VT−(Ge+λ·(G−g)) ∈ A}, or inf
VT ∈C

inf{λ ∈ R
n | VT−(Ge+λ·(G−g)) ∈ A}.
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The first is the minimization of a C-valued risk measure over static hedges, the latter the
minimization of a vector valued risk measure over dynamic hedges. Formulation of the problem
of course requires defining the notion of infimum for set-valued risk measures. We refer to [16]
for work in this direction.

4 Varying the shortfall threshold

With a view towards numerical computations (Section 5), we study the properties of u as a
function of the threshold level ξ > 0, which we introduce as an argument in the notation,
denoting U and u in (3.4) as U(ξ,Q,X) and u(ξ,X), respectively.

As 1 < q <∞, U is strictly convex in ξ. Let us introduce its Fenchel-Legendre transform:

Û(z,Q,X) = inf
ξ>0

(U(ξ,Q,X) + ξz), z ≥ 0, (4.1)

= E
Q[X] − 1

q
z1−q

E

[(

dQ

dP

)q]

,

and the conjugate optimization problem

û(z,X) = sup
Q∈Ma

q

Û(z,Q,X). (4.2)

Note that û(z,−X) is another market modified convex risk measure with penalty function
1
qz

1−q
E

[(

dQ
dP

)q]

, which is finite and strictly convex on Ma
q . The important difference with

the dual representation (3.4) of u is that the “outside power” 1/q is missing compared with
(3.3), and the objective function Û is therefore an expectation of a function of the Radon-
Nikodym derivative dQ/dP . This is exploited when we use dynamic programming for a
numerical computation in Section 5.

Theorem 4.1. For X ∈ L∞, we have

u(ξ,X) = sup
z>0

(û(z,X) − ξz) , (4.3)

and
û(z,X) = inf

ξ>0
(u(ξ,X) + ξz) . (4.4)

We will make use of the following analog of Lemma 3.5 part (b). The proof, being almost
identical, is omitted.

Lemma 4.2. Given z > 0, X ∈ L∞ and Q ∈ Ma
q define W = W (z,Q,X) ∈ Lq by

W (z,Q,X) = X − z1−q

(

dQ

dP

)q−1

. (4.5)

Then a given measure Q∗ ∈ Ma
q is the unique maximizer of Û(z,Q,X) over Q ∈ Ma

q iff

E
Q[W (z,Q∗,X)] ≤ E

Q∗
[W (z,Q∗,X)] for all Q ∈ Ma

q .
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Proof of Theorem 4.1. The functions U(ξ,Q,X) and Û(z,Q,X) being conjugate, we have

U(ξ,Q,X) = sup
z>0

(

Û(z,Q,X) − ξz
)

for Q ∈ Ma
q .

Taking supremum over Q in both sides, and changing the order of maximization problems on
the right hand side, we arrive at (4.3).

To prove (4.4) we fix z and let Q∗ ∈ Ma
q be (uniquely) defined by û(z,X) = Û(z,Q∗,X).

By Lemma 4.2, we have EQ[W (z,Q∗,X)] ≤ EQ∗
[W (z,Q∗,X)] for all Q ∈ Ma

q .

Next, we set ξ∗ = p−1z−q
E[(dQ∗

dP )q]. A straightforward calculation shows thatW (z,Q∗,X) =
Z(ξ∗, Q∗,X) where the right hand side is defined as in Lemma 3.5, using this same measure
Q∗. Applying Lemma 4.2, we find that

E
Q∗

[Z(ξ∗, Q∗,X)] = E
Q∗

[W (z,Q∗,X)] ≥ E
Q[W (z,Q∗,X)] = E

Q[Z(ξ∗, Q∗,X)],

for all Q ∈ Ma
q . Lemma 3.5 part (b) then implies that Q∗ maximizes U(ξ∗, Q,X), and so

we have u(ξ∗,X) = U(ξ∗, Q∗,X). A further direct computation reveals that Û(z,Q∗,X) =
U(ξ∗, Q∗,X) + ξ∗z, which yields

û(z,X) = Û(z,Q∗,X) = U(ξ∗, Q∗,X) + ξ∗z = u(ξ∗,X) + ξ∗z ≥ inf
ξ>0

(u(ξ,X) + ξz).

But (4.3) implies û(x,X) ≤ infξ>0(u(ξ,X) + ξz), and hence (4.4) holds.

5 Computation of Shortfall Risk in the Nontraded Asset Model

In this section, we address computation of the optimal hedge within a dynamic Brownian
motion based financial model. Our goal is to provide a comparison in a case where the
entropic risk measure (or, equivalently, exponential utility) has been enormously successful,
namely the problem of hedging (or indifference pricing) of an option on a non-traded asset,
using a correlated tradeable asset. In the canonical set-up, the price processes of the traded
asset S and the non-traded asset Y are described by the stochastic differential equations

dSt = µ(Yt)St dt+ σ(Yt)St dW 1
t , S0 = S, (5.1)

dYt = b(Yt) dt+ a(Yt)(ν dW 1
t + ν ′ dW 2

t ), Y0 = y. (5.2)

Here W 1 and W 2 are independent standard Brownian motions on our probability space
(Ω,F ,F, P ), and F = (Ft)0≤t≤T is the standard filtration generated by them. The constant
ν ∈ (−1, 1) is a correlation coefficient, and ν ′ =

√
1 − ν2. We assume sufficient regularity on

the coefficients of the SDEs to guarantee existence of a unique strong solution. Specifically, we
assume that a and σ are bounded above and below away from zero, and smooth with bounded
derivatives. We also assume that µ and b are smooth with bounded derivatives. The object
of interest is a European derivative contract written on Y .

5.1 Dynamic Programming Equation

For our hedging problem, the option payoffs that we need to work with will be path dependent
in general, but to ease the representation, in this section we will assume that Ge+λG = h(YT ),
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that is, European. The extension to path dependent payoffs would introduce additional bound-
ary conditions, and/or extra dimensions in the resulting Hamilton-Jacobi-Bellman (HJB)
equations we will use for analysis of the optimization problems.

One approach would be to deal with the primal problem (2.9). In this case, to apply dy-
namic programming techniques, we introduce the wealth process Vt corresponding to holding,
at time t, πt dollars in the traded asset S. We will assume throughout that the interest rate
is zero, and so the wealth process evolves according to

dVt = µ(Yt)πt dt+ σ(Yt)πt dW 1
t , V0 = v. (5.3)

The value function of the dynamic hedging problem is then defined as

H(t, v, y) = inf
π

E [ℓ((h(YT ) − VT ))|Vt = v, Yt = y] , (5.4)

and the shortfall risk w at level ξ is found (at time zero) by solving

H(0, v + w, y) = ξ.

It might be natural here to pass to the HJB equation for H, but for the loss function (3.2),
we know that H ≡ 0 for v large enough, particularly v ≥ vsup, the superhedging price (among
admissible strategies that trade only S) of the claim h. Therefore, H may not have sufficient
smoothness for the HJB equation to apply for all v ∈ R, and we pass to the study of the dual
problem (4.2).

From Girsanov’s theorem, the set of equivalent local martingale measures is characterized
in the model (5.1)-(5.2) by

dQγ

dP
= exp

(

−
∫ T

0

µ(Yt)

σ(Yt)
dW 1

t −
∫ T

0
γt dW 2

t − 1

2

∫ T

0

(

µ2(Yt)

σ2(Yt)
+ γ2

t

)

dt

)

,

for some adapted process γ with
∫ T
0 γ2

t dt < ∞ a.s. We denote by N the space of adapted

processes γ that satisfy the Novikov condition: E[exp(1
2

∫ T
0 γ2

t dt)] < ∞. For γ ∈ N , Qγ

is then an equivalent martingale measure, and by Jensen’s inequality, the Novikov condition
implies E[

∫ T
0 γ2

t dt] <∞.

Remark 5.1. The q-distance of Qγ with respect to P is

Hq(Qγ | P ) = E

[

exp

(

−1

2
q

∫ T

0

(

µ2(Yt)

σ2(Yt)
+ γ2

t

)

dt− q

∫ T

0

µ(Yt)

σ(Yt)
dW 1

t − q

∫ T

0
γt dW 2

t

)]1/q

.

The choice γ ≡ 0 gives the well-known minimal martingale measure Q0. By the assumptions
on the coefficients, Hq(Q0 | P ) <∞, and so Me

q is non-empty, and Assumption 2.7 is satisfied.

For γ ∈ N , we define

W γ,1
t = W 1

t +

∫ t

0

µ(Ys)

σ(Ys)
ds, W γ,2

t = W 2
t +

∫ t

0
γs ds

and the process (Zt) by

dZt = Zt

(

µ(Yt)

σ(Yt)
dW γ,1

t + γtdW
γ,2
t

)

, Z0 = z.
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By Girsanov’s theorem, W γ,1 and W γ,2 are Qγ-Brownian motions. Moreover, ZT = z dP
dQγ and

(Zt) is a Qγ-martingale.
We are interested in computing û(z, h(YT )) of equation (4.2). A priori we have to optimize

over all absolutely continuous local martingale measures of finite q-distance, that is, Q ∈ Ma
q .

The supremum does not change (but may no longer be attained) if we optimize over only
equivalent local martingale measures, that is, Q ∈ Me

q.

Assumption 5.2. Assume that we only need to optimize over measures of the form Qγ , where
γ satisfies the Novikov condition:

û(z, h(YT )) = sup
γ∈N

(

E
Qγ

[h(YT )] − 1

q
z1−q

E

[(

dQγ

dP

)q])

. (5.5)

Re-writing (5.5) as

û(z, h(YT )) = sup
γ∈N

(

E
Qγ

[h(YT )] − 1

q
z1−q

E
Qγ

[

(

dQγ

dP

)q−1
])

,

leads us to consider the value function

û(t, y, z) = sup
γ∈N

E
Qγ

[

h(YT ) − 1

q
Z1−q

T | Yt = y, Zt = z

]

, (5.6)

which we have also labeled û in a slight abuse of notation.

Proposition 5.3. Suppose i) Assumption 5.2 holds; ii) the value function û(t, y, z) is con-
tinuously differentiable in t and twice continuously differentiable in y and z, and is strictly
concave in z; and iii) that γ∗t defined by

γ∗t = −
√

1 − ν2 a(Yt)
(Zt ûzy(t, Yt, Zt) − ûy(t, Yt, Zt))

Z2
t ûzz(t, Yt, Zt)

satisfies Novikov’s condition. Then û(t, y, z) satisfies the HJB equation

ût + Lyû+
νµ(y)a(y)

σ(y)
(zûzy − ûy) +

µ2(y)

2σ2(y)
z2ûzz −

1

2
a2(y)(1 − ν2)

(zûzy − ûy)
2

z2ûzz
= 0, (5.7)

with the terminal condition

û(T, y, z) = h(y) − 1

q
z1−q, (5.8)

where

Ly =
1

2
a2(y)

∂2

∂y2
+ b(y)

∂

∂y
. (5.9)

The optimum in (5.6) is attained by (γ∗t ).

Proof. Clearly for γ ∈ N ,
dQγ

dP
= zZ−1

T ,

and, under Qγ ,

dYt =

(

b(Yt) − ν
µ(Yt)

σ(Yt)
a(Yt) − ν ′a(Yt)γt

)

dt+ a(Yt)(ν dW γ,1
t + ν ′dW γ,2

t ), Y0 = y.

Given the strong regularity assumptions, the results follow from standard verification argu-
ments [11].
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An alternative derivation at the level of value functions, obtained from the HJB equation
for H in (5.4) associated with the primal problem, is given in Appendix A.

Remark 5.4. In the case of the exponential loss function ℓ(x) = eγx, the analysis and the
resulting PDEs are the same, only the terminal conditions change. In particular, (5.8) becomes
û(T, y, z) = h(y) + γ−1(1 + log(γz)). Then the solution to (5.7) is additively separable in y
and z, and is given by

û(t, y, z) = K(t, y) + L(z), (5.10)

where L(z) = γ−1 log(γz), and

K(t, y) =
1

γ
+

1

(1 − ν2)
log E

Q0

[

exp

(

−
∫ T

t

µ2(Ys)(1 − ν2)

2σ2(Ys)
ds+ (1 − ν2)h(YT )

)

| Yt = y

]

.

We refer to [24]. This simplification is particular to the exponential loss function, and of
course can be exploited in the dual problem itself without passing to the conjugate.

In general, the PDE problem (5.7) is not analytically tractable, but for a very special
case as when the terminal condition comes from the exponential loss function, as discussed
in Remark 5.4. For the terminal condition (5.8) coming from our power loss function, the
solution is not separable as (5.10), even if L is allowed to depend on t as well. However, in the
case of no claim (h ≡ 0), the dual problem is to find the q-optimal measure that minimizes

E

[(

dQγ

dP

)q]

.

This problem is considered in some generality in [15], and for stochastic volatility models in
[17, 25]. Similarly, conditions for verifying the optimality of a candidate measure which involve
only that measure are available in the case of the entropic risk measure [15, Proposition 3.2],
and in the problem of finding the q-optimal measure when there is no claim [15, Proposition
4.2], but we are not aware of a similar result in the latter case when there is a claim, and
verification remains an open problem.

5.2 Numerical Solution

To illustrate the market-adjusted shortfall risk measure of a derivatives position, we present a
numerical solution of the PDE for the conjugate of the dual problem, which is then Legendre-
transformed to return the risk measure. Specifically, we suppose that the claim on Y is a put
option with strike K:

h(YT ) = (K − YT )+,

where Y is a geometric Brownian motion:

dYt = bYt dt+ aYt (ν dW 1
t + ν ′ dW 2

t ), (5.11)

and we want to compute the risk

u = inf
π
ρ (h(YT ) − VT ) ,
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where ρ is the shortfall risk measure with quadratic power loss function and thereshold ξ,
defined in (3.1)-(3.2), with p = 2, and VT is the terminal value of the hedging portfolio,
defined in (5.3).

We do not tackle here the problem of hedging exotic options with the underlying and other
vanilla options. In the case of the exponential loss function, numerical solutions for the full
static-dynamic hedging of barrier options are given in [20], but we leave for a future work
extension of this to the power loss shortfall case.

Since the initial wealth level v merely reduces the risk by subtraction, we take v = 0
without loss of generality. Then, by Theorem 4.1, given the solution û(0, Y0, z), the risk under
this measure of the short put position, mitigated by trading optimally in the correlated asset
S, is given by

u = sup
z>0

(û(0, Y0, z) − ξz) . (5.12)

We employ an explicit finite-difference solution of (5.7) (after a transformation η = log z),
with terminal condition (5.8). In Figure 4, we show û as a function of y and log z for some
example parameters. For fixed Y0 = y = K (an at-the-money option), we numerically compute
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Figure 4: Numerical solution of conjugate function û(0, y, z) with parameters a = 0.2, b = 0.08, µ =
0.1, σ = 0.1, ρ = 0.5 and put option strike K = 50, maturity T = 0.25 years.

the Legendre transform (5.12) to determine the risk as a function of the threshold level ξ. This
is shown in Figure 5. Note the risk is the amount of cash needed to reduce the error in hedging
the put position by optimally trading the correlated asset S to below the threshold level ξ.
The Black-Scholes price of the put if the asset Y could be traded is shown for comparison.
Note also the limit as ξ ↓ 0 indicates that the superhedging price is approximately double the
Black-Scholes price in this case.
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Figure 5: Market-modified shortfall risk of the put option position, with parameters as in Figure 4.

6 Conclusions

In this paper, we have investigated conditions under which there is a unique optimal static
hedging position in the problem of hedging exotic derivatives using a static-dynamic combina-
tion of continuous trading in underlying stocks, and buy-and-hold hedges in vanilla options.
The performance is judged by a convex risk measure.

The first step is to analyze the residual function u after the optimal dynamic hedge. This
leads to a sufficient condition in general for existence of the optimal static hedge. To investigate
uniqueness, we study the shortfall family of risk measures, which provide an example of directly
defined convex, but not coherent, risk measures other than the entropic risk measure. With
power loss functions, we are able to find a characterization of the optimal solution of the dual
problem, and so analyze conditions for strict convexity of u and from there, uniqueness.

Computational issues are illustrated in a simple incomplete market model for optimal
dynamic hedging of an option on a non-traded asset. While reasonably tractable in this
simple case, using dynamic programming, we conclude that a lot of the flexibility of the
entropic risk measure (exponential utility) is lost in passing to other convex risk measures,
and computation remains a major challenge.

A Dualization & Conjugation at the PDE Level

We give a formal derivation of the HJB equation (5.7) for the conjugate û in the case of the
non-traded asset model, obtained directly from the primal problem. Throughout, we assume
the necessary smoothness of the value functions for the following calculations to apply.

We start with the value function of the dynamic hedging problem, H(t, v, y), defined in
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(5.4). Its associated HJB equation is

Ht + LyH + inf
π

(

1

2
π2σ2(y)Hvv + π(µ(y)Hv + ρσ(y)a(y)Hvy)

)

= 0 (A.1)

with

H(T, v, y) =
1

p

(

(h(y) − v)+
)p
,

where Ly, defined in (5.9), is the infinitesimal generator of Y . Evaluating the internal minimum
supposing that Hvv > 0 in t < T gives

Ht + LyH − (µ(y)Hv + ρσ(y)a(y)Hvy)
2

2σ2(y)Hvv
= 0.

For v less than the superhedging price of the claim, we need to find the “inverse” of H,
namely the solution w of

H(t, v + w(t, v, y, ξ), y) = ξ.

Then it follows easily that w = −v + u(t, y, ξ), for some function u, which is in fact the total
capital needed to reduce the expected shortfall to level ξ. (The additional capital w is found
by simply reducing u by the initial capital v). By successive differentiation of the identity
H(t, u(t, y, ξ), y) = ξ, we obtain the following PDE problem for u:

ut +
1

2
a2(y)

(

uyy − 2
uξyuy

uξ
+
uξξu

2
y

u2
ξ

)

+ b(y)uy

−
(µ(y)uξ − ρσ(y)a(y)uyξ + ρa(y)σ(y)

uyuξξ

uξ
)2

2σ2(y)uξξ
= 0

with
u(T, y, ξ) = h(y) − (pξ)1/p.

Note that we need to treat ξ as a variable in order to have a self-contained equation for u.
Next, we introduce the Legendre transform of u

û(t, y, z) = inf
ξ>0

(u(t, y, ξ) + ξz) ,

and the optimizer χ(t, y, z) that solves

uξ(t, y, χ) = −z.

Then, successively differentiating and manipulating this expression, we substitute partial
derivatives of u in terms of û and obtain

ût + Lyû+
ρµa(y)

σ
(zûzy − ûy) +

µ2

2σ2
z2ûzz −

1

2
a2(y)(1 − ρ2)

(zûzy − ûy)
2

z2uzz
= 0,

which is exactly (5.7).
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