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Abstract

We study the problem of hedging early exercise (American) options with respect to expo-
nential utility within a general incomplete market model. This leads us to construct a duality
formula involving relative entropy minimization and optimal stopping. We further consider claims
with multiple exercises, and static-dynamic hedges of American claims with other European and
American options. The problem is important for accurate valuation of Employee Stock Options
(ESOs), and we demonstrate this in a standard diffusion model. We find that incorporating
static hedges with market-traded options induces the holder to delay exercises, and increases the
ESO cost to the firm.

1 Introduction

Many applications of Financial Mathematics involve the optimization of expected utility of wealth,
combined with one or many optimal stopping decisions, over a finite time horizon. Typical of
these are hedging, indifference valuation, or asset management of portfolios containing American
(early exercise) derivative securities. At the same time, the exponential utility function has become
popular because of its basis for the entropic convex risk measure, which has convenient dynamic
and analytic properties that make it amenable for computations. A very general duality theory with
problems of relative entropy minimization has been developed by Fritelli (2000); Rouge and El Karoui
(2000); Delbaen et al. (2002); Kabanov and Stricker (2002) and Becherer (2001), among others, for
exponential hedging of claims with no early exercise feature. Our goal here is to develop the
analogous duality formula for exponential hedging of American claims, under minimal assumptions
on the underlying price process. This is then applied to the problem of employee stock option (ESO)
valuation, illustrated within a standard diffusion-based financial model.

A key feature of the problems we are interested in is the finite time horizon that corresponds
naturally to the expiration date of the American claim. Allowing for cash flows at (optimally
chosen) prior times requires specification of how the payoff of the exercised American option is
invested thereafter. Here the time-consistency of exponential utility (or the self-generating property
of its associated Merton function) is crucial for tractability. We refer to Musiela and Zariphopoulou
(2007) for a discussion and alternative specifications. There is, of course, an enormous literature
on utility maximization problems of mixed optimal stopping/control type, over an infinite horizon,
with utility functions defined on R+, where stopping represents the decision to get out or retire
from investing. We refer to Karatzas and Wang (2000) for details and references. Super-hedging of
American claims under portfolio constraints was studied in Karatzas and Kou (1998).
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Valuation of employee stock options has become important since the Financial Accounting Stan-
dards Board (FASB) required their inclusion in firms’ accounting statements since 2005, where
previously they had been exempted. The method of valuation is a controversial topic, with a trade-
off between simplicity and realism, coupled with a political lobby to push for whatever proposal
results in booking a lower value. The major concern in ESO valuation that moves the problem away
from standard no-arbitrage pricing methods is the hedging restriction: employees cannot take short
positions in their firm’s stock. However there are other possibilities that can be taken into account.

In the approach we analyze here, the employee is able to dynamically invest in the market index,
and take static positions in market-traded vanilla options written on the firm’s stock. This is a
natural advance from earlier utility-based approaches using just certainty equivalent with no market
trading (for example, Huddart (1994)), then incorporating dynamic hedging with a correlated index
(Henderson (2005); Grasselli (2005); Leung and Sircar (2009); Carpenter et al. (2008)), and now
incorporating market options data for more accurate calibration. However, high transaction costs
discourage frequent option trades, so recent work (for example Carr et al. (1998); İlhan and Sircar
(2005)) has focused on static hedging with options, which involves purchasing a portfolio of standard
options at initiation and no trades afterwards. The combination of a dynamic trading strategy and
static positions, which is referred to as static-dynamic hedging, leads us to study how market prices
of traded put options affect the employee’s optimal exercising strategy. As shown in Sections 4.1
and 4.2, the optimal static position is found from the Fenchel-Legendre transform of the employee’s
indifference price as a function of the number of puts, evaluated at the market price. In Propositions
5.2 and 5.3, we find that static hedges with put options induce the employee to delay exercises, which
in general leads to a higher ESO cost.

The paper is structured as follows. In Section 2, we investigate the case of single American
claim in a semimartingale framework. This allows us, in Section 3, to extend our results to the case
of American claims with multiple exercising rights. In Section 4, we study incorporate European
and American put options into the investor’s hedging strategy. We solve for the optimal exercising
strategy along with the optimal static hedge. In Section 5, we apply our methodology to ESO valu-
ation in a diffusion framework. We study early exercises through the examination of the employee’s
optimal exercise boundaries, and illustrate their impact on the ESO cost.

2 Dynamic Hedging of American Claims with Single Exercise

We begin with the problem of exponential hedging of an American option using the underlying
asset, within a general incomplete market model. We derive the dual problem in Proposition 2.4.
to characterize the optimal exercise time, we introduce the indifference price in Section 2.3. Finally,
we give results on large and small risk aversion limits as well as quantity asymptotics in Section 2.5.

2.1 Notation and Assumptions

In the background, we fix an investment horizon with a finite terminal time T , which is chosen to
coincide with the expiration date of all securities in our model. We work on a probability space
(Ω,F , P ) with a filtration F = (Ft)0≤t≤T , which satisfies the usual conditions of right continuity
and completeness. Hence, all processes are assumed to have right continuous paths with left limits.
We adopt the shorthand for taking conditional expectations: IEt{·} = IE{·|Ft}.

The basic trading assets consist of a riskless asset (e.g. the bank account) that pays interest at
constant rate r ≥ 0, and a risky asset (e.g. the market index) whose discounted price process is a
non-negative F-locally bounded semimartingale (St)0≤t≤T . We denote by (Xt)0≤t≤T the discounted
trading wealth process with a dynamic trading strategy θt which represents the number of shares
held at time t. The set of admissible strategies is defined in (2.1) below. With initial capital Xt at
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time t ∈ [0, T ], the discounted wealth at a later time u ∈ [t, T ] is given by

Xu = Xt + Gt,u(θ) , with Gt,u(θ) :=
∫ u

t
θsdSs.

The stochastic integral Gt,u(θ) is the discounted capital gains or losses from trading with strategy
θ from time t to u. We write G(θ) for the process (G0,t(θ))0≤t≤T .

We denote by T the set of all stopping times with respect to F taking values in [0, T ]. This will
be the collection of all admissible exercise times for American claims considered in this paper. For
any stopping times s, u ∈ T with s ≤ u, we set Ts,u := {τ ∈ T : s ≤ τ ≤ u}.

The set of absolutely continuous (equivalent) local martingale measures for S with respect to P
are denoted by

Pa(P ) := {Q ¿ P |S is a local (Q,F)-martingale} ,

Pe(P ) := {Q ∼ P |S is a local (Q,F)-martingale} .

For any measure Q, the relative entropy of Q with respect to P is given by

H(Q|P ) :=

{
IEQ

{
log dQ

dP

}
, Q ¿ P ,

+∞ , otherwise .

We introduce Pf (P ), the set of measures in Pa(P ) with finite relative entropy with respect to P ,
and define the set of admissible strategies as

Θ(P ) := {θ ∈ L(S) | G(θ) is a (Q,F) martingale for all Q ∈ Pf (P )} , (2.1)

where L(S) is the set of F-predictable S-integrable R-valued processes. For notational simplicity,
we write respectively Pa,Pe,Pf ,Θ for Pa(P ),Pe(P ),Pf (P ),Θ(P ) when no ambiguity arises. When
we specify the trading horizon [s, u], we write Θs,u to denote the set of admissible strategies over
the period [s, u].

Throughout, we assume that there exists some equivalent local martingale measure with finite
relative entropy with respect to P .

Assumption 2.1 Pf ∩ Pe 6= ∅ .

By Theorem 2.1 and 2.2 of Fritelli (2000), this assumption ensures the existence of a unique measure
QE ∈ Pf ∩Pe that minimizes the relative entropy with respect to P over all measures in Pf , that is,

QE = arg min
Q∈Pf

H(Q|P ) .

This measure is called the minimal entropy martingale measure (MEMM). By Theorem 2.3 of Fritelli
(2000) and Theorem 2.1 of Kabanov and Stricker (2002), it has a density of the form

dQE

dP
= cE exp

(
G0,T (θE)

)
, (2.2)

for some θE ∈ Θ, and log cE = H(QE |P ) < ∞ . We can derive from (2.2) the density process of QE

with respect to P

ZE
t := IEt

{
dQE

dP

}
= cE IEt

{
eG0,T (θE)

}
. (2.3)

In general, for any two measures Qa, Qb such that Qa ¿ Qb, we write the density process of Qa

with respect to Qb as

ZQa,Qb

t := IEQb

t

{
dQa

dQb

}
, t ∈ [0, T ] .

It is well-known that exponential utility optimization is closely linked to the minimization of relative
entropy. The dynamic version of the problem involves minimizing the conditional relative entropy
with respect to P , so we state here its definition in our notation.
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Definition 2.2 For any t ∈ [0, T ] and Q ∈ Pf (P ), the conditional relative entropy of Q with respect
to P at time t is

HT
t (Q|P ) := IEQ

t

{
log

ZQ,P
T

ZQ,P
t

}
. (2.4)

Remark 2.3 For any t ∈ [0, T ] and Q ∈ Pf (P ), the random variable log ZQ,P
t is Q-integrable

(see Lemma 3.3 of Delbaen et al. (2002)), so the conditional relative entropy is well-defined. As is
well-known, an application of Jensen’s Inequality yields HT

t (Q|P ) ≥ 0.

By Proposition 4.1 of Kabanov and Stricker (2002), the MEMM QE also minimizes the conditional
relative entropy HT

τ (Q|P ) at any τ ∈ T . That is,

ess inf
Q∈Pf (P )

HT
τ (Q|P ) = HT

τ (QE |P ), τ ∈ T . (2.5)

Throughout, we consider a risk-averse investor whose risk preferences are described by the ex-
ponential utility function U : R 7→ R− defined by

U(x) = −e−γx, x ∈ R,

where γ > 0 is the coefficient of absolute risk aversion. Precisely, U(x) is the investor’s utility for
having (discounted) wealth x at time T . As discussed in the introduction, exponential utility is a
convenient convex (but not coherent) risk measure (up to a log and change in sign), as studied in
Föllmer and Schied (2004), with good dynamic (time-consistency) properties (Klöppel and Schweizer
(2006)), and it is the only (nonlinear) utility function of this kind (Cheridito and Kupper (2005)).

2.2 Exponential Hedging of an American Option

In order to formulate the problem of hedging an American claim, we first need to consider an
investment problem in which the risk-averse investor without any claims dynamically trades in the
riskless and risky assets throughout the horizon [0, T ]. This is a well-studied problem first introduced
by Merton (1969). For an investor with starting wealth Xt at time t ∈ [0, T ], his maximal expected
utility from terminal wealth is

M(t,Xt) := ess sup
θ∈Θt,T

IEt {U(XT )} . (2.6)

We consider an American claim, denoted by A, with a payoff process (At)0≤t≤T which we assume
to be bounded and adapted to F. We will use the boundedness of A in the proof of Proposition
2.4. More relaxed assumptions on the payoff for European-style contingent claims (with no early
exercise) can be found in Becherer (2001) and Delbaen et al. (2002), but these still exclude European
call options with geometric Brownian motion. We do not attempt to relax the assumptions on the
American claim payoff A in this paper.

The holder of the claim maximizes his expected utility by choosing the optimal exercise policy
and dynamic trading strategy. Upon exercise, he immediately reinvests the contract proceeds, if any,
into the trading portfolio, and continues to trade up to time T . This means that the investor will
face the Merton problem after exercising the claim. At time t ∈ [0, T ], the holder’s value function
is given by

V (t, Xt ;A) := ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEt {M ( τ, Xτ + Aτ )} . (2.7)

The value function in (2.7) is the primal problem, for which we will derive the dual in Proposition
2.4. For exponential utility, Delbaen et al. (2002) derive a duality result for investment including
a European-style contingent claim (with no early exercise), which involves optimizing the expected
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payoff over a set of martingale measures but penalized by an entropy distance from the historical
measure. Since our optimal hedging problem includes an American claim (with the possibility of
early exercise), the dual value function also involves finding the holder’s optimal exercise time in
addition to the optimal measure. The next proposition is the main result in this section.

Proposition 2.4 The dual of the value function is given by

V (t, Xt ; A) = U(Xt) · exp

(
− ess sup

τ∈Tt,T

ess inf
Q∈Pf (P )

(
IEQ

t {γAτ}+ Hτ
t (Q|P ) + IEQ

t {HT
τ (QE |P )})

)
. (2.8)

In developing this duality result, we shall make use of some useful properties of the Merton problem.

2.2.1 Properties of the Merton Function

First, we observe a separation of variables and a duality formula for the Merton function.

Proposition 2.5 For an investor with starting wealth Xτ at τ ∈ T , the Merton function admits a
separation of variables

M(τ, Xτ ) = U(Xτ ) · IEτ

{
eGτ,T (θE)

}
, (2.9)

and its dual is given by

M(τ, Xτ ) = U(Xτ ) · exp
(
− ess inf

Q∈Pf (P )
HT

τ (Q|P )
)

. (2.10)

Moreover, the optimal trading strategy is θ∗ := − θE

γ , and the optimal measure in (2.10) is QE.

Proof. Recall that XT = Xτ + Gτ,T (θ), and so by (2.6),

M(τ,Xτ ) = ess sup
θ∈Θτ,T

IEτ {U(XT )} = U(Xτ ) · ess inf
θ∈Θτ,T

IEτ

{
e−γGτ,T (θ)

}
. (2.11)

For any θ ∈ Θτ,T , we can apply a change of measure from P to QE using the density in (2.3) to
obtain

IEτ

{
e−γGτ,T (θ)

}
= IEτ

{
eGτ,T (θE)

}
· IEQE

τ

{
e−Gτ,T (γθ+θE)

}
≥ IEτ

{
eGτ,T (θE)

}
,

where the last inequality follows from Jensen’s inequality and that G(γθ + θE) is a QE-martingale.
The inequality becomes an equality when θ = − θE

γ , so the infimum in (2.11) is attained and (2.9)
follows.

On the other hand, we observe from (2.5) that the right-hand side of (2.10) is U(Xτ )·exp(−HT
τ (QE |P )).

By the definitions of ZE in (2.3) and conditional relative entropy in (2.4), we can write

HT
τ (QE |P ) = IEQE

τ

{
log

eG0,T (θE)

IEτ{eG0,T (θE)}

}
= − log IEτ{eGτ,T (θE)}, (2.12)

where we have used the fact that G(θE) is a QE-martingale. Hence, by exponentiating (2.12) and
comparing it with (2.9), we obtain (2.10).

Next, we show that the Merton function satisfies the following dynamic programming property.
It is called the self-generating condition in Musiela and Zariphopoulou (2007), and horizon-unbiased
condition in Henderson and Hobson (2007).
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Proposition 2.6 With starting wealth Xt at t ∈ [0, T ], the Merton function satisfies

M(t,Xt) = ess sup
θ∈Θt,τ

IEt {M(τ, Xτ )} , τ ∈ Tt,T .

Proof. Recall that Xτ = Xt + Gt,τ (θ). By the separation of variables formula (2.9) and a change
of measure from P to QE , we have

ess sup
θ∈Θt,τ

IEt {M(τ, Xτ )} = ess inf
θ∈Θt,τ

IEt

{
U(Xt + Gt,τ (θ)) · IEτ{eGτ,T (θE)}

}

= U(Xt) · IEt{eGt,T (θE)} · ess inf
θ∈Θt,τ

IEQE

t

{
e−γGt,τ (θ)e−Gt,τ (θE)

}

= M(t,Xt) · ess inf
θ∈Θt,τ

IEQE

t

{
e−Gt,τ (γθ+θE)

}
. (2.13)

Next, applying Jensen’s inequality and the fact that G(γθ + θE) is a QE-martingale, we obtain for
every θ ∈ Θt,τ that

IEQE

t

{
e−Gt,τ (γθ+θE)

}
≥ 1,

and equality is attained at θ∗ = − θE

γ . This implies that θ∗ attains the infimum in (2.13) and the
infimum is 1. This completes the proof.

2.2.2 Proof of Proposition 2.4

To prove Proposition 2.4, we shall also need the following lemma regarding entropy minimization.

Lemma 2.7 For any t ∈ [0, T ], and τ ∈ Tt,τ , we have

ess inf
Q∈Pf (P )

HT
t (Q|P ) = ess inf

Q∈Pf (P )

(
Hτ

t (Q|P ) + IEQ
t

{
ess inf

Q∈Pf (P )
HT

τ (Q|P )
})

. (2.14)

Proof. The definition of conditional relative entropy gives the simple equality

HT
t (Q|P ) = Hτ

t (Q|P ) + IEQ
t

{
HT

τ (Q|P )
}

.

Taking infimum on both sides, we easily deduce the inequality

ess inf
Q∈Pf (P )

HT
t (Q|P ) ≥ ess inf

Q∈Pf (P )

(
Hτ

t (Q|P ) + IEQ
t

{
ess inf

Q∈Pf (P )
HT

τ (Q|P )
})

. (2.15)

Next, on the right-hand side of (2.14), we observe from (2.5) that QE solves the inner minimization.
The outer minimization depends on the density process ZQ,P only over the stochastic interval [t, τ ],
so it is unchanged if we minimize over the set

Pτ := {Q ∈ Pf : ZQ,P
u = ZE

u , for u ≥ τ}.

Hence, we write the right-hand side of (2.14)

ess inf
Q∈Pτ

(
Hτ

t (Q|P ) + IEQ
t

{
HT

τ (QE |P )
})

= ess inf
Q∈Pτ

HT
t (Q|P ) ≥ ess inf

Q∈Pf (P )
HT

t (Q|P ).

This gives the reverse inequality to (2.15) and thus completes the proof.
To complete the proof of Proposition 2.4, for any t ∈ [0, T ], and τ ∈ Tt,τ , we define the measure

PA by
dPA

dP
:= cA · e−γAτ , with c−1

A = IE{e−γAτ }. (2.16)
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Given that A is bounded, we have cA ∈ (0,∞) and PA ∼ P . Next, we want to show that

Pf (P ) = Pf (PA). (2.17)

Indeed, for a measure Q ¿ P , the relation

EQ

{
log

dQ

dP

}
= EQ

{
log

dQ

dPA

}
+ EQ

{
log

dPA

dP

}
,

and (2.16) imply
H(Q|P ) = H(Q|PA) + log cA − γIEQ{Aτ}.

For Q ∈ Pf (P ), H(Q|P ) is finite. Since the last two terms on the right-hand side are also finite (due
to the boundedness of A), we conclude that H(Q|PA) is also finite, and therefore, Pf (P ) ⊆ Pf (PA).
The reverse inclusion can be shown using similar arguments.

Furthermore, using

log
ZQ,P A

ν

ZQ,P A

s

= log
ZQ,P

ν

ZQ,P
s

− log
ZP A,P

ν

ZP A,P
s

, s, ν ∈ T , s ≤ ν, (2.18)

and that ZP A,P
u = ZP A,P

τ for u ∈ [τ, T ], we conclude that

HT
τ (Q|P ) = HT

τ (Q|PA). (2.19)

We apply the duality formula (2.10) (with starting wealth Xτ + Aτ ) along with a change of
measure from P to PA, and then use (2.17) and (2.19) to write the value function

V (t,Xt ; A) = ess sup
τ∈Tt,T

ess sup
Θt,τ (P )

IEt

{
U(Xτ ) · e−γAτ · exp

(
− ess inf

Q∈Pf (P )
HT

τ (Q|P )
)}

= ess sup
τ∈Tt,T

c−1
A ZP A,P

t ess sup
Θt,τ (P A)

IEP A

t

{
U(Xτ ) · exp

(
− ess inf

Q∈Pf (P A)
HT

τ (Q|PA)

)}
.

Next, applying Proposition 2.6 and Lemma 2.7 with the prior measure being PA, we have

V (t,Xt ;A) = ess sup
τ∈Tt,T

c−1
A ZP A,P

t U(Xt) · exp

(
− ess inf

Q∈Pf (P A)
HT

t (Q|PA)

)
(2.20)

= ess sup
τ∈Tt,T

c−1
A ZP A,P

t U(Xt) · exp

(
− ess inf

Q∈Pf (P A)

(
Hτ

t (Q|PA) + IEQ
t { ess inf

Q∈Pf (P A)
HT

τ (Q|PA)}
))

= ess sup
τ∈Tt,T

c−1
A ZP A,P

t U(Xt) · exp

(
− ess inf

Q∈Pf (P A)

(
Hτ

t (Q|PA) + IEQ
t {HT

τ (QE |P )}
))

,

(2.21)

where the last equality follows from (2.17) and (2.19) and that QE is the entropy-minimizing mea-
sure. Lastly, we use definition (2.16) and the equality (2.18) to write the conditional relative entropy
of Q with respect to PA in terms of its entropy with respect to P

Hτ
t (Q|PA) = IEQ

t

{
log

ZQ,P
τ

ZQ,P
t

+ γAτ

}
− log cA + log ZP A,P

t .

Substituting this into (2.21), we immediately obtain (2.8).
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2.3 The Indifference Price

It is often better for intuitive purposes to characterize optimal exercising strategies in terms of
indifference prices, which we introduce next. A holder’s indifference price of an American claim
is defined as the reduction in wealth such that the holder’s value function V is the same as the
Merton function M from investment without the claim. For time t ∈ [0, T ], denote pt ≡ pt(A) as
the indifference price of claim A. It is defined by the equation

V (t,Xt − pt ; A) = M(t, Xt). (2.22)

Next, we give some general expressions for the indifference price.

Proposition 2.8 The indifference price can be written as

pt = −1
γ

log
(
− ess sup

τ∈Tt,T

ess sup
θ∈Θt,τ

IEQE

t

{
−e−γ(Gt,τ (θ)+Aτ )

})
, (2.23)

and

pt = ess sup
τ∈Tt,T

ess inf
Q∈Pf (P )

(
IEQ

t {Aτ}+
1
γ

Hτ
t (Q|P ) +

1
γ

IEQ
t {HT

τ (QE |P )}
)
− 1

γ
HT

t (QE |P ). (2.24)

If Pf (P ) = Pf (QE), then the last representation can be simplified as

pt = ess sup
τ∈Tt,T

ess inf
Q∈Pf (QE)

(
IEQ

t {Aτ}+
1
γ

Hτ
t (Q|QE)

)
. (2.25)

Proof. Applying the separation of variables formula (2.9) and a change of measure from P to QE

using the density in (2.3), we write

V (t,Xt ; A) = ess sup
τ∈Tt,T

ess inf
θ∈Θt,τ

IEt

{
U(Xt + Gt,τ (θ) + γAτ ) · IEτ{eGτ,T (θE)}

}

= −U(Xt) · IEt{eGt,T (θE)} · ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEQE

t

{
−e−γAτ e−γGt,τ (θ)e−Gt,τ (θE)

}

= −M(t,Xt) · ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEQE

t

{
−e−γAτ e

−γGt,τ (θ+ θE

γ
)
}

= −M(t,Xt) · ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEQE

t {U (Aτ + Gt,τ (θ))} . (2.26)

Since it follows from (2.22) that
V (t,Xt ; A)
−M(t,Xt)

= U(pt), (2.27)

substitution of (2.26) into (2.27) yields (2.23).
The second expression (2.24) follows from the dual (2.8) and the definition (2.22). To show

(2.25), we use the simple equality

Hτ
t (Q|P ) = Hτ

t (Q|QE) + IEQ
t

{
log

ZE
τ

ZE
t

}
, Q ∈ Pf (P ), (2.28)

where, by (2.2), the last term can be written as

IEQ
t

{
log

ZE
τ

ZE
t

}
= −IEQ

t {HT
τ (QE |P )}+ HT

t (QE |P ) + IEQ
t {Gt,τ (θE)} . (2.29)

The assumption Pf (P ) = Pf (QE) implies that the last term is zero. To complete the proof, we
substitute (2.28) and (2.29) into (2.24).

Remark 2.9 A sufficient condition for Pf (P ) = Pf (QE) is dQE

dP ∈ L2(P ) as shown in Lemma 2 of
İlhan and Sircar (2005). In general, we have Pf (P ) ⊆ Pf (QE).
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2.4 The Optimal Exercise Time

In this section, we provide a characterization for the holder’s optimal exercise time by analyzing the
indifference price, which is expressed in (2.23) and (2.24) as two joint stochastic control and optimal
stopping problems. First, we re-write (2.23) as

U(pt) = ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEQE

t {U(Gt,τ (θ) + Aτ )} , (2.30)

which can be regarded as a special example of a cooperative stochastic game. The second expression
yields a non-cooperative stochastic game:

pt = ess sup
τ∈Tt,T

ess inf
Q∈Pf (P )

IEQ
t

{
Aτ + lQ,γ

t,τ

}
, (2.31)

where the penalty term

lQ,γ
t,τ :=

1
γ

[
HT

τ (QE |P ) + log
ZQ,P

τ

ZQ,P
t

−HT
t (QE |P )

]
. (2.32)

Their structures are very similar to the stochastic games studied in Karatzas and Zamfirescu (2005),
and we will apply some of their results here. In the theory of optimal stopping, it is common
to require quasi-left-continuity for the associated processes (see, among others, El Karoui (1981),
Shiryaev (1978), and Thompson (1971)). This assumption is quite general, and it allows for the
processes commonly used in finance, including diffusion processes and Lévy processes. In fact, all
standard Markov processes are quasi-left-continuous. Guasoni (2002) studies optimal investment
with quasi-left-continuous asset prices subject to transaction costs.

Definition 2.10 A process (Yt)0≤t≤T is P -quasi-left-continuous if for any increasing sequence of
stopping times (τn)n∈N ⊆ T and with τ := limn→∞ τn ∈ T , we have limn→∞ Yτn = Yτ , P−a.s.

Remark 2.11 If Y is P -quasi-left-continuous, then it is also quasi-left-continuous with respect to
any Q ∈ Pf (P ). This also means that Y is Pf (P )-quasi-left-continuous in the sense of Definition
2.9 of Karatzas and Zamfirescu (2005).

Assumption 2.12 The processes (At)0≤t≤T , (St)0≤t≤T , and (lQ,γ
0,t )0≤t≤T are quasi-left-continuous

with respect to every Q ∈ Pf (P ).

Proposition 2.13 For any t ∈ [0, T ], the optimal exercise time for (2.23) or (2.30) is given by

τ∗t = inf{t ≤ u ≤ T : pu = Au } (2.33)

so that

pt = −1
γ

log
(
− ess sup

θ∈Θt,τ∗t

IEQE

t

{
−e

−γ(Gt,τ∗t (θ)+Aτ∗t )
})

.

Proof. Since S is P -quasi-left-continuous, so is the process G(θ) for any feasible θ ∈ Θ. By Remark
2.11, the process (U(Gt(θ) + At))0≤t≤T is QE-quasi-left-continuous. It is also bounded above by
zero. Then, by Theorem 2.10 of Karatzas and Zamfirescu (2005), we have for any t ∈ [0, T ] that

U(pt) = ess sup
θ∈Θt,τ∗t

IEQE

t

{
−e

−γ(Gt,τ∗t (θ)+Aτ∗t )
}

,

with τ∗t given by (2.33).
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The optimal exercise time (2.33) is the first time when the indifference price equals the payoff
from immediate exercise. This is highly intuitive because the indifference price is the minimum
amount of money the holder demands in order to forgo the claim. At the optimal exercise time, the
claim payoff is sufficient to induce the holder to exercise.

Turning our attention to expression (2.31), we want to show that the order of choosing the
optimal exercise time (via essential supremum) and optimal measure (via essential infimum) does
not alter the problem.

Proposition 2.14 For any t ∈ [0, T ], define the upper value process by

p̄t := ess inf
Q∈Pf (P )

ess sup
τ∈Tt,T

IEQ
t

{
Aτ + lQ,γ

t,τ

}
,

and the stopping time τ̄t := inf{t ≤ u ≤ T : p̄u = Au}. Then, for any Q ∈ Pf (P ), and τ ∈ [t, τ̄t],
we have

p̄t ≤ IEQ
t {p̄τ + lQ,γ

t,τ } . (2.34)

In particular, when τ = τ̄t, we have the equality

p̄t = ess inf
Q∈Pf (P )

IEQ
t {Aτ̄t + lQ,γ

t,τ̄t
}. (2.35)

The proof is given in the Appendix A.1. The last equality indicates that τ̄t is optimal for the upper
value process p̄t. The next proposition, which follows easily from Proposition 2.14, shows that the
upper value process is the same as the indifference price process, and τ̄t is in fact equal to τ∗t .

Proposition 2.15 For any t ∈ [0, T ], the indifference price and upper value processes are the same,
i.e. p̄t = pt. Consequently, the corresponding optimal stopping times are identical, i.e. τ̄t = τ∗t .

Proof. We always have p̄t ≥ pt. The preceding proposition gives the other direction:

p̄t = ess inf
Q∈Pf (P )

IEQ
t {Aτ̄t + lQ,γ

t,τ̄t
} ≤ ess sup

τ∈Tt,T

ess inf
Q∈Pf (P )

IEQ
t

{
Aτ + lQ,γ

t,τ

}
= pt.

2.5 Risk Aversion and Volume Asymptotics

We now analyze the effects of risk aversion and holding volume on indifference prices and the
corresponding optimal exercise times. To this end, let us consider an investor with risk aversion
parameter γ who holds α > 0 units of an American claim A, and suppose that all α units have to be
exercised simultaneously. By definition (2.7), the holder’s value function is given by V (t,Xt ; αA).
The corresponding indifference price, denoted by pt(α, γ), is defined by the equation

V (t,Xt ;αA) = M(t,Xt + pt(α, γ)) .

The optimal exercise time is the first time that the indifference price reaches the payoff from exer-
cising all claims:

τ∗t (α, γ) = inf{t ≤ u ≤ T : pu(α, γ) = αAu} . (2.36)

The following result establishes monotonicity in the risk-aversion coefficient.

Proposition 2.16 Let γ2 ≥ γ1 > 0. Then, for any t ∈ [0, T ] and α ≥ 0, we have pt(γ2, α) ≤ pt(γ1, α),
and τ∗t (α, γ2) ≤ τ∗t (α, γ1). That is, a higher risk aversion implies an earlier optimal exercise time
of the American claims.
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Proof. By definition (2.32) of the penalty term, we have

IEQ
t {lQ,γ

t,τ } = γ−1
(
Hτ

t (Q|P ) + IEQ
t {HT

τ (QE |P )} −HT
t (QE |P )

)
.

It easily follows from Lemma 2.7 that IEQ
t {lQ,γ

t,τ } ≥ 0. For γ2 ≥ γ1 > 0, we have IEQ
t {lQ,γ1

t,τ } ≥
IEQ

t {lQ,γ2
t,τ }, and therefore pt(γ1, α) ≥ pt(γ2, α). As the risk aversion parameter γ increases, the

indifference price decreases, but the payoff αA does not depend on γ. This leads to a shorter
optimal exercise time according to (2.36).

Next, to analyze the large risk aversion limit, we recall the sub-hedging price of the American
claim A is defined as

ct := ess inf
Q∈Pe(P )

ess sup
τ∈Tt,T

IEQ
t {Aτ} , t ∈ [0, T ].

See, for example, Karatzas and Kou (1998). As an investor becomes more risk-averse, the price he
is willing to pay for A tends to its sub-hedging price. The idea is that the penalty term vanishes as
risk aversion increases to infinity.

Proposition 2.17 For any t ∈ [0, T ], we have

lim
γ→∞ pt(α, γ) = αct.

The proof is given in the Appendix A.2. A consequence of this result is that, at the large risk
aversion limit, the pricing rule will become linear in the quantity of claims, and the investor will
exercise all the American claims A at a time independent of α.

As the investor’s risk aversion diminishes to zero, he tends to price the American claim under
the MEMM, QE . This limiting price is the American analogue to Davis-price for European-style
contingent claims (see Davis (1997)).

Proposition 2.18 For any t ∈ [0, T ], we have

lim
γ→0

pt(α, γ) = α · ess sup
τ∈Tt,T

IEQE

t {Aτ}.

Proof. The proof is a slight extension of Proposition 1.3.4 of Becherer (2001), and is omitted.
We observe from (2.24) the volume-scaling property that for α > 0, α−1pt(α, γ) = pt(1, αγ). The

simultaneous exercise assumption is essential for this property to hold. As the number of claims held
increases, it follows from Proposition 2.16 that the average indifference price for holding α units of
A decreases. By (2.36), the optimal exercise time τα∗

t is the first time the average indifference price
hits the claim payoff, so the holder tends to exercise the claims earlier when the holding volume
increases.

The risk aversion limits in Propositions 2.17 and 2.18 can be rewritten as volume limits:

lim
α→∞

pt(α, γ)
α

= ct ; lim
α→0

pt(α, γ)
α

= ess sup
τ∈Tt,T

IEQE

t {Aτ}.

Finally, we point out that the indifference price for the claim A lies within the no-arbitrage price
interval. That is,

ct ≤ pt(1, γ) ≤ sup
τ∈Tt,T

IEQE

t {Aτ} ≤ ess sup
Q∈Pe(P )

ess sup
τ∈Tt,T

IEQ
t {Aτ},

where the left-end is the sub-hedging price and the right-end is the super-hedging price.
The indifference price possibly possesses other properties of interest. For instance, Becherer

(2001) and Mania and Schweizer (2005) point out that the indifference price for holding β units of
European-style claims is concave as a function of β, and strict concavity and differentiability with
respect to β is established in İlhan et al. (2005). However, in our case with American claims, it is
more complicated and we do not address it here.
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3 Dynamic Hedging of American Claims with Multiple Exercises

For American claims with multiple exercise rights, the holder can exercise separately and has to
choose the optimal multiple exercise times for all claims held. Suppose that an investor is dynam-
ically hedging a long position in n ≥ 2 integer units of claim A. For any t ∈ [0, T ] and i ≤ n, we
denote by τ

(i)∗
t the optimal exercise time of the next claim when i units remain unexercised at time

t. After exercising one claim at time τ
(i)∗
t , the investor has (i− 1) units left. If the holder exercises

multiple units at the same time, then some exercise times may coincide.
Upon exercising any American claim(s), the investor immediately reinvests his contract proceeds

into his trading portfolio until time T . The investor’s value function for holding i ≥ 2 units of A at
time t is given recursively by

V (i)(t,Xt) = ess sup
τi∈Tt,T

ess sup
θ∈Θt,τi

IEt

{
V (i−1)(τi, Xτi + Aτi)

}
, (3.1)

with V (1)(t,Xt) = V (t, Xt ; A). The optimal exercise times can be characterized via indifference
prices for holding multiple claims, which we define next.

Definition 3.1 For any t ∈ [0, T ], the holder’s indifference price for holding i ≤ n claims with
multiple exercises is defined as the random variable p

(i)
t such that

V (i)(t,Xt − p
(i)
t ) = M(t,Xt). (3.2)

Substituting (3.2) into (3.1), we observe that the value function

V (i)(t,Xt) = ess sup
τi∈Tt,T

ess sup
θ∈Θt,τi

IEt

{
V (i−1)(τi, Xτi + Aτi)

}

= ess sup
τi∈Tt,T

ess sup
θ∈Θt,τi

IEt

{
M

(
τi, Xτi + Aτi + p(i−1)

τi

)}

= V (t,Xt ;A + p(i−1)). (3.3)

The last equality (3.3) provides a crucial connection between dynamic hedging for claims with
single exercise and for claims with multiple exercises. We can derive the dual for V (i)(t,Xt) and the
indifference price p

(i)
t by just replacing A by A + p(i−1) in Propositions 2.4 and 2.8.

Next, we give the following general expressions for the indifference price.

Proposition 3.2 The indifference price p
(i)
t can be written recursively by

p
(i)
t = −1

γ
log

(
− ess sup

τi∈Tt,T

ess sup
θ∈Θt,τi

IEQE

t

{
−e−γ( Gt,τi (θ)+Aτi+p

(i−1)
τi

)
})

. (3.4)

An alternative expression for the indifference price is

p
(i)
t = ess sup

τi∈Tt,T

ess inf
Q∈Pf (P )

IEQ
t

{
Aτi + p(i−1)

τi
+ lQ,γ

t,τi

}
, (3.5)

where lQ,γ
t,τi

is defined in (2.32).

In Proposition 2.16, we showed that higher risk aversion reduces the indifference price pt(α, γ)
for American claims with simultaneous exercise. The same also holds in the case with multiple
exercises. We denote the indifference price by p

(i)
t (γ) to indicate the dependence on γ.
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Proposition 3.3 For any time t ∈ [0, T ] and integer i ≥ 1, the indifference price p
(i)
t (γ) is decreas-

ing with respect to γ.

Proof. As shown in Proposition 2.16, both p
(1)
t (γ) and IEQ

t {lQ,γ
t,τ } (for any τ ∈ Tt,T ) decrease with

γ. Suppose the same is true for p
(i−1)
t (γ). Then, we have IEQ{p(i−1)

t (γ) + lQ,γ
t,τi
} decreases with γ,

and therefore p
(i)
t (γ) is also decreasing with γ. As a result, the proposition holds by induction.

To understand the impact of holding volume on the exercise times, we consider two investors
holding i and (i + 1) units of claims respectively, and compare the optimal exercise times τ

(i)∗
t and

τ
(i+1)∗
t . Applying the techniques in Section 3.3, we have

τ
(i)∗
t = inf

{
t ≤ u ≤ T : p(i)

u − p(i−1)
u = Au

}
, (3.6)

and we can address the question by showing that the exercise times are ordered if and only if the
indifference price is a concave function of i: p

(i+1)
t − p

(i)
t ≤ p

(i)
t − p

(i−1)
t .

Proposition 3.4 For t ∈ [0, T ] and integer i ≥ 1, the optimal exercise times are ordered in the
sense τ

(i+1)∗
t ≤ τ

(i)∗
t if and only if the indifference price p

(i)
t is a concave function of i.

Proof. First, we define the Snell envelope

p̂
(i)
t (Q) := ess sup

τ∈Tt,T

IEQ
t

{
Aτ + p(i−1)

τ + lQ,γ
t,τ

}
, for Q ∈ Pf (P ) .

Note that, p
(i)
t = ess infQ∈Pf

p̂
(i)
t (Q). It is well-known that the process (p̂(i)

t (Q) + lQ,γ
0,t )0≤t≤T is a

Q-supermartingale. Consequently,

p̂
(i)
t (Q) ≥ IEQ

t

{
p̂(i)

τ (Q) + lQ,γ
t,τ

}
≥ IEQ

t

{
p(i)

τ + lQ,γ
t,τ

}
.

Now, we suppose τ
(i+1)∗
t ≤ τ

(i)∗
t ≤ τ

(i−1)∗
t . Applying (2.34) of Proposition 2.14 with A replaced by

A + p(i−1), it follows that

p
(i−1)
t ≤ IEQ

t

{
p(i−1)

τ + lQ,γ
t,τ

}
, for τ ∈ [t, τ (i)∗

t ], Q ∈ Pf (P ).

Hence, we have the following inequalities

p
(i+1)
t + p

(i−1)
t = ess sup

τ∈T
t,τ

(i)∗
t

ess inf
Q∈Pf (P )

IEQ
t

{
Aτ + p(i)

τ + lQ,γ
t,τ

}
+ p

(i−1)
t

≤ ess inf
Q∈Pf (P )

ess sup
τ∈T

t,τ
(i)∗
t

(
IEQ

t

{
Aτ + p

(i−1)
t

}
+ IEQ

t

{
p(i)

τ + lQ,γ
t,τ

})

≤ ess inf
Q∈Pf (P )

(
ess sup

τ∈T
t,τ

(i)∗
t

IEQ
t

{
Aτ + p(i−1)

τ + lQ,γ
t,τ

}
+ p̂

(i)
t (Q)

)

≤ ess sup
τ∈Tt,T

IEQ(i)∗
t

{
Aτ + p(i−1)

τ + lQ
(i)∗,γ

t,τ

}
+ p̂

(i)
t (Q(i)∗)

= 2p
(i)
t ,

where Q(i)∗ = arg min
Q∈Pf (P )

ess sup
τ∈Tt,T

IEQ
t

{
Aτ + p

(i−1)
τ + lQ,γ

t,τ

}
. Hence, we have p

(i+1)
t + p

(i−1)
t ≤ 2p

(i)
t , and

therefore the indifference prices are concave in i.
On the other hand, if the indifference price is a concave function of i, then from the inequality

p
(i+1)
t −p

(i)
t ≤ p

(i)
t −p

(i−1)
t , and the definition of the optimal exercise in (3.6), we can easily conclude

that τ
(i+1)∗
t ≤ τ

(i)∗
t .
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4 Static-Dynamic Hedges for American Claims

In addition to investing in the riskless and risky assets, the holder of claim A can also reduce
risk exposure by purchasing some market-traded claims. For instance, the holder of an American
call option can remove some downside risk by buying and holding some European or American
puts written on the same underlying asset. As transaction costs on derivative securities are less
negligible than on stocks, the static hedging strategies considered here involve purchasing a portfolio
of market-traded claims at initiation and no trades afterwards. To avoid arbitrage, the prices of
the market-traded claims are assumed to lie between the sub-hedging and super-hedging prices.
In this section, we analyze the combination of the static and dynamic hedging strategies, called
static-dynamic hedges, for a long position in an American claim. An application to ESO valuation
is analyzed in Section 5.

4.1 Hedging with European Options

While holding one unit of American claim A, the investor purchases β European options each with
bounded payoff, B ∈ FT , expiring at the same date T for simplicity. If the investor exercises claim
A at time τ ∈ T , then immediately his trading wealth increases by Aτ , and only European claims
remain. At that point, his value function is

ess sup
θ∈Θτ,T

IEτ{U(Xτ + Aτ + Gτ,T (θ) + βB)} = M (τ, Xτ + Aτ + hτ (βB)) ,

where hτ (βB) is the indifference price for holding β units of B at time τ . From this, we define the
investor’s value function as

Ṽ (t,Xt ; βB) = ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEt {M (τ, Xτ + Aτ + hτ (βB))} . (4.1)

Proposition 4.1 For any t ∈ [0, T ], and β ∈ R, the value function can be written as

Ṽ (t,Xt ;βB) = V (t,Xt ; A + h(βB)). (4.2)

Therefore, the indifference price for holding claim A and β units of B is pt(A + h(βB)), and the
optimal exercise time is given by

τ̃∗t (β) = inf{t ≤ u ≤ T : pu(A + h(βB)) = Au + hu(βB)}. (4.3)

Proof. We observe from (4.1) that the value function, Ṽ (t,Xt ; βB), is equivalent to that with
dynamic hedge but for a different claim A + h(βB) instead of A. Hence, we have (4.2). This
equality also allows us to derive the dual of Ṽ and then the corresponding indifference price, denoted
by pt(A+h(βB)), by replacing Aτ with Aτ +hτ (βB) in Propositions 2.4 and 2.8 respectively. Then,
it easily follows from Proposition 2.13 that optimal exercise time is given by (4.3).

If the European claim B costs $π each, then the investor’s wealth is reduced by the amount $βπ.
Therefore, the value function is given by Ṽ (t,Xt − βπ ;βB), and the indifference price is given by
pt(A + h(βB))− βπ. However, for any fixed β, the cost does not affect the optimal exercise time.

The investor chooses the optimal static hedge, β∗, to maximize his value function, which turns
out to be equivalent to maximizing the indifference price:

β∗ = arg max
β

Ṽ (t,Xt − βπ ;βB) = arg max
β

pt(A + h(βB))− βπ . (4.4)

Hence, the optimal quantity (when it exists) of European options to purchase is found from the
Fenchel-Legendre transform of the indifference price pt(A + h(βB)) as a function of β, evaluated at
the market price π. The market price of European puts controls the optimal static hedge in (4.4),
which indirectly affects the holder’s optimal exercise time.
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4.2 Hedging with American Options

The holder of claim A may be restricted to purchasing American options to form a partial static
hedge. In fact, most non-index options on stocks are American. We consider an American claim D
with an adapted bounded discounted payoff process (Dt)0≤t≤T . For instance, D can be the payoff
of an American put written on the same underlying asset as A. However, as in Section 2.5, we shall
make the simplification that all the American options used for the static hedge have to be exercised
simultaneously.

Fix a time t ≤ T , the investor, while holding claim A, purchases α units of claim D from
the market for the price $π′ each. The investor needs to decide which claim(s) to exercise first
and when. To this end, we recall that V (t,Xt; A) and V (t,Xt; αD) represent the investor’s value
functions, respectively, for holding only A and only α units of D.

We denote by (pA, τA) and (pαD, ταD) the corresponding pairs of indifference prices and optimal
exercise times. The investor’s value function is given by

V̂ (t,Xt ; αD) := ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEt {max(V (τ, Xτ + αDτ ;A), V (τ, Xτ + Aτ ; αD))} .

Next, we simplify the problem, and derive the corresponding optimal exercise times.

Proposition 4.2 For any t ∈ [0, T ], and α ∈ R, the value function can be written as

V̂ (t,Xt ; αD) = V (t,Xt; Rα), (4.5)

with Rα := max(αD + pA, A + pαD). Therefore, the investor’s indifference price for holding A and
α units of D is pt(Rα), and the optimal exercise time is given by

τ̂∗t (α) = min
(
τAD
t (α), τDA

t (α)
)
, (4.6)

where

τAD
t (α) = inf { t ≤ u ≤ T : pu(Rα) = Au + pαD

u }, (4.7)

τDA
t (α) = inf { t ≤ u ≤ T : pu(Rα) = αDu + pA

u }. (4.8)

Proof. By the definitions of indifference prices pαD and pA, we have

V̂ (t,Xt ;αD) = ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEt

{
max

(
M(τ,Xτ + αDτ + pA

τ ),M(τ,Xτ + Aτ + pαD
τ )

)}

= ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IEt

{
M

(
τ,Xτ + max(αDτ + pA

τ , Aτ + pαD
τ )

)}

= V (t,Xt;Rα).

The last equality means that the investor’s value function is reduced to the dynamic hedging case
for a single yet complex claim Rα, paying Rα

τ at any exercise time τ ∈ Tt,T . This observation allows
us to apply the results in Section 2 to derive the indifference price pt(Rα) by replacing A with Rα

in (2.23) and (2.24). For any fixed α, the investor’s optimal time to exercise the first claim, which
could be either A or D, is given by

τ̂∗t (α) = inf{t ≤ u ≤ T : pu(Rα) = max(αDu + pA
u , Au + pαD

u )} = min
(
τAD
t (α), τDA

t (α)
)
,

where τAD
t (α) and τDA

t (α) are given by (4.7) and (4.8) respectively.
When the market price of the static hedge is incorporated, the investor’s wealth is reduced by

the amount $απ′, and the value function becomes V̂ (t,Xt − απ′ ; αD). The investor’s indifference
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price for holding A and purchasing α units of D at price $π′ each is given by pt(Rα)−απ′. In view
of (4.4), the investor’s optimal static hedge, denoted by α∗ if it exists, is given by

α∗ = arg max
α

pt(Rα)− απ′ .

In this section, we have formulated the basic framework for static-dynamic hedging of American
claims with simultaneous exercise, in which the static hedging instruments are all exercised at once.
The problem of static-dynamic hedging American claims with multiple exercising rights using other
multiple exercising American claims can also be formulated similarly using the principle of dynamic
programming. To write down the value function, one has to first consider the maximal expected
utilities from all possible orders of exercises. As the number of multiple exercising claims increases,
the value function becomes very tedious, though straightforward, to write down. Moreover, the
resulting optimal exercising strategies will also be too complex to describe. As an approximation,
one can limit the number of exercise opportunities to a small finite number, or just adopt the case
with simultaneous exercise.

5 ESO Valuation

We will apply the mechanism of dynamic hedging and static-dynamic hedging to ESO valuation.
ESOs are American call options written on the firm’s stock granted to the employee as a form of
compensation. In most cases, the ESOs are not exercisable until a pre-specified vesting period has
elapsed. Typically, the terms of an ESO contract stipulate that the employee is not allowed to sell
or transfer the option, short sell the firm’s stock, or take short positions in call options written on
the firm’s stock. These restrictions prevent the employee from perfectly hedging his ESO. Hence,
the employee faces a constrained investment problem in which he has to decide how to optimally
hedge and exercise his ESO.

Henderson (2005) studies a valuation model for a European ESO that captures the employee’s
risk aversion and dynamic investment in the market index. Grasselli and Henderson (2008) study
the case of multiple American ESOs with infinite maturity. For ESOs of American type with
multiple exercise rights and finite maturity, Leung and Sircar (2009) study the combined effect of
risk aversion, dynamic hedging, vesting, and job termination risk on the optimal exercise policy and
the corresponding ESO cost.

Here we will only consider the hedging and valuation of a single ESO. We summarize the results
on dynamic hedging of an ESO in Section 5.1. In this case, the employee trades in a market index
and the bank account, but not the firm’s stock. Then, in Sections 5.2.1 and 5.2.2, we will augment
the employee’s trading strategy by incorporating, respectively, static hedges with European and
American puts on the firm’s stock. Our goal is to analyze the non-trivial effects of static-dynamic
hedges on the employee’s optimal exercising strategies (Figures 2 and 3), and study its impact on
the ESO cost to the firm (Section 5.3).

5.1 Dynamic Hedge for one ESO

The market index S and company stock price Y are described by the following SDEs

dSt = µSt dt + σSt dW 1
t ,

dYt = (ν − q)Yt dt + ηYt (ρ dW 1
t + ρ′ dW 2

t ) ,

with constant parameters µ, σ, ν, q, η > 0, correlation coefficient ρ ∈ (−1, 1) and ρ′ =
√

1− ρ2 .
The two independent Brownian motions, W 1 and W 2, are defined on the given probability space
(Ω,F , (Ft),P), and (Ft)0≤t≤T is the augmented filtration generated by these two processes. Since
the processes are continuous, Assumption 2.12 of quasi-left-continuity is satisfied.
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Now suppose, at time t ≤ T , the employee holds an ESO with maturity T and a vesting period
tv ≤ T . We will assume no vesting in this section, and address the effect of vesting in Section 5.1.1.
At any exercise time τ , the employee receives the payoff A(Yτ ) := (Yτ ∧ N − K)+, where N is a
very large constant such that this payoff equals that of a call option except for unrealistically high
stock prices. Throughout the period [t, T ], the employee can hedge to trade dynamically in the
market index and the bank account that pays interest at constant rate r ≥ 0. A trading strategy
{θu ; t ≤ u ≤ T} is the cash amount invested in the market index S, and it is deemed admissible,
denoted by θ ∈ Θt,T , if it is Fu-progressively measurable and satisfies the integrability condition
IE{∫ T

t θ2
u du} < ∞. The employee’s trading wealth evolves according to

dXt = [θt(µ− r) + rX] dt + θtσ dW 1
t .

As in Section 2.2, the employee faces the Merton investment problem after exercise. At any time
t ≤ T with wealth $x, the employee’s maximal expected utility is given by

M(t, x) = sup
Θt,T

IE
{−e−γXT |Xt = x

}
= −e−γxer(T−t)

e−
(µ−r)2

2σ2 (T−t).

The employee’s value function at time t ∈ [0, T ], given that his wealth Xt = x and the company
stock price Yt = y, is

V (t, x, y) = sup
τ∈Tt,T

sup
Θt,τ

IE {M(τ, Xτ + A(Yτ )) |Xt = x, Yt = y} . (5.1)

To facilitate the presentation, we use the following shorthands for conditional expectations:

IEt,x,y { · } = IE { · |Xt = x, Yt = y } , IEt,y { · } = IE { · |Yt = y } ,

and introduce the differential operators:

LE u =
η2y2

2
∂2u

∂y2
+ (ν − q − ρ

µ− r

σ
η)y

∂u

∂y
,

Aqlu =
∂u

∂t
+ LE u− ru− 1

2
γ(1− ρ2)η2y2er(T−t)(

∂u

∂y
)2 .

The operator LE is the infinitesimal generator of Y under the minimal entropy martingale measure,
QE , and the second operator Aql is quasilinear.

Due to the exponential utility function, the value function has a separation of variables (see
Oberman and Zariphopoulou (2003)):

V (t, x, y) = M(t, x) ·H(t, y)
1

(1−ρ2) . (5.2)

The function H solves a linear free boundary problem.

Ht + LE H ≥ 0, H ≤ κ , (5.3)(
Ht + LE H

)
·
(

κ−H

)
= 0, (5.4)

for (t, y) ∈ [0, T )× (0,+∞), where κ(t, y) = e−γ(1−ρ2)A(y)er(T−t)
. The terminal condition is

H(T, y) = e−γ(1−ρ2)A(y). (5.5)
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The employee’s indifference price for holding the ESO, denoted by p(t, y), is defined via the
equation V (t, x, y) = M(t, x + p(t, y)). It satisfies the quasilinear variational inequality

Aqlp ≤ 0 , p ≥ A(y), (5.6)

Aqlp · (A(y)− p) = 0, (5.7)

for (t, y) ∈ [0, T ) × (0, +∞), with p(T, y) = A(y). From Proposition 2.13, the employee’s optimal
exercise time is given by

τ?
t = inf { t ≤ u ≤ T : p(u, Yu) = A(Yu) } . (5.8)

In practice, we numerically solve the free boundary problem for H (in (5.3)-(5.5)) to obtain the
employee’s exercise boundary, which is the critical stock price at time t. It is given by

y?(t) = inf{ y ≥ 0 : H(t, y) = κ(t, y) }, for t ∈ [0, T ].

A numerical example of this optimal exercise boundary is shown in Figure 2. Details of the numerical
scheme, verification and existence results can be found in our previous analysis of the dynamic
hedging case (Leung and Sircar (2009)).

Remark 5.1 The variational inequality for p in (5.6)-(5.7) is connected with a reflected BSDE, in
which the driver has quadratic growth. On that front, Kobylanski et al. (2002) study the link between
a quadratic reflected BSDE with a bounded obstacle and the corresponding variational inequality, and
provide an example of pricing an American option with exponential utility. For a study on pricing
European claims with exponential utility using BSDE, we refer the reader to Rouge and El Karoui
(2000).

5.1.1 Effects of Vesting

When a vesting period of tv years is imposed, the employee cannot exercise the ESO during [0, tv),
but the post-vesting exercising strategy will be unaffected. The employee’s value function at time
t ∈ [0, T ] is given by

F (t, x, y) = sup
τ∈Tt∨tv,T

sup
Θt,τ

IEt,x,y {M(τ,Xτ + A(Yτ )) } . (5.9)

Observe that F (t, x, y) ≤ V (t, x, y) due to exercise restriction before tv, but we have F (t, x, y) =
V (t, x, y) for t ≥ tv. The optimal exercise time associated with F (t, x, y), denoted by τF

t , is simply
τ?
t ∨ tv = τ?

tv , and the employee’s post-vesting exercising strategy is unaffected by the vesting
provision. Therefore, it is sufficient to solve the employee’s hedging problem for no-vesting case,
and raise the pre-vesting part of the exercise boundary to infinity.

5.1.2 ESO Cost to the Firm

In general, the firm is able to hedge or transfer the ESO liability, so we assume the firm is risk-
neutral, which is in compliance with financial regulations1. By no-arbitrage arguments, the firm
stock price follows the following SDE under the risk-neutral measure Q:

dYu = (r − q) Yu du + ηYu dWQ
u , (5.10)

where WQ is a Q-Brownian motion.
1In paragraph A13 of Statement of Financial Accounting Standards No.123 (revised), the Financial Accounting

Standards Board (FASB) approves the use of risk-neutral models.
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The firm’s granting cost is given by the no-arbitrage price of a barrier-type call option written on
stock Y , with strike K and maturity T . The barrier for this option is the employee’s optimal exercise
boundary y?, and the option pays as soon as the firm stock reaches the boundary y?. Due to vesting,
the employee does not exercise before tv, and in the regions C = { (t, y) : tv ≤ t < T, 0 ≤ y < y?(t) }.
The cost of a vested ESO at time t ≥ tv, given that the stock price Yt is y and the ESO is still alive,
is given by

C(t, y) = IEQt,y
{

e−r(τ?
t −t)A(Yτ?

t
)
}

. (5.11)

Then, the cost of an unvested ESO at time t ≤ tv, given that the stock price Yt = y, is given by

C̃(t, y) = IEQt,y
{

e−r(tv−t)C(tv, Ytv)
}

. (5.12)

Associated with C(t, y) and C̃(t, y) are two PDE problems, which we numerically solve using an
implicit finite-difference method. Next, we incorporate static-dynamic hedges into our valuation
methodology.

5.2 Static-Dynamic Hedging with Put Options

In addition to dynamic hedging, the employee can reduce risk exposure by taking static positions
in other derivative securities. For examples, they can use synthetic instruments such as a collar
contract (which involves simultaneous purchase of a put and sale of a call) as discussed in Bettis et al.
(2001), or basket options written on correlated underlying assets, suggested by Schizer (1999). In
this section, we incorporate static hedging with two simple derivatives – European and American put
options, which are easily available in the market to employees for most publicly traded companies.
Our goal is to examine the impact of incorporating static hedges with these options on the employee’s
ESO exercise policy and the corresponding ESO cost.

5.2.1 Hedging with European Puts

For simplicity, we assume that the employee purchases β ≥ 0 units of European puts with the
same maturity T and strike K ′, even though a wide array of European puts with various strikes
and expiration dates could be available. We take the market price of each European put, denoted
by π, as the Black-Scholes price, since we model the company stock price as following a geometric
Brownian motion.

Following our formulation in Section 4.1, we first write down the indifference price for holding
β European puts. By Theorem 3 in Musiela and Zariphopoulou (2004), the indifference price can
be written as

h(t, y; β) = − 1
γ(1− ρ2)er(T−t)

log IEQE
{

e−γ(1−ρ2)β(K′−YT )+ |Yt = y
}

,

where IEQE
indicates the expectation is taken under the minimal entropy martingale measure. The

indifference price can be found from solving the quasilinear partial differential equation

Aqlh = 0,

for (t, y) ∈ [0, T ) × (0,+∞), with h(T, y) = β(K ′ − y)+. Then, by (4.1), the value function for
holding an ESO and β European puts is given by

Ṽ (t, x, y ; β) = sup
τ∈Tt,T

sup
Θt,τ

IEt,x,y {M(τ, Xτ + A(Yτ ) + h(τ, Yτ ;β)) } .
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Incorporating the cost of European puts, the employee’s value function becomes Ṽ (t, x− βπ, y ; β).
We apply the same transformation (5.2) to Ṽ . That is, we let

Ṽ (t, x− βπ, y ;β) = M(t, x− βπ) · H̃(t, y ; β)
1

1−ρ2 .

Then, H̃ solves the linear variational inequality

H̃t + LE H̃ ≥ 0, H̃ ≤ κ̃ , (5.13)(
H̃t + LE H̃

)
·
(
κ̃− H̃

)
= 0,

for (t, y) ∈ [0, T )× (0, +∞), where κ̃(t, y ; β) = e−γ(1−ρ2)(A(y)+h(t,y ;β))er(T−t)
. The terminal condition

is
H̃(T, y ; β) = e−γ(1−ρ2)(A(y)+β(K′−y)+). (5.14)

In practice, we apply standard finite difference methods to numerically solve (5.13)-(5.14) for the
optimal exercise boundary, and compute the indifference price for holding an ESO along with β
units of European puts using the formula:

p̃(t, y ; β) = − 1
γ(1− ρ2)er(T−t)

log H̃(t, y ; β) . (5.15)

For ESO hedging, the employee considers only long positions in the European puts (β ≥ 0).
According to (4.4), the optimal quantity of European puts to purchase, β?, is found from the
Fenchel-Legendre transform of the indifference price p̃(t, y ; β) as a function of β, evaluated at the
market price π. That is,

β? = arg max
0≤β<∞

p̃(t, y ; β)− βπ .

We illustrate how to determine β? through an numerical example in Figure 1. Having determined β?,
we use the corresponding exercise boundary to compute the cost of the ESO to the firm, following
the steps in Section 5.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.5

3

3.5

4

4.5

5

5.5

In
d
iff

er
en

ce
P

ri
ce

:
p̃
(t

,y
;β

)

β

β∗=.83

slope=π

Figure 1: The optimal static hedge β? is the point at which the indifference price (solid curve) has
slope equal to the market price π. The parameters are K = K ′ = 10, T = 10, r = 5%, q = 0%,
ν = 8%, η = 30%, (µ− r)/σ = 20%, ρ = 30%, γ = 0.3. The Black-Scholes put price is π = 1.322.

From Proposition 4.1, the employee’s optimal exercise time, for any fixed β ≥ 0, is given by

τ̃?
t (β) = inf { t ≤ u ≤ T : p̃(u, Yu ;β) = A(Yu) + h(u, Yu ;β) } . (5.16)
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The combination of risk aversion and static hedge has a profound impact on the employee’s optimal
exercising strategy. In the presence of hedging restrictions, it is well-known that a risk-averse
employee may find it optimal to exercise an American option early even if the underlying stock
pays no dividend (see, for example, Detemple and Sundaresan (1999)). We see a similar effect in
our model, but we also identify opposite effects of risk aversion and static hedges with puts on the
employee’s optimal exercise policy. In the next proposition, we compare the optimal exercise times
τ? and τ̃?(β), and show that long positions in European puts will delay the employee’s ESO exercise.
In essence, the put options offer protection from the stock’s downward movement, which effectively
makes the employee less conservative in exercising his ESO. This effect can be seen in the numerical
example in Figure 2, where the employee’s optimal exercise boundary shifts upward when European
puts are used.
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Figure 2: The employee who hedges the ESO dynamically will exercise the option as soon as the firm’s stock
hits the lower dashed boundary. If static-dynamic hedges with European puts are used, the employee will
exercise the ESO later at the upper solid boundary. The parameters are the same as those in Figure 1.

Proposition 5.2 For every β ≥ 0, we have p̃(t, y ; β) ≥ p(t, y) + h(t, y ; β), for t ∈ [0, T ], y ∈ R+.
From this, it follows that τ̃?

t (β) ≥ τ?
t .

Proof. Fix a β ≥ 0. We first observe that p̃(T, y ; β) = p(T, y) + h(T, y ; β), for y ≥ 0. From (5.15),
we can derive the variational inequality for p̃(t, y ; β) and express it in the following form

M (p̃(t, y ;β)) := min{−Aqlp̃(t, y ;β) , p̃(t, y ; β)− h(t, y ; β)−A(y)} = 0.

We want to show that M (p(t, y) + h(t, y ;β)) ≤ 0 since this will imply p̃(t, y ; β) ≥ p(t, y)+h(t, y ; β)
by the comparison principle (see Oberman and Zariphopoulou (2003)). To this end, we consider

−Aql (p(t, y) + h(t, y ; β)) = −Aqlp−Aqlh +
1
2
γ(1− ρ2)η2y2er(T−t)pyhy .

Notice that the second term is zero, and the last term is non-positive because p is non-decreasing
with y (it is the indifference price of an American call option), but h is non-increasing with y (it is
the indifference price of β European put options). Hence, we have

M (p(t, y) + h(t, y ; β)) = min{−Aqlp +
1
2
γ(1− ρ2)η2y2er(T−t)pyhy , p(t, y)−A(y)}

≤ min{−Aqlp , p(t, y)−A(y)} = 0 ,
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because p(t, y) satisfies (5.6). The inequality for the exercise times follows from (5.8) and (5.16).
This result illustrates a major difference between utility-based optimal exercising policies and

risk-neutral (or no-arbitrage) exercise times. In the standard no-arbitrage framework, the pricing
rule is linear in the quantity of securities, and the optimal exercising strategy for a derivative
is unaffected by whether the holder also holds other derivatives, whereas utility-based stopping
rules are strongly affected by the holder’s hedging strategy. Because the dynamic-static hedge with
European puts induces the employee to delay his exercise and capture more time-value of the option,
the ESO cost in general will be higher than in the case with only dynamic hedge (see Section 5.3).

5.2.2 Hedging with American Puts

As an alternative to European puts, the employee can use American puts as a partial static hedge.
American puts provide more flexibility in the timing of exercise, and lead to more complicated and
interesting exercising strategies. The actual choice of hedging derivatives depend on their availability
and current market prices. The employee purchases α units of identical American puts written on
the firm’s stock with maturity T and strike K ′ at the cost of $π′ each. We assume that all the puts
will be exercised simultaneously.

The employee needs to decide which option (ESO or American puts) to exercise first. As in
Section 4.2, we first consider the expected utilities from holding only the ESO and only the American
puts. For the ESO, we have the value function V (t, x, y) given by (5.1). We define the value function
for holding α American puts as

vD(t, x, y ;α) := sup
τ∈Tt,T

sup
Θt,τ

IEt,x,y

{
M(τ,Xτ + α(K ′ − Yτ )+)

}
.

Also, let {pD(t, y ; α), τD
t (α), yD} be the corresponding indifference price, optimal exercise time, and

optimal exercise boundary. As shown in Proposition 4.2, the investor’s value function is given by
V̂ (t, x− απ′, y ; α), where

V̂ (t, x, y ; α) = sup
τ∈Tt,T

sup
Θt,τ

IEt,x,y {M (τ, Xτ + R(τ, Yτ ;α)) } ,

with R(t, y ;α) := max
{
A(y) + pD(t, y ; α), α(K ′ − y)+ + p(t, y)

}
. The value function admits a

separation of variables:

V̂ (t, x− απ′, y ; α) = M(t, x− απ′) · Ĥ(t, y ; α)
1

(1−ρ2) .

The resulting free boundary problem for Ĥ is

Ĥt + LE Ĥ ≥ 0, Ĥ ≤ g , (5.17)(
Ĥt + LE Ĥ

)
·
(
g − Ĥ

)
= 0,

for (t, y) ∈ [0, T ]× (0,+∞), with terminal condition

Ĥ(T, y) = e−γ(1−ρ2)(A(y)+α(K′−y)+). (5.18)

The obstacle term is given by

g(t, y ; α) = min
{

e−γ(1−ρ2)A(y)er(T−t)
HD(t, y ; α), e−γ(1−ρ2)α(K′−y)+er(T−t)

H(t, y)
}

,

where the function HD(t, y ; α) satisfies the same free boundary problem as that for H(t, y) (in
(5.3)-(5.5)) but with A(y) replaced by α(K ′ − y)+.
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The employee’s indifference price for holding an ESO and buying α American puts at cost π′

each is p̂(t, y ; α)− απ′, where

p̂(t, y ;α) = − 1
γ(1− ρ2)er(T−t)

log Ĥ(t, y ; α). (5.19)

For each fixed α ≥ 0, we numerically solve the variational inequality (5.17)-(5.18) for the optimal
exercise boundaries, and compute the indifference price using formula (5.19). Then, we determine
the optimal static hedge, α?, by maximizing p̂(t, y ;α)− απ′ over different values of α ∈ [0,∞).

From Proposition 4.2, for any fixed α ≥ 0, the optimal time to exercise the first option(s) (ESO
or puts) is given by

τ̂?
t (α) = inf { t ≤ u ≤ T : p̂(u, Yu ; α) = R(u, Yu ;α) }

= min{τAD
t (α), τDA

t (α)}, (5.20)

where

τAD
t (α) := inf{ t ≤ u ≤ T : p̂(u, Yu ; α) = A(Yu) + pD(u, Yu ;α)}, (5.21)

τDA
t (α) := inf { t ≤ u ≤ T : p̂(u, Yu ; α) = α(K ′ − Yu)+ + p(u, Yu) }. (5.22)

The exercise times τAD
t and τDA

t represent, respectively, the times to exercise the ESO first, and the
American puts first. They are characterized as the first time that the firm’s stock hits the respective
exercise boundaries, yAD, yDA : [0, T ] 7→ R+. As illustrated in Figure 3 (left), if the stock reaches
the boundary yAD first, which means τ̂?

t = τAD
t ≤ τDA

t , then the employee will exercise the ESO
first at the boundary yAD. After this exercise, the employee will exercise the remaining American
puts when the stock reaches the exercise boundary yD. In the other scenario, illustrated in Figure
3 (right), the stock hits the boundary yDA before hitting yAD; that is, τ̂?

t = τDA
t ≤ τAD

t .
The positions in the ESO and American puts exhibit interactive effects on the risk-averse em-

ployee’s optimal exercise times. In the next proposition, we will show that τAD
t ≥ τ?

t , which implies
that static-dynamic hedges with American puts delays the employee’s ESO exercise compared to
the case with a dynamic hedge only. This effect can also be seen in Figure 3 where the boundary
yAD dominates y?; the employee’s optimal exercise boundary for the ESO is lifted upward when
American puts are used. Also, the long ESO position induces the employee to delay his American
put exercise, that is, τDA

t ≥ τD
t .

Proposition 5.3 For every α ≥ 0, we have p̂(t, y ;α) ≥ p(t, y) + pD(t, y ; α), for t ∈ [0, T ], y ∈ R+.
Consequently, it follows that τAD

t (α) ≥ τ?
t , τDA

t (α) ≥ τD
t (α), and τ̂?

t (α) ≥ min{τ?
t , τD

t (α)}.
Proof. Fix any α ≥ 0. From (5.19), p̂(t, y ; α) solves the following variational inequality:

M̂ p̂(t, y ; α) := min
{
−Aqlp̂(t, y ;α) , p̂(t, y ;α)−R(t, y ; α)

}
= 0,

with p̂(T, y ; α) = A(y) + α(K ′ − y)+.
We want to show

M̂(p(t, y) + pD(t, y ; α)) ≤ 0, (5.23)

which will imply p̂(t, y ; α) ≥ p(t, y)+pD(t, y ; α) by the comparison principle. First, we observe that
p̂(T, y ; α) ≥ p(T, y) + pD(T, y ;α). Next, we consider

−Aql(p + pD) = −Aqlp−AqlpD +
1
2
γ(1− ρ2)η2y2er(T−t)pyp

D
y , (5.24)

where −Aqlp,−AqlpD ≥ 0 from (5.6). If −Aqlp > 0, then p(t, y) = A(y) must hold by (5.7). In this
case, we have

p(t, y) + pD(t, y ; α) = A(y) + pD(t, y ; α) ≤ R(t, y ; α),
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which implies (5.23). The same is true if −AqlpD > 0. The only remaining possibility is that
Aqlp = AqlpD = 0. However, since the last term in (5.24) is non-positive because p is non-decreasing
with y while pD is non-increasing with y, this also yields (5.23). Hence, we have shown the first part
of the proposition. Then, we deduce from (5.21) and (5.22) that τAD

t (α) ≥ τ?
t , and τDA

t (α) ≥ τD
t (α),

and the last claim follows immediately.
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Figure 3: The order of exercises is determined by whether the stock price hits the upper or lower solid
boundary first. (Left) If the stock price touches the upper solid boundary (yAD) first, then the employee
exercises the ESO here, and then the puts later when it crosses the lower dashed boundary (yD). (Right) If
the stock price touches the lower solid boundary first (yDA), then the employee exercises all the puts here, and
then the ESO later when it crosses the upper dashed boundary (y?). The parameters are the same as those in
Figure 1, with α? = 1.32.

5.2.3 The ESO Cost

The ESO cost can be computed using the exercise boundaries corresponding to optimal static hedge
with α? American put options. For notational simplicity, we will suppress the dependence of various
quantities on α. For example, we write τ̂?

t for τ̂?
t (α?). Under the risk-neutral measure Q , the

company stock evolves according to (5.10). At time t ∈ [0, T ], given that the stock price Yt is y and
the ESO is still alive, the cost of the ESO is given by

c(t, y) = IEQt,y

{
e−r(τAD

t −t)A(YτAD
t

)1{τAD
t ≤τDA

t } + e−r(τ̃t−t)A(Yτ̃t)1{τAD
t >τDA

t }

}
,

where τ̃ = τ?
τDA . By repeated conditioning at τDA

t , the cost becomes

c(t, y) = IEQt,y

{
e−r(τAD

t −t)A(YτAD
t

)1{τAD
t ≤τDA

t } + e−r(τDA
t −t)C(τDA

t , YτDA
t

)1{τAD
t >τDA

t }

}
,

with C(t, y) defined in (5.11). The PDE problem for c(t, y) is

ct +
η2

2
y2cyy + (r − q)ycy − rc = 0, (5.25)

for (t, y) ∈ C, the continuation region defined in Section 5.1.2, and the boundary conditions

c(t, yAD(t)) = A(yAD(t)), 0 ≤ t < T,

c(t, yDA(t)) = C(t, yDA(t)), 0 ≤ t < T,

c(T, y) = A(y), yDA(T ) ≤ y ≤ yAD(T ).

(5.26)
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ESO’s usually have an initial vesting period during which they cannot be exercised. In the
cases with dynamic hedging and static-dynamic hedging with European puts, there are no option
exercises during the vesting period. In contrast, when hedging with American puts, the employee
may exercise the puts anytime. This leads us to consider the pre-vesting exercising strategy for the
American puts. Suppose a vesting period of tv years. If the employee exercises the puts prior to time
tv, then he will receive the option payoff and continue to hold the ESO till at least tv. Incorporating
vesting is important, straightforward, but tedious, and we omit the details of the implementation.

5.3 The Impact of Static-Dynamic Hedges

We present a numerical example to illustrate the impacts of various hedging strategies on the ESO
cost to the firm. The following table compares the ESO costs for the cases with and without vesting
under the parameter values given in Figures 2 and 3. The entries in the last column are the Black-
Scholes price of a ten-year at-the-money American option on the firm’s stock. They are the same
under different vesting provisions because the optimal time to exercise is at expiry. The entries in
the second column are the costs when the employee hedges only dynamically as in Section 5.1. The
next two columns are from the cases of static-dynamic hedges with European puts and American
puts respectively.

Static-dynamic Hedge Static-dynamic Hedge Black-Scholes
Dynamic Hedge with European Puts with American Puts (Perfect Hedge)

tv = 0 3.0330 3.4572 (β? = 0.83) 3.6931 (α? = 1.32) 5.2567
tv = 2 3.4376 3.7136 (β? = 0.86) 3.8396 (α? = 1.25) 5.2567
tv = 4 3.9932 4.1516 (β? = 0.87) 4.1941 (α? = 1.07) 5.2567

The Black-Scholes model gives the highest cost across different vesting periods because it assumes
the ESO holder can perfectly hedge.When the employee can only dynamically hedge with the market
index, the ESO cost is only 58% of the Black-Scholes value in the case with no vesting period. From
left to right, we notice that the ESO cost increases as the employee adopts more effective hedging
strategies. For instance, in the first row, static hedges with European puts and American puts
increase the costs by 14% and 22%, respectively, compared with the cost from dynamic hedge, but
they remain significantly lower than the Black-Scholes price. The situation is similar when vesting
is imposed, but vesting drives the ESO cost closer to the Black-Scholes value by preventing the
employee from exercising early. In the limit of tv = T , the ESO becomes a European option and
it can only be exercised at expiry. The cost under various hedging strategies will coincide with the
Black-Scholes value.

A Appendix

A.1 Proof of Proposition 2.14

The proposition is basically an application of Propositions 3.1 and 3.2 of Karatzas and Zamfirescu
(2005). We adapt their proof here in our notations and settings. First, we need Assumption 2.12
on the quasi-left-continuity of (At)0≤t≤T and (lQ,γ

0,t )0≤t≤T . Also, we need to check that

sup
0≤t≤T

|lQ,γ
0,t | ∈ L1(Q), for Q ∈ Pf . (A.1)

To this end, we write

|lQ,γ
0,t | = |HT

t (QE |P ) + log ZQ,P
t −H(QE |P )|

≤ |EQE

t {log ZE
T }|+ | log ZE

t |+ | log ZQ,P
t |+ H(QE |P ).
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The last term is a finite constant. By Lemma 3.3 of Delbaen et al. (2002) and Lemma 4.2 of Kabanov
and Stricker (2002), we have

sup
0≤t≤T

|EQE

t {log ZE
T }|, sup

0≤t≤T
| log ZE

t |, sup
0≤t≤T

| log ZQ,P
t | ∈ L1(Q), for Q ∈ Pf (P ).

Hence, condition (A.1) is satisfied. Next, we define the Snell envelope

p̂Q
t := ess sup

τ∈Tt,T

IEQ
t

{
Aτ + lQ,γ

t,τ

}
, for Q ∈ Pf (P ) . (A.2)

Note that, pt = ess infQ∈Pf (P ) p̂Q
t . Under Assumption 2.12 and integrability condition (A.1), the

optimal stopping time is given by

τ̂Q
t = inf{t ≤ u ≤ T : p̂Q

u = Au}.

It is well-known that the process (p̂Q
t + lQ,γ

0,t )0≤t≤T is a Q-supermartingale, and has the following
property:

IEQ
t

{
p̂Q

τ + lQ,γ
t,τ

}
= p̂Q

t = IEQ
t

{
A

τ̂Q
t

+ lQ,γ

t,τ̂Q
t

}
, τ ∈ [t, τ̂Q

t ]. (A.3)

To show (2.34), we observe that τ̄t ≤ τ̂Q
t since p̄t ≤ p̂Q

t . Therefore, τ ∈ [t, τ̄t] implies τ ∈ [t, τ̂Q
t ],

which justifies the use of (A.3) later in this proof. As in Appendix A of Karatzas and Zamfirescu
(2005), one can show that the collection {p̂Q

t : Q ∈ Pf (P )} is closed under pairwise optimization, so
there exists a sequence (Qk)k∈N such that p̄t = lim

k→∞
↓ p̂Qk

t . For all k, the restriction of process ZQk,P

over [0, τ ] does not affect p̂Q
τ , so this portion of ZQk,P can be chosen to equal ZQ,P . Therefore, for

τ ∈ [t, τ̄t], we have by monotone convergence theorem and a measure change

IEQ
t

{
p̄τ + lQ,γ

t,τ

}
= lim

k→∞
↓ IEQ

t

{
p̂Qk

τ + lQ,γ
t,τ

}

= lim
k→∞

↓ IEt

{
ZQk,P

τ

ZQk,P
t

(p̂Qk

τ + lQ
k,γ

t,τ )

}
= lim

k→∞
↓ IEQk

t

{
p̂Qk

τ + lQ
k,γ

t,τ

}

≥ ess inf
Q∈Pf (P )

IEQ
t

{
p̂Q

τ + lQ,γ
t,τ

}
= ess inf

Q∈Pf (P )
p̂Q

t = p̄t. (A.4)

Using (A.4) and that p̄τ̄t = Aτ̄t at τ̄t, we have p̄t ≤ ess inf
Q∈Pf (P )

IEQ
t {Aτ̄t + lQ,γ

t,τ̄t
}. The reverse inequality

follows easily from the definition of p̄t. Hence, (2.35) follows and τ̄t is optimal for p̄t.

A.2 Proof of Proposition 2.17

We first consider the simple equality

lim
γ→∞ pt(α, γ) = ess inf

γ>0
ess inf

Q∈Pf∩Pe

ess sup
τ∈Tt,T

IEQ
t

{
αAτ + lQ,γ

t,τ

}

= ess inf
Q∈Pf∩Pe

ess inf
γ>0

ess sup
τ∈Tt,T

IEQ
t

{
αAτ + lQ,γ

t,τ

}
. (A.5)

Following the same line of thoughts in the proof of Proposition 2.14, we can switch the infimum and
supremum in the last equality.

ess inf
γ>0

ess sup
τ∈Tt,T

IEQ
t

{
αAτ + lQ,γ

t,τ

}
= ess sup

τ∈Tt,T

ess inf
γ>0

IEQ
t

{
αAτ + lQ,γ

t,τ

}
= ess sup

τ∈Tt,T

IEQ
t {αAτ} . (A.6)
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Substituting (A.6) into (A.5), we get

lim
γ→∞ pt(α, γ) = ess inf

Q∈Pf∩Pe

ess sup
τ∈Tt,T

IEQ
t {αAτ} = αct .

The last equality is due to Lemma 3.4 of Delbaen et al. (2002) that the set {dQ
dP |Q ∈ Pf (P )∩Pe(P )}

is L1(P )−dense in {dQ
dP |Q ∈ Pe(P )}. See also Proposition 5.1 and Corollary 5.1 of Delbaen et al.

(2002) for a similar proof for European claims.
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