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Abstract

We present a valuation framework that captures the main characteristics of employee
stock options (ESOs), which financial regulations now require to be expensed in firms’
accounting statements. The value of these options is much less than Black-Scholes prices
for corresponding market-traded options due to the suboptimal exercising strategies of
the holders, which arise from risk aversion, trading and hedging constraints, and job
termination risk. We analyze the combined effect of all of these factors along with the
standard ESO features of multiple exercising rights, and vesting periods. This leads to the
study of a chain of nonlinear free-boundary problems of reaction-diffusion type. We find
that job termination risk, vesting, finite maturity and non-zero interest rates are significant
contributors to the ESO cost. However, we find that in the presence of vesting, the impact
of allowing multiple exercise rights on ESO cost is negligible.

1 Introduction

Employee Stock options (ESOs) are call options granted by a firm to its employees as a form of
benefit in addition to salary. They provide both compensation and incentive to the employees.
Since the mid 1980’s, stock options have become an important component of compensation in
the US. According to Hall and Murphy (2002), 94% of S&P 500 companies granted options
to their top executives, and the total value accounted for 47% of total pay for the CEOs.

Due to the extensive use of ESOs, the Financial Accounting Standards Board (FASB) has
become concerned about the cost of these options to shareholders. In the past decade, the
reporting of the granting cost of such options has changed from optional to mandatory. In
2004, under Statement of Financial Accounting Standards No. 123 (revised), FASB required
firms to estimate and report “the grant-date fair value” of the ESOs issued. This gives rise to
the need to create a reasonable valuation method for these options.

In order to determine the cost of ESOs to the firm, it is important to understand the
characteristics of ESOs, and distinguish them from market-traded options. Typically, ESOs
are American call options (i.e. they can be exercised at any time during the exercise window),
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with long maturity ranging from 5 to 15 years. In most cases, the ESOs are not immediately
exercisable. The firm usually wants to maintain the incentive effect by prohibiting the em-
ployee holders from exercising during a certain period from the grant date. This period is
called the vesting period. During the vesting period, the holder’s departure from the firm,
voluntarily or forced, will lead to forfeiture of his option (i.e. it becomes worthless).

Once endowed with an ESO, the employee cannot sell it, or hedge against his position
by short selling the company stock1, but he can partially hedge his position by trading other
securities, for example, the S&P 500 index. The sale and hedging restrictions may induce the
employee to exercise the ESO early and invest the option proceeds elsewhere. The employee’s
risk preference and his available investment opportunities directly affect his exercise behavior.

Another vital feature for ESO valuation is the possibility that the employee suddenly leaves
the firm before the ESO matures. At any time, an employee could be fired by the employer,
or leave the firm voluntarily. If the departure happens during the vesting period, then the
option is forfeited, and the ESO costs the firm nothing in this case. If the ESO holder leaves
after the vesting period, then, at the time of departure, the holder may exercise the option,
and the firm pays the proceeds, if any.

All these features – vesting, sale and hedging restrictions, the employee’s exercise behavior
and the risk of sudden job termination – have significant bearing on the fair value of ESOs.
Hence, FASB requires valuation models to capture the unique characteristics of ESOs (see
Appendix A: Implementation Guideline in the FASB statement 123R). Our primary objective
in this paper is to provide a model that can accommodate all these characteristics and deter-
mine the cost of ESOs to the firm. Moreover, we want to address the challenging question:
how do these characteristics influence the employee’s exercise policy and the firm’s granting
cost? Our model will be useful not only in improving the precision of ESOs expensing, but
will also shed light on executives’ exercising behavior.

As empirical studies on ESOs suggest, the majority of ESOs holders tend to exercise
early, often right after the vesting period. For instance, Huddart and Lang (1996), Marquardt
(2002), and Bettis et al. (2005) point out that, for ESOs with ten years to maturity, the average
exercise time is between 4 and 5 years. This deviates from the prediction made by no-arbitrage
pricing theory. For instance, in the case of an American call written on a non-dividend paying
underlying stock, no-arbitrage pricing models conclude that the holder should never exercise
early. This early exercise phenomenon indicates that no-arbitrage theory is inadequate for
determining the exercise policy for ESOs.

To account for the employee’s early exercise, FASB proposes an expensing approach by
adjusting the Black-Scholes (B-S) model. In particular, it recommends substituting the option
expiration date with the expected time to exercise. Although this expensing method is very
simple and convenient, it is far from accurate. Jennergren and Naslund (1993), Hemmer et al.
(1994), and Huddart and Lang (1996) conclude that this adjusted B-S model fails to capture
the employee’s exercise behavior and overstates the cost of the ESOs to the firm.

1According to Section 16(c) of the U.S. Securities Exchange Act, executives are precluded from short-selling
the shares of their employer. The FASB statement 123R (see paragraph B80) indicates that “many public
entities have established share trading policies that effectively extend that prohibition to other employees.”
This short sales restriction has been adopted in the literature on ESOs; e.g. Huddart (1994) and Carpenter
(1998).
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In this paper, we propose an ESO valuation model that explains this phenomenon in
several ways. First, we illustrate that early exercises are optimal for a risk-averse ESO holder
with sale and hedging restrictions. Secondly, we show that the possibility of job termination
induces the employee to adopt a more conservative exercising strategy, indirectly leading to
early exercises. Moreover, job termination prior to maturity directly leads to early exercises
by forcing the employee to exercise the ESO.

Our valuation model, in its simplest form, consists of two steps. First, we consider a risk-
averse ESO holder who is subject to employment termination and constrained from selling
the option or shorting the company stock, but is allowed to trade a partially correlated asset,
such as the market index. The holder tries to decide when to exercise the ESO so that his
expected utility of wealth is maximized. As a result, the holder obtains an exercise boundary.
In technical terms, the ESO holder faces a stochastic control problem with optimal stopping.
This problem is then formulated as a free boundary problem, from which we obtain the
holder’s exercise boundary. Next, the firm will use this boundary to find the cost of issuing
this ESO. From the firm’s perspective, the cost of this ESO is given by the no-arbitrage price
of a barrier-type call option subject to early exercise due to job termination, where the barrier
is the employee’s optimal exercise boundary.

In our model, the employee’s optimal exercise boundary differs from that in no-arbitrage
pricing theory because the latter assumes the availability of a perfect hedge and the risk-
neutrality of the holder. By no-arbitrage pricing theory, the holder’s optimal exercise boundary
is the one that maximizes the expected discounted payoff of the option. For this reason, we
call it the price-maximizing boundary. To the contrary, the risk-averse employee in our model,
who is constrained from selling the option and shorting the company stock, has no perfect
hedge. The employee’s exercise boundary is the one that maximizes the expected utility of
holding the ESO, so we also call it the utility-maximizing boundary.

By incorporating job termination risk, we obtain a nonlinear free boundary problem of
reaction-diffusion type for the employee’s investment problem. Reaction-diffusion equations
arise in utility problems in incomplete markets, for example, in portfolio choice with recursive
utility (Tiu (2004)), and indifference pricing with interacting Itô and point processes (Becherer
(2004) and Becherer and Schweizer (2005)), and indifference pricing in credit risk (Sircar and
Zariphopoulou (2006)). In this paper, we study the existence of solution and the properties
of the free boundary for this problem.

We also include the case in which the employee is granted multiple ESOs and partial
exercises are allowed. In the traditional no-arbitrage pricing theory for American options, the
holder’s exercise boundary for one American call is identical to that for multiple American
calls. In other words, the holder always exercises all the options at the same time. However,
it is well documented that ESO holders tend to gradually exercise fractions of their options
through maturity. See for instance, Huddart and Lang (1996).

In the context of no-arbitrage pricing for swing options, Carmona and Touzi (2006) study
the holder’s multiple exercise policy under the assumption that successive exercises are sepa-
rated by small time intervals. Several authors have used the utility based framework to explain
the optimality of partial exercises of American options in incomplete markets. For perpetual
American options with zero interest rate, Henderson (2006) provides an analytic formula for
the employee’s exercise thresholds. For American-style ESOs with finite maturity, Jain and
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Subramanian (2004), Grasselli (2005) and Rogers and Scheinkman (2006) numerically deter-
mine the employee’s optimal exercise policy, but in the absence of sudden job termination
risk. All these authors show that partial exercises could be optimal for the option holder
under certain constraints. In this paper, we incorporate vesting and job termination risk,
and provide a characterization for the optimal exercise time and a numerical scheme for the
employee’s optimal exercise boundaries. In particular, when a vesting period is imposed, the
cost of ESOs with multiple exercise rights and the cost with simultaneous exercise constraint
are almost the same (see Figure 10).

We have a parametric model for ESO valuation which, given reasonable data, can be cali-
brated. This is a straightforward test of validity that may be used to select between various
models. In addition to evaluating the behavioral assumptions described by the utility for-
mulation, one can also design empirical tests to address questions relevant to ESO valuation.
For example, do exercise patterns of ESOs with and without simultaneous exercise constraint
conform to Figure 9? With other parameters carefully controlled, do similar employees with
different job termination rates exercise their ESOs according to Figure 2? For this purpose,
empirical data of ESO exercises that is well-segmented based on employees’ attributes, includ-
ing age, position, and the time and cause of job termination, is highly desirable.

The rest of the paper is organized as follows. Section 2 provides an overview of related
studies of stock options valuation. In Section 3, we formulate our valuation model for a
single ESO. In Sections 4 and 5, we examine the employee’s exercise policy and the ESO cost
respectively. In Section 6, we extend our model to the case with multiple exercises. The impact
of multiple exercises on the employee’s exercising strategy and the ESO cost are studied in
Section 6.3.

2 Related Studies

The wide use of employee stock options has led to a growing literature on their valuation. One
approach is to risk-neutrally price the options, with the employee’s optimal exercise boundary
exogenously specified. Hull and White (2004), and Cvitanic et al. (2004) are examples of this
approach. Hull and White propose that the employee’s exercise boundary be flat. Cvitanic
et al. (2004) propose an exponentially decaying barrier. These ad hoc exercise boundaries are
independent of the model parameters like the employee’s exit rate, and the company stock’s
drift and volatility. As we will see later, the employee’s exercise boundary changes considerably
with all these parameters (Figures 2-4).

Alternatively, other researchers model early exercises as the first arrival of an exogenous
counting process. For example, Jennergren and Naslund (1993) use the first jump time of some
exogenous Poisson process. The Poisson process in their model serves as a proxy for all the
factors that cause early exercises, including voluntary and involuntary job termination, and
the holder’s desire to voluntarily exercise early. On the other hand, Carr and Linetsky (2000)
propose an intensity-based framework for European-style stock option valuation, in which the
intensities for voluntary early exercises and job termination depend on the company stock
price and time. These two models neglect the impact of the risk of job termination on the
employee’s own exercising strategy. In Section 4, we will show that job termination risk
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induces the ESO holder to adopt a more conservative exercising strategy (Proposition 4 and
Figure 2 (left)).

Another approach is to investigate the effects of non-tradability and hedging restrictions.
Huddart (1994), Kulatilaka and Marcus (1994) and Chance and Yang (2005) develop binomial
tree models that compute the certainty equivalent price of the stock option. Huddart (1994)
and Detemple and Sundaresan (1999) show in a binomial model that, in the presence of
hedging restrictions, a risk-averse employee may find it optimal to exercise his American-style
ESO early even if the underlying stock pays no dividend. They use this result to rationalize the
well-known phenomenon that employees tend to exercise their ESOs long before the maturity.
We also obtain similar results for our model (see Section 4). Hall and Murphy (2002) use a
certainty-equivalence framework to analyze the divergence between the firm’s cost of issuing
ESOs and the value to employees. Although these models incorporate the effect of holder’s
risk aversion, they do not consider the fact that the option holder can dynamically trade a
partially correlated asset. This is remediated by Henderson (2005), where the methodology
of indifference pricing in valuing ESOs is introduced. She provides a valuation model for a
European ESO that captures the employee’s risk aversion.

Oberman and Zariphopoulou (2003) consider indifference pricing for American call options
with finite maturity. The holder’s indifference price is the solution to a quasilinear variational
inequality, which they numerically solve to obtain the optimal exercise boundary. In our case,
the ESO holder’s investment problem also incorporates vesting, job termination risk, and
multiple exercises. In particular, the job termination risk leads to a nonlinear free boundary
problem of reaction-diffusion type. Existence of the generalized solution to the problem is
provided in the Appendix. Henderson (2006) considers multiple perpetual American options,
where the option holder cannot trade the underlying asset, but can invest in a partially
spanning asset. A closed-form formula for the holder’s exercising barriers is given, but under
the assumption that the interest rate is zero. Our Section 5.2 demonstrates the effects of
finite maturity and non-zero interest rate on ESO value are not minor. Some other ESO
characteristics such as reload and reset provisions are analyzed under the perpetual assumption
in the no-arbitrage framework by Sircar and Xiong (2006), but we do not consider those here.

3 The ESO Valuation Model

In this section, we present our valuation model for a single employee stock option. We will
extend it to multiple issues in Section 6. To start our formulation, we consider a market with
a riskless bank account that pays interest at constant rate r, and two risky assets, namely, the
company stock, and a market index. The employee can only trade the bank account and the
market index, but not the company stock. The latter is modeled as a diffusion process that
satisfies

dYu = (ν − q)Yu du+ ηYu dWu , u ≥ t , (1)

with Yt = y > 0. The coefficients ν, q and η are constant. Here, ν and η are the stock’s
expected return and volatility respectively. We also assume that the stock pays a constant
proportional dividend q continuously over time.
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The market index is another lognormal process that is partially correlated with the com-
pany stock

dSu = µSu du+ σSu dBu , u ≥ t , (2)

with St = S > 0. The constant parameters µ and σ are respectively the market index’s ex-
pected return and volatility. The two Brownian motions B and W are defined on a probability
space (Ω,F , (Fu),P), where Fu is the augmented σ-algebra generated by {Ws, Bs ; 0 ≤ s ≤ u },
and their instantaneous correlation is ρ ∈ (−1, 1). The employee can use S to partially hedge
away some of the risk in their portfolio, with some remaining idiosyncratic risk. In reality, the
employee can trade more than one asset. If so, the aggregate of the traded assets is proxied
by the index S.

The employee stock option in this paper is an American call option on the company stock
with maturity T (typically 10 years, see Marquardt (2002)), with strike K and a vesting
period tv ≤ T (typically 2 to 4 years). At the exercise time, the firm sells a new stock issue to
the employee at the price K. Following the arguments in Hull and White (2004) and FASB
statement 123R, we work under the assumption that the possible dilution effect is anticipated
by the market and already reflected in the stock price immediately after the ESO grant.

Due to vesting, the employee cannot exercise the option before tv. If the employee leaves
the firm during the vesting period, then the option becomes worthless. If the employee’s
departure happens after the vesting period, then he must exercise the ESO if it is in-the-
money. As the vesting period increases to maturity, the ESO becomes a European call - the
holder can exercise the ESO only at maturity.

The modeling of job termination is a delicate and important issue that has a crucial impact
on ESO valuation, as we demonstrate in Figure 6. The fact that the horizon of the valuation
problem is typically much shorter than the contractual term of the ESO has even been rec-
ognized in the FASB proposal, in which it recommends that the ESO maturity be shortened
according to the job termination risk. On the one hand, it would be nice to develop and
estimate a detailed model to account for the causes of job termination that separate voluntary
and involuntary exits, and the classification of employees, for example, by age. In particular,
external opportunities that tempt the employee to depart and exercise the ESO early might
be considered. On the other hand, data is scarce and likely not well-segmented according
to the identity of employee, or even the cause of job termination. Therefore, the literature
has adopted reduced-form modeling that bypasses direct modeling of an individual employee’s
personal employment choices and potential inducement from external offers. Models that in-
volve more complex information, including the fortellability of the employee’s voluntary exit,
are topics for future development as more comprehensive empirical data becomes available.

In our model, the employee’s (voluntary or involuntary) employment termination time,
denoted by τλ, is represented by an exponential random variable with parameter λ that is
independent of the Brownian motions W and B. In Remark 13, we address how to adapt
our formulation to more complex τλ. The rate of job termination λ can be estimated from
the firm’s historical data. For instance, one can take the inverse of the average time to job
termination. We illustrate the payoff structure of the ESO in Figure 1.
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Figure 1: ESO payoff structure. The bottom path represents the scenario where the em-
ployee leaves the firm during the vesting period, resulting in forfeiture of the ESO. In the next
path above, the employee is forced to exercise the ESO early due to job termination. The
second from the top path hits the optimal exercise boundary y?(t) after vesting, so the em-
ployee exercises the ESO there. The top one represents that the employee exercises the ESO
immediately at the end of vesting.

3.1 The Employee’s Investment Problem

Since the employee cannot sell the ESO, or form a perfect hedge, it is important to consider
his risk aversion. To this end, we represent his risk preference with the exponential utility
function U(x) = −e−γx, with a positive constant absolute risk aversion γ.

To solve the employee’s investment problem, it is sufficient to consider the case with zero
vesting. When vesting increases from zero, it effectively lifts the employee’s pre-vesting exercise
boundary to infinity, but leaves his post-vesting exercise policy unaffected. Now suppose,
at time t ∈ [0, T ], the employee is endowed with an ESO and some positive wealth. The
employee’s investment problem is to decide when to exercise the option. We define Tt,T as the
set of stopping times (with respect to the filtration (Fu)) taking values in [t, T ]. Throughout
the entire period [t, T ], the employee is assumed to trade dynamically in the bank account and
the market index. A trading strategy { θu ; t ≤ u ≤ T } is the cash amount invested in the
market index S, and it is deemed admissible if it is Fu-progressively measurable and satisfies
the integrability condition E {

∫ T
t θ2

u du } <∞. The set of admissible strategies over the period
[t, T ] is denoted by Zt,T . For u ≥ t, the employee’s trading wealth evolves according to

dXθ
u = [θu(µ− r) + rXu] du+ θuσ dBu , Xt = x . (3)

Upon the exercise of the option, either voluntarily or forced due to job termination, the
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employee will add the contract proceeds to his portfolio, and continue to optimally invest in
the bank account and market index up to the maturity date T . Therefore, from the exercise
time till the expiration date, the employee, who no longer holds an ESO, faces the classical
Merton problem of optimal investment. According to Merton (1969), if an investor has x
dollars at time t ≤ T and invests dynamically in the bank account and the market index until
time T , then his maximal expected utility is given by

M(t, x) = sup
Zt,T

E
{
−e−γXT |Xt = x

}
= −e−γxer(T−t)e−

(µ−r)2

2σ2 (T−t).

(4)

To interpret this, we can think of the first part −e−γxer(T−t) as the utility from merely saving

the proceeds in the bank account. The factor e−
(µ−r)2

2σ2 (T−t) increases the utility (which is
negative) due to the fact that the employee can invest in the market index, in addition to the
bank account. Observe that, for any fixed x, M is decreasing with t.

We formulate the ESO holder’s investment problem as a stochastic utility maximization
with optimal stopping. We shall use the following shorthands for conditional expectations:

Et,y { · } = E { · |Yt = y } , Et,x,y { · } = E { · |Xt = x, Yt = y } .

The employee’s value function at time t ∈ [0, T ], given that he has not departed the firm and
that his wealth Xt = x and company stock price Yt = y, is

V (t, x, y) = sup
τ∈Tt,T

sup
Zt,τ

Et,x,y
{
M(τ̂ , Xτ̂ + (Yτ̂ −K)+)

}
= sup

τ∈Tt,T
sup
Zt,τ

Et,x,y
{
−e−γ(Xτ̂+(Yτ̂−K)+)er(T−τ̂)e−

(µ−r)2

2σ2 (T−τ̂)
}
,

(5)

where τ̂ = τ ∧ τλ. Observe that we are explicitly optimizing the expected utility over all
stopping times, and over all trading strategies θ before τ . The post-exercise trading is implicitly
optimized by the solution to the Merton problem M . Both of the expectations in (4) and (5)
are taken under the historical measure, P. By standard arguments from the theory of optimal
stopping, the employee’s optimal exercise time is given by

τ? := inf{ t ≤ u ≤ T : V (u,Xu, Yu) = M(u, Xu + (Yu −K)+)} . (6)

3.2 ESO Cost to the Firm

It turns out that the employee’s optimal exercise time and the corresponding exercise boundary
can be obtained by solving a free boundary problem. This will be discussed in the next section.
Meanwhile, let us explain how to use the employee’s exercise boundary to determine the ESO
cost to the firm. In accordance with the FASB rules2, we assume that the company stock

2In paragraph A13 of FASB 123R, it specifically requires the use of “techniques that are used to establish
trade prices for derivative instruments,” and approves the use of risk-neutral models. Even if a firm does not
hedge its ESOs, it should calculate and report the cost generated from such models.
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evolves according to the following diffusion process under the risk-neutral measure Q:

dYu = (r − q)Yu du+ ηYu dW
Q
u , u ≥ t ; Yt = y ,

where WQ is a Q-Brownian motion, which also independent of the job termination time τλ.
As in Carr and Linetsky (2000), we assume that job termination rate is identical under both
measures P and Q; that is, the job termination risk is unpriced. By no-arbitrage arguments,
the firm’s granting cost is given by the no-arbitrage price of a barrier-type call option subject to
early exercise due to job termination. The barrier is the employee’s optimal exercise boundary.
It is possible that the employee will leave the firm before the vesting period ends, or job
termination arrives before the stock reaches the optimal boundary. In the first case, the ESO
is forfeited. In the latter case, the employee is forced to exercise the option immediately. We
must consider both cases in order to accurately determine the ESO value to the firm.

We first consider the cost of an vested ESO. Suppose the vesting period is tv years. At
time t ≥ tv, given that the stock price Yt is y and the ESO is still alive, the cost of the ESO
is given by

C(t, y) = EQ
t,y

{
e−r(τ

?∧τλ−t)(Yτ?∧τλ −K)+
}

= EQ
t,y

{
e−(r+λ)(τ?−t)(Yτ? −K)+ +

∫ τ?

t
e−(r+λ)(u−t)λ(Yu −K)+du

}
.

(7)

Next, we consider the unvested ESO. Let C̃(t, y) be the cost of the unvested ESO at time
t ≤ tv given that it is still alive and the stock price Yt = y. It is given by

C̃(t, y) = EQ
t,y

{
e−r(tv−t)C(tv, Ytv)1{τλ>tv}

}
. (8)

In Section 5, we will present the PDE problems for C(t, y) and C̃(t, y).

4 The Employee’s Exercise Policy

We proceed to determine the employee’s post-vesting optimal exercise boundary, and provide
a characterization for it. Afterward, we will investigate how various parameters influence the
employee’s exercising strategy.

4.1 The Free Boundary Problem of Reaction-Diffusion Type

The employee’s optimal exercise boundary is not known ex ante; it has to be inferred from the
solution to the free boundary problem associated with the value function V . Let us introduce
the following differential operators

L =
η2y2

2
∂2

∂y2
+ ρθσηy

∂2

∂x∂y
+
θ2σ2

2
∂2

∂x2
+ (ν − q)y ∂

∂y
+ [θ(µ− r) + rx]

∂

∂x
,
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which is the infinitesimal generator of (X,Y ), and

L̃ =
η2y2

2
∂2

∂y2
+ (ν − q − ρµ− r

σ
η)y

∂

∂y
,

which is the infinitesimal generator of Y under the minimal entropy martingale measure (de-
fined later in (17)). Also, we define the utility rewarded for immediate exercise

Λ(t, x, y) = M
(
t, x+ (y −K)+

)
= −e−γ(x+(y−K)+)er(T−t)e−

(µ−r)2

2σ2 (T−t).

By dynamic programming principle, the value function V is conjectured to solve the fol-
lowing complementarity problem

λ (Λ− V ) + Vt + sup
θ
LV ≤ 0 ,

V ≥ Λ, (9)(
λ (Λ− V ) + Vt + sup

θ
LV

)
·
(

Λ− V
)

= 0,

for (t, x, y) ∈ [0, T )× R× (0,+∞). The boundary conditions are

V (T, x, y) = −e−γ(x+(y−K)+),

V (t, x, 0) = −e−γxer(T−t)e−
(µ−r)2

2σ2 (T−t).
(10)

This free boundary problem can be simplified by a separation of variables and power
transformation

V (t, x, y) = M(t, x) ·H(t, y)
1

(1−ρ2) . (11)

This is possible due to the exponential utility function (see Oberman and Zariphopoulou
(2003) for a similar transformation).

Then, the free boundary problem for H is of reaction-diffusion type.

Ht + L̃H − (1− ρ2)λH + (1− ρ2)λb(t, y)H−ρ̂ ≥ 0, (12)

H(t, y) ≤ κ(t, y),(
Ht + L̃H − (1− ρ2)λH + (1− ρ2)λb(t, y)H−ρ̂

)
·
(
κ(t, y)−H(t, y)

)
= 0,

for (t, y) ∈ [0, T ]× (0,+∞), where

ρ̂ =
ρ2

1− ρ2
, b(t, y) = e−γ(y−K)+er(T−t) , and κ(t, y) = e−γ(1−ρ

2)(y−K)+er(T−t) .

The boundary conditions are

H(T, y) = e−γ(1−ρ
2)(y−K)+ ,

H(t, 0) = 1.
(13)
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Observe that if λ = 0, the reaction-diffusion term will disappear, and the problem will become
linear. This problem for H implies that the employee’s optimal exercise time is independent
of X and S. Therefore, we define the employee’s optimal exercise boundary as the function
y? : [0, T ] 7→ R+, where y?(t) is the critical stock price at time t. That is,

y?(t) = inf{ y ≥ 0 : H(t, y) = κ(t, y)}. (14)

In practice, we numerically solve this free boundary problem to obtain the employee’s exercise
boundary y?. Then, the employee’s optimal exercise time is the first time that the company
stock reaches y?. That is,

τ? = inf{ t ≤ u ≤ T : Yu = y?(u)} . (15)

The function H has the following probabilistic representation

H(t, y) = inf
τ∈Tt,T

Ẽt,y
{
e−(1−ρ2)λ(τ−t)κ(τ, Yτ )+

∫ τ

t
e−(1−ρ2)λ(u−t)(1−ρ2)λb(u, Yu)H(u, Yu)−ρ̂ du

}
.

(16)
The expectation is taken under the measure P̃ defined by

P̃(A) = E
{

exp
(
− µ− r

σ
BT −

1
2

(µ− r)2

σ2
T

)
1A

}
, A ∈ FT . (17)

The measure P̃ is a martingale measure that has the minimal entropy relative to P (see
Fritelli (2000)). This measure arises frequently in indifference pricing theory. For instance,
Musiela and Zariphopoulou (2004) use it to express the writer’s value function for an European
call option. We will use this probabilistic representation to prove the existence of a unique
solution to the free boundary problem for H in the Appendix.

4.2 Characterization of the Employee’s Exercise Boundary

The function H, defined in (11), turns out to be related to the employee’s indifference price
for the ESO, which will allow us to characterize the employee’s optimal exercise time. We are
primarily interested in the cost of an ESO to the firm, not the employee’s indifference price.
Nevertheless, the indifference price is a useful concept in analyzing the employee’s exercise
behavior.

Definition 1 The ESO holder’s indifference price of an ESO (without vesting) is defined as
the function p ≡ p(t, x, y) such that

M(t, x) = V (t, x− p, y). (18)

As we shall see, due to the exponential utility function, the indifference price is in fact a
function of only t and y. By Definition (18) and the transformation (11), one can deduce the
following fact.

11



Proposition 2 The employee’s indifference price for the ESO, denoted by p, satisfies

p(t, y) = − 1
γ(1− ρ2)er(T−t)

logH(t, y) , (19)

or equivalently,
V (t, x, y) = M(t, x) · e−γp(t,y)er(T−t) . (20)

With this, we can write the original free boundary problem (9) – (10) in terms of p:

pt + L̃ p− rp− 1
2
γ(1− ρ2)η2y2er(T−t)p2

y +
λ

γ

(
1− b(t, y)eγpe

r(T−t)
)
≤ 0 ,

p ≥ (y −K)+, (21)(
pt + L̃ p− rp− 1

2
γ(1− ρ2)η2y2er(T−t)p2

y +
λ

γ

(
1− b(t, y)eγpe

r(T−t)
))

·
(

(y −K)+ − p
)

= 0,

for (t, y) ∈ [0, T ]× (0,+∞). The boundary conditions are

p(T, y) = (y −K)+ ,
p(t, 0) = 0 .

(22)

Finally, we use equation (18) or (20) to express the employee’s optimal exercise time τ? in
terms of p:

τ? := inf { t ≤ u ≤ T : V (u,Xu, Yu) = Λ(u,Xu, Yu) }
= inf

{
t ≤ u ≤ T : M(u,Xu + p(u, Yu)) = M(u,Xu + (Yu −K)+)

}
= inf

{
t ≤ u ≤ T : p(u, Yu) = (Yu −K)+

}
.

(23)

This provides a nice interpretation for the ESO holder’s optimal exercising strategy: the holder
will exercise the ESO as soon as his indifference price reaches (from above) the ESO payoff.
For other utility functions, this interpretation still holds although the indifference price and
the optimal exercise time may depend on wealth.

According to the standard no-arbitrage pricing theory, the price-maximizing boundary for
an American call on a dividend-paying stock is monotonically decreasing with time. To un-
derstand this, we recall that the boundary represents the stock price where the value of an
American call equals the payoff from immediate exercise. Note that the value of an American
call, for a fixed stock level, is decreasing over time, and the payoff from immediate exer-
cise is time-independent. Therefore, the critical stock price decreases over time. However,
in our model, the utility-maximizing boundary is not always monotonically decreasing with
time. The reason is that the utility rewarded for exercising the ESO, instead of being time-
independent, is decreasing over time. Since both the value function and the reward from
immediate exercise decreases over time, it is possible that the critical stock price is increasing
for a certain period of time (see Figures 2-4). In the special case of zero interest rate and no
job termination risk, we can prove that the exercise boundary is non-increasing with time.
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Proposition 3 Assume λ = r = 0. The utility-maximizing boundary is non-increasing with
time.

Proof. First, observe that H is non-decreasing with time. Indeed, setting λ = r = 0 in
equation (16), we get

H(t, y) = inf
τ∈Tt,T

Ẽt,y
{
e−γ(1−ρ

2)(Yτ−K)+
}

= inf
τ∈T0,T−t

Ẽ0,y

{
e−γ(1−ρ

2)(Yτ−K)+
}
,

(24)

where we have use the time-homogeneity of Y for the second equality. For any s ≤ t, we have
T0,T−t ⊆ T0,T−s, so H(s, y) ≤ H(t, y). Next, fix any y > 0 and let s ≤ t. If the employee
should exercise at (s, y), that is, H(s, y) = e−γ(1−ρ

2)(y−K)+ , then we want to show the same
is true at (t, y). But this is clear from the chain of inequalities

e−γ(1−ρ
2)(y−K)+ = H(s, y) ≤ H(t, y) ≤ e−γ(1−ρ2)(y−K)+ .

Hence, the employee should also exercise at (t, y).

4.3 Effects of Parameters on the Employee’s Exercise Policy

Let us first study the effect of job termination risk. Figure 2 (left) shows that higher job
termination risk leads to a lower exercise boundary. In other words, the risk of job termination
induces the employee to adopt a more conservative exercising strategy.

Proposition 4 Let λ1, λ2 be the job termination rates such that λ2 ≥ λ1. Then, the utility-
maximizing boundary associated with λ1 dominates that with λ2.

Proof. First, the indifference price satisfies the variational inequality:

min
{
−pt−L̃ p+rp+

1
2
γ(1−ρ2)η2y2er(T−t)p2

y +
λ

γ

(
b(t, y)eγpe

r(T−t) − 1
)
, p− (y−K)+

}
= 0.

(25)
Let p1(t, y) and p2(t, y) be the indifference prices associated with λ1 and λ2 respectively.
Since the coefficient of λ is non-negative, the left-hand side is non-decreasing with λ. Then,
substituting p2(t, y) into the variational inequality for p1(t, y) will render the left-hand side
less than or equal to zero. Therefore, p2(t, y) is a subsolution to the variational inequality
for p1(t, y), so p2(t, y) ≤ p1(t, y). We conclude from (23) that the optimal exercise time
corresponding to λ1 is longer than or equal to that corresponding to λ2, which implies that
the utility-maximizing boundary corresponding to λ1 dominates that corresponding to λ2.

Empirical studies on ESOs by Hemmer et al. (1996), Huddart and Lang (1996), and
Marquardt (2002) show that most ESO holders exercise well before the options expire. Our
model allows us to rationalize this phenomenon. First, Figure 2 illustrates that early exercise
is optimal for a risk-averse employee. Also, by Proposition 4, the risk of job termination
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induces the employee to lower his exercise boundary, leading to even earlier exercise. In other
words, even if the job termination does not happen before maturity, the employee still lowers
his exercise boundary due to the risk of job termination. Lastly, when job termination actually
happens prior to maturity, then the employee is forced to give up or exercise the ESO. All
these contribute to the early exercise phenomenon.

In our numerical example depicted in Figure 2 (right), the employee’s exercise boundary
shifts downward as risk aversion increases. Heuristically, a higher risk aversion implies a
greater tendency to lock in sure profit now, rather than waiting for a higher but uncertain
return in the future. This means that a more risk-averse holder would exercise the option at
a lower critical price. Therefore, we have

Proposition 5 The indifference price is non-increasing with risk aversion. The utility-maximizing
boundary of a less risk-averse ESO holder dominates that of a more risk-averse ESO holder.

Proof. We consider the variational inequality in the previous proposition. The p2
y term is

non-decreasing with γ. Differentiating the nonlinear term with respect to γ, we get

λ

γ2

{
1 + φ(t, y)eφ(t,y) − eφ(t,y)

}
≥ 0 ,

with φ(t, y) := γ(p(t, y) − (y − K)+)er(T−t) ≥ 0. Hence, the nonlinear term is also non-
decreasing with γ. By comparison principle, this implies the indifference price p is non-
increasing with γ. The second assertion follows from the characterization of the optimal
exercise time (see (23)).

In the ESO valuation models proposed by Hull and White (2004), and Cvitanic et al.
(2004), the employee’s exercise boundary is exogenously specified and does not change with
the dividend rate, drift, and volatility of the company stock. Empirical studies have shown
that these parameters influence the employee’s exercise behavior. For example, Bettis et al.
(2005) point out that ESOs are exercised earlier in firms with higher dividend yields. This
is reasonable because a higher dividend rate entices the employee to own the company stock
share and receive the dividend. In our model, the employee’s exercise policy is consistent with
this empirical result. We summarize our results in the following propositions, and illustrate
them in Figures 3-4.

Proposition 6 The ESO holder’s utility-maximizing boundary shifts upward as the dividend
rate q decreases, or as the firm’s average growth rate ν increases.

Proof. Again, we consider the variational inequality (25) , and notice that q and ν only
appears in the term −(ν − q − ρµ−rσ η)ypy. One can deduce from (5) that the value function
V is non-decreasing with y, so by equation (20) p is also non-decreasing with y, so py ≥ 0.
Therefore, the term −(ν − q− ρµ−rσ η)ypy is non-decreasing with q and non-increasing with ν.
By comparison principle, we conclude that the indifference price is non-increasing with q and
non-decreasing with ν. Then, the proposition follows from (23).
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Remark 7 Standard option pricing theory shows that an American call value increases with
respect to volatility. By examining the variational inequality (25), we notice that the indif-
ference price p is not monotonically increasing with respect to η. Therefore, we expect non-
monotonicity of the utility-maximizing boundary with respect to η. We illustrate this in Figure
4 (right). As volatility rises, the exercise boundary tends to fall first and then rise slightly.
This is also observed by Henderson (2006) and Carpenter (2005).

Now suppose the employee can choose between two hedging instruments with correlations
being, respectively, ρ and −ρ, and both have the same positive Sharpe ratio. Then, which one
should the employee use to hedge? Heuristically, if the employee hedges with the ESO with
a positively (resp. negatively) correlated asset with a positive Sharpe ratio, then he needs to
short (resp. long) the asset. But a short position is less favorable than a long position to a
risk-averse investor, so the negatively correlated asset should be preferred.

Proposition 8 Assume α := µ−r
σ > 0. Fix any number ρ ∈ (0, 1). Denote by p+ and p− the

indifference prices corresponding to ρ and −ρ respectively. Then, we have p− ≥ p+. Moreover,
the utility-maximizing boundary corresponding to −ρ dominates that corresponding to ρ.

Proof. We consider the variational inequality (25). Since α > 0 and py ≥ 0, the py term
is non-decreasing in ρ. Therefore, p+ is a subsolution to the variational inequality for p−, so
p+ ≤ p−. The last statement in the proposition follows from (23) and that p− ≥ p+.

Remark 9 Following from the preceding proof, if α < 0, then the opposite happens. In the
case of zero Sharpe ratio (α = 0), we have p+ = p−, and the two exercise boundaries coincide.
If α = ρ = 0, then the employee does not trade in the market index. In this special case, the
employee will exercise early even if the firm’s stock pays no dividends (see Huddart (1994) and
Villeneuve (1999)).

When the hedging instrument has a positive Sharpe ratio, the employee would prefer a
negative correlation than a positive one. As the correlation becomes even more negative, the
employee can hedge more risk away. Consequently, the employee’s indifference price increases
and he tends to wait longer before exercise. As a result, the utility-maximizing boundary
should move upward. This is illustrated in Figure 4 (left), and proved in the following propo-
sition.

Proposition 10 Assume α := µ−r
σ > 0. Then, the indifference price is non-increasing with

respect to ρ, for ρ ≤ 0. Moreover, the utility-maximizing boundary moves upward with as ρ
decreases from 0 to −1.

Proof. From variational inequality (25), we collect the terms with ρ and define g(ρ, y, py) :=
αρηypy − 1

2γη
2y2er(T−t)p2

yρ
2. The function g is quadratic in ρ and is non-decreasing for

ρ ≤ α
γηypyer(T−t)

. Since α
γηypyer(T−t)

is positive, when ρ ≤ 0, the left-side of the above vari-
ational inequality is non-decreasing with ρ. Then, by comparison principle, more negative
correlation leads to higher indifference price. The last assertion follows from (23).
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4.4 Numerical Solution

To obtain the employee’s exercise boundaries, we numerically solve (12) – (13). Our numerical
method utilizes the backward Euler finite-difference stencil on a uniform grid. The constraint
H ≤ κ is enforced by the projected successive-over-relaxation (PSOR) algorithm, which it-
eratively solves the implicit time-stepping equations, while preserving the constraint between
iterations. Similar numerical schemes can be found in Wilmott et al. (1995).

For computational implementation, we restrict the domain [0, T ]× R+ to a finite domain
D = {(t, y) : 0 ≤ t ≤ T, 0 ≤ y ≤ R}, where R is sufficiently large to preserve the accuracy of
the numerical solutions. Then, we introduce a uniform grid on D with nodes {(tk, yj) : k =
0, 1, ..., N ; j = 0, 1, ...,M}, with ∆t = T/N , and ∆y = R/M being the grid spacings. Next,
we apply discrete approximations Hk

j ≈ H(tk, yj) where tk = k∆t, and yj = j∆y.
We discretize the PDI (12). We approximate the y-derivatives by central differences

∂H

∂y
(tk, yj) ≈

Hk
j+1 −Hk

j−1

2∆y
,

∂2H

∂y2
(tk, yj) ≈

Hk
j+1 − 2Hk

j +Hk
j−1

∆y2
, (26)

and the t-derivative by the backward Euler scheme

∂H

∂t
(tk, yj) ≈

Hk+1
j −Hk

j

∆t
. (27)

Furthermore, we use the explicit approximation for the reaction-diffusion term

−λ (1− ρ2)H + λ(1− ρ2)b(t, y)H−ρ̂ ≈ −λ (1− ρ2)Hk+1
j + fk+1

j (Hk+1
j )−ρ̂,

where fk+1
j = λ(1 − ρ2)b(tk+1, yj). We refer interested readers to Glowinski (1984) for a

detailed account on numerical methods for nonlinear variational inequalities. With these
approximations, we solve the discretized version of (12)-(13) backward in time using PSOR
algorithm, and locate the free boundary at tk, y?(tk), by comparing the values of Hk

j and
κ(tk, yj). The numerically-estimated free boundaries are shown in Figures 2 – 4.
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Figure 2: Effects of job termination risk and risk aversion: (Left) Higher job termi-
nation risk lowers the exercise boundary. (Right) As risk aversion γ increases, the employee’s
exercise boundary moves downward.
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Figure 3: Effects of dividend rate and drift: (Left) The employee’s exercise boundary
exists even when the dividend rate is zero. It shifts downward as dividend rate, q, increases
(from top to bottom, q = 0%, 2%, 3%, 5%). (Right) The employee’s exercise boundary is also
monotone with respect to the stock’s drift (from top to bottom, ν = 15%, 10%, 5%, 0%).
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Figure 4: Effects of correlations and volatilities: (Left) When the market index (partial
spanning asset) has a positive Sharpe ratio of 10%, the ESO holder’s exercise boundary moves
upward as the correlation becomes more negative. (Right) The employee’s exercise boundary
moves downward when stock volatility increases from 20% to 40%. When the volatility is
raised to 60%, it moves upwards again. This shows that the employee’s exercise boundary is
not monotone with respect to the stock volatility.

5 Analysis of the ESO Cost

With reference to the definitions (7) and (8), we now present the PDE formulations for the
costs of a vested and an unvested ESO. Suppose the firm imposes a vesting period of tv years,
and denote y?(t) as the employee’s exercise boundary. The holder does not exercise in the
regions C = { (t, y) : tv ≤ t < T, 0 ≤ y < y?(t) } and V = { (t, y) : 0 ≤ t < tv, 0 ≤ y }. The
cost of an unvested ESO, C(t, y), satisfies the inhomogeneous PDE

Ct +
η2

2
y2Cyy + (r − q)yCy − (r + λ)C + λ(y −K)+ = 0 , (28)

for (t, y) ∈ C, and the boundary conditions

C(t, 0) = 0, tv ≤ t ≤ T,
C(t, y?(t)) = (y?(t)−K)+, tv ≤ t < T,

C(T, y) = (y −K)+, 0 ≤ y ≤ y?(T ).
(29)

The inhomogeneous term, λ(y −K)+ captures the effect that the ESO may be exercised due
to job termination with a probability λdt over an infinitesimal period dt3. Next, the cost of
an unvested ESO, C̃(t, y), satisfies the homogeneous PDE

C̃t +
η2

2
y2C̃yy + (r − q)yC̃y − (r + λ)C̃ = 0 , (30)

3See, for example, Carr and Linetsky (2000), for a similar application
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for (t, y) ∈ V, and the boundary conditions

C̃(t, 0) = 0 , 0 ≤ t ≤ tv ,
C̃(tv, y) = C(tv, y) , y ≥ 0 .

(31)

Given the boundary curve y?(t), we solve these two PDE problems numerically using the
implicit finite-difference methods computed in Section 4.4.

In the following subsections, we study the effects of risk aversion, vesting, and job termi-
nation risk on the cost of an ESO, and compare our results with other models.

5.1 Effects of Vesting, Risk Aversion, and Job Termination Risk

We first analyze the effects of vesting and risk aversion in the absence of job termination risk.
Recall that the risk-averse holder’s optimal exercise boundary in general does not maximize
the expected discounted payoff of the ESO. From the firm’s perspective, the employee’s risk-
averse attitude means that the ESO costs less than the no-arbitrage price of the corresponding
American call. If the risk aversion is small, then the ESO cost would be between the values of
an American call and a European call on the company stock with the same strike and maturity.
However, as the employee becomes more risk averse, his utility-maximizing boundary shifts
downward, getting further away from the price-maximizing boundary. Consequently, the cost
of the ESO decreases as risk aversion increases. If the ESO holder is sufficiently risk-averse,
the cost of the ESO to the firm could be even lower than a European call on the company
stock with the same strike and maturity.

If the firm imposes vesting on the ESO, then any exercise before the end of the vesting
period is prevented. Effectively, the pre-vesting part of the employee’s utility-maximizing
boundary is lifted to infinity. Since vesting imposes discipline on the employee which restrains
the employee’s risk-averse behavior, it could increase the expected discounted payoff, implying
a higher cost to the firm (see Figure 5). We can prove this for the case of no dividend and no
job termination risk.

Proposition 11 If λ = q = 0, then the ESO cost is non-decreasing with respect to the length
of the vesting period. Moreover, this cost is dominated by the Black-Scholes price of the
European call option written on company stock with the same strike and maturity.

Proof. Let 0 < a < b < T . Denote by τ?a and τ?b the employee’s exercise time when the vesting
periods are a and b years respectively. Then, we have τ?a ≤ τ?b ≤ T . Since the discounted
payoff process {e−rs(Ys −K)+}s≥0 is a Q-submartingale (see Karatzas and Shreve (1998)), it
follows from Optional Stopping Theorem that

EQ
t,y

{
e−r(τ

?
a−t)(Yτ?a −K)+

}
≤ EQ

t,y

{
e−r(τ

?
b−t)(Yτ?b −K)+

}
≤ EQ

t,y

{
e−r(T−t)(YT −K)+

}
.

From this, we can conclude that the granting cost is non-decreasing with vesting, and is dom-
inated by the price of the corresponding European call.
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The consideration of the employee’s risk aversion gives us an important insight to the cost
structure of ESOs to the firm – vesting may involve additional cost. While the firm may be
able to maintain the incentive effect of the ESOs and impose discipline on ESO exercises, they
may also have to pay for these benefits. This is not reflected by ESO valuation models that
assume risk-neutrality of the employee. If the employee were to hedge perfectly and thus were
risk-neutral, then the ESO cost would certainly decrease with vesting.

When the risk of job termination is present, the employee adopts a more conservative
exercising strategy. Moreover, it potentially shortens the life of an ESO, resulting in either
forfeiture of the option or early suboptimal exercise. Therefore, in general, higher job ter-
mination risk should reduce the ESO cost (see Figure 6). The next proposition proves this
for the case of zero dividend rate. On the other hand, as the vesting period lengthens, the
employee becomes more likely to depart before vesting ends. As illustrated in Figure 6, vesting
significantly reduces the ESO cost to the firm.

Proposition 12 Assume q = 0. A higher job termination risk decreases the cost of both
vested and unvested ESOs.

Proof. We first consider the value of a vested ESO. Define the operator L 1 such that

L 1C(t, y) = Ct + (r − q)yCy +
η2

2
y2Cyy − (r + λ)C + λ(y −K)+ . (32)

Let λ1, λ2 be the job termination rates such that λ2 ≥ λ1 ≥ 0. Let Ci(t, y) and τ?i be the cost
of a vested ESO and optimal exercise time corresponding to λi, for i = 1, 2 . By PDE (28),
we have L 1C1 = 0. Due to the Q-submartingale property of the process {e−rs(Ys−K)+}s≥0,
we have Ci(t, y) ≥ (y −K)+. Consequently, direct substitution shows that L 1C2 ≥ 0 .

Next, we apply Itô’s formula to the function

V (t, Yt) = e(r+λ1)tC2(t, Yt) +
∫ t

0
e−(r+λ1)sλ1(Ys −K)+ ds. (33)

Then, due to L 1C2 ≥ 0 and the Optional Sampling Theorem, the following holds for any
τ ≥ t :

EQ
t,y{V (τ, Yτ )} ≥ V (t, y).

In particular, we take τ = τ?2 ≤ τ?1 , then we get

C2(t, y) ≤ EQ
t,y

{
e−(r+λ1)(τ?2−t)C2(τ?2 , Yτ?2 ) +

∫ τ?2

t
e−(r+λ1)(s−t)λ1(Ys −K)+ ds

}
= EQ

t,y

{
e−r(τ

?
2∧τλ1−t)(Yτ?2∧τλ1 −K)+

}
≤ EQ

t,y

{
e−r(τ

?
1∧τλ1−t)(Yτ?1∧τλ1 −K)+

}
= C1(t, y) .

(34)

Hence, the job termination risk reduces the cost of a vested ESO. As for unvested ESOs,
we notice that the job termination risk reduces the terminal values of an unvested ESO and
increases the probability of forfeiture during the vesting period. Therefore, the job termination
risk reduces the value of an unvested ESO.
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Figure 5: Effect of vesting: The marker “BSEC” represents the no-arbitrage price of a
European call with the same strike and maturity as the ESO. In the absence of job termination
risk, the cost of an ESO held by a very risk-averse employee increases (from close to BSEC)
with respect to vesting. In the low risk aversion case, the cost decreases with vesting but stays
above BSEC.
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Figure 6: Effect of job termination risk: The ESO cost decreases significantly as the job
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increasing likelihood of forfeiture.
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5.2 Comparison with Other Models

We compare our model with the ones proposed by Henderson (2006) and Grasselli (2005). In
Henderson (2006), the interest rate is assumed to be zero. As shown in Figure 7, interest rate
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Figure 7: Effect of interest rate: As interest rate increases from 0% to 6%, the cost of the
ESO doubles.

has a significant bearing on the ESO cost to the firm, so the assumption of zero interest rate is
not benign for valuation of ESOs which are long-dated, as is usual. Moreover, the Henderson
(2006) model also assumes that the ESO is perpetual. Consequently, the employee’s exercise
boundary is flat and tends to be very high (see Figure 8). In fact, her model concludes that
the ESO holder will never exercise in the case of ν−qη ≥

µ
σρ+ η

2 (which is equivalent to the drift
of log Yt, with r = 0, being non-negative under the minimal entropy martingale measure).

Taking into account positive interest rate and finite maturity, but not job termination risk,
Grasselli (2005) obtains a lower cost. Our model incorporates the risk of job termination and
vesting, which further reduce the ESO cost. The following table shows the different ESO costs
under the parameter values given in Figure 8. The first entry is the Black-Scholes price of a
ten-year European option, which in this case of no dividend is equal to the American price.
The next two entries are from Henderson (2006) and Grasselli (2005) models specialized to
just one option. The last two entries add job termination risk and then vesting.

Black-Scholes Henderson Grasselli +λ = 0.1 +3-yr vesting
4.879 4.510 3.412 2.597 2.491

We observe that risk-aversion lowers the cost by about 8% in the perpetual approximation, or
by about 30% when we retain finite maturity, but then job termination risk reduces the cost
by a further 17% of the Black-Scholes value, and vesting by yet another 2% in this example.
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Figure 8: Comparing exercise boundaries: The model by Henderson (2006) gives a high
flat exercise boundary. Grasselli (2005) corresponds to the middle boundary. The bottom
boundary from our model accounts for the presence of job termination risk. The parameter
values are chosen so that the exercise boundary by Henderson (2006) is finite.

Remark 13 Our formulation can easily be adapted to the case where the job termination
time τλ is a non-predictable stopping time with a stochastic intensity process. We can define
the intensity process {λt}t≥0 by λt = λ(Yt) where λ(·) is a bounded continuous non-negative
function of the firm’s stock price Y . In that case, we replace λ with λ(y) in our variational
inequalities, PDEs, and numerical scheme. However, the estimation of the function λ(·) is
significantly more difficult than that of a constant parameter. We have implemented the nu-
merical solution with a variety of intensity functions, including that λ(y) is decreasing with y.
It seems that such generalization does not bring much additional insight to the exercise policy
and other features discussed in this section.

6 Valuation Model With Multiple Exercises

We extend the model to the case in which the employee is granted multiple ESOs which may be
exercised separately. In particular, we are interested in characterizing the employee’s optimal
exercise strategy. As before, it is sufficient to consider the employee’s investment problem
with no vesting, and then re-introduce the vesting period when we calculate the cost to the
firm.
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6.1 Formulation

The Employee’s Investment Problem

We follow our formulation in Section 3. The only difference is that, at time t ∈ [0, T ], the
employee is granted n American-styled ESOs with the same strike and maturity. The employee
is risk-averse, subject to employment termination risk, and constrained as in Section 3. He
needs to decide the exercise policies for his options. Let us denote by τi the exercise time when
i options remain unexercised. Then, τn is the first exercise time, and τ1 is the last one. If we
keep track of the number of options exercised, then τn−i is the exercise time of the (i + 1)th
option. We require that τi ∈ Tt,T , and clearly, we have τn ≤ · · · ≤ τ1. If the employee exercises
multiple options at the same time, then some exercise times may coincide.

Throughout the period [t, T ], the employee dynamically invests his wealth, using admissible
strategies θ ∈ Zt,T , in the bank account and the market index. Hence, his trading wealth
follows (3). At every discretionary exercise time, τi, the employee invests the option payoff into
his trading portfolio. However, at the job termination time τλ, he must exercise all remaining
options. After exiting from the firm, the employee is assumed to invest the contract proceeds
into his trading portfolio and continue trading till time T . Given that the employee has not
departed the firm and holds i ≥ 2 unexercised options at time t, his value function is given by

V (i)(t, x, y) = sup
t≤τi≤T

sup
Zt,τi

Et,x,y
{
V (i−1)

(
τi, Xτi + (Yτi −K)+, Yτi

)
· 1{τi<τλ}

+M
(
τλ, Xτλ + i (Yτλ −K)+

)
· 1{τi≥τλ}

}
,

with V (1) = V in (5) and V (0) = M in (4). The second term inside the expectation means
that, if the job termination arrives before his next exercise time, the employee must exercise
or forgo all i options and invest the proceeds, if any, into the market index and the bank
account. Otherwise, as the first term reveals, the employee will exercise his next option at the
optimal exercise time, and faces the investment problem again with i− 1 unexercised options.

The Free Boundary Problem

The value function V (i) solves the variational inequality

λ
(
M
(
t, x+ i(y −K)+

)
− V (i)

)
+ V

(i)
t + sup

θ
LV (i) ≤ 0 , (35)

V (i)(t, x, y) ≥ V (i−1)(t, x+ (y −K)+, y) ,(
λ
(
M
(
t, x+ i(y −K)+

)
− V (i)

)
+ V

(i)
t + sup

θ
LV (i)

)
·
(
V (i−1)

(
t, x+ (y −K)+, y

)
− V (i)(t, x, y)

)
= 0 ,

(36)

(t, x, y) ∈ [0, T )× R× (0,+∞), with boundary conditions

V (i)(T, x, y) = −e−γ(x+i(y−K)+) ,

V (i)(t, x, 0) = −e−γxer(T−t)e−
(µ−r)2

2σ2 (T−t) .
(37)
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Next, we simplify the above variational inequalities by applying the transformation

V (i)(t, x, y) = M(t, x) ·H(i)(t, y)
1

(1−ρ2) (38)

so that H(i) satisfies

H
(i)
t + L̃H(i) − (1− ρ2)λH(i) + (1− ρ2)λb(t, y)i(H(i))−ρ̂ ≥ 0 , (39)

H(i) ≤ κ(t, y)H(i−1) ,(
H

(i)
t + L̃H(i) − (1− ρ2)λH(i) + (1− ρ2)λb(t, y)i(H(i))−ρ̂

)
·
(
κ(t, y)H(i−1) −H(i)

)
= 0 ,

for (t, y) ∈ [0, T ]× [0,+∞). The boundary conditions are

H(i)(T, y) = e−γ(1−ρ
2)i(y−K)+ ,

H(i)(t, 0) = 1.
(40)

Associated with each H(i), there is free boundary, denoted by y?i : [0, T ] 7→ R+ , such that

y?i (t) := inf
{
y ≥ 0 : H(i)(t, y) = κ(t, y)H(i−1)(t, y)

}
, for t ∈ [0, T ].

The boundary y?i represents the employee’s optimal exercise boundary for the next option
when i options remain unexercised. In Section 4, we have solved the problem and obtained
H(i) for the case i = 1. Given we know H(1), we use our numerical method discussed in
Section 4.4 to solve the free boundary problem (39)–(40) for H(2). We continue this procedure
to solve for all H(i), and obtain the associated free boundaries, y?i , for i = 1, . . . , n .

The Cost of Multiple Issues

Given the boundaries {y?i , i = 1, 2, . . . , n }, we can calculate the cost of the ESOs to the firm.
Following our assumptions in Section 3.2, we first consider the value of a vested ESO. For
a vesting period of tv years, the employee’s optimal exercise time when there are i options
remaining is

τ?i = inf{ t ≤ u ≤ T : Yu = y?i (u)} , t > tv , i = 1, 2, . . . , n. (41)

Define C(i)(t, y) as the cost of i vested ESOs at time t ≥ tv when the stock price is y dollars,
assuming it is still alive. It satisfies the following recursive relationship

C(i)(t, y) = EQ
t,y

{
e−r(τ

λ−t) i (Yτλ −K)+ 1{τλ≤τ?i }

+ e−r(τ
?
i −t)

[(
Yτ?i −K

)+ + C(i−1)
(
τ?i , Yτ?i

)]
1{τλ>τ?i }

}
.

(42)
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The function C(i)(t, y) satisfies the following inhomogeneous PDE

C
(i)
t +

η2

2
y2C(i)

yy + (r − q)yC(i)
y − (r + λ)C(i) + λi(y −K)+ = 0 , (43)

in the region {(t, y) : tv ≤ t ≤ T, 0 ≤ y ≤ y?i (t)}, and satisfies the boundary conditions

C(i)(t, 0) = 0, tv ≤ t ≤ T,
C(i)(t, y?i (t)) = (y?i (t)−K)+ + C(i−1)(t, y?i (t)), tv ≤ t < T,

C(i)(T, y) = i(y −K)+, 0 ≤ y ≤ y?i (T ).

(44)

To solve this system of PDEs, we apply the implicit finite-difference approximation discussed
in Section 4.4. Since we have already calculated C(1)(t, y) in Section 3, we can use it to solve
for C(2)(t, y), . . . , C(n)(t, y).

Next, we consider the unvested ESOs. Let C̃(i)(t, y) be the cost of i unvested ESOs at
time t when the stock price is y dollars, assuming it is still alive.

C̃(i)(t, y) = EQ
t,y

{
e−r(tv−t)C(i)(tv, Ytv)1{τλ>tv}

}
.

We have the following homogeneous PDE for C̃(i).

C̃
(i)
t +

η2

2
y2C̃(i)

yy + (r − q)yC̃(i)
y − (r + λ)C̃(i) = 0 (45)

in the region {(t, y) : 0 ≤ t ≤ tv, y ≥ 0}, with the boundary conditions

C̃(i)(t, 0) = 0 , 0 ≤ t ≤ tv ,
C̃(i)(tv, y) = C(i)(tv, y) , 0 ≤ y ≤ y?i (tv) . (46)

Since C(i)(tv, y) is the terminal condition for the PDE formulation for C̃(i), we must solve the
PDE problem for C(i) before C̃(i). Again, we use an implicit finite-difference method for both
PDE problems.

6.2 Characterization of the Employee’s Exercise Boundaries

Definition 14 The employee’s indifference price for holding i ≤ n ESOs with multiple exer-
cises is defined as the function p(i) ≡ p(i)(t, x, y) such that

M(t, x) = V (i)(t, x− p(i), y) .

From this, we have p(0) = 0 because V (0)(t, x, y) = M(t, x). Also, p(1) is the same as the indif-
ference price in Definition 1. Again, due to the exponential utility function, the indifference
price is a function of only t and y, and it is related to H(i) and V (i) in the following way.
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Proposition 15 The indifference price p(i) satisfies

p(i)(t, y) = − 1
γ(1− ρ2)er(T−t)

logH(i)(t, y) , (47)

and
V (i)(t, x, y) = M(t, x) · e−γp(i)(t,y)er(T−t) . (48)

Due to this proposition, we obtain a variational inequality that is equivalent to (35)–(37):

p
(i)
t + L̃ p(i) − rp(i) − 1

2
γ(1− ρ2)η2y2er(T−t)(p(i)

y )2 +
λ

γ

(
1− b(t, y)ieγp

(i)er(T−t)
)
≤ 0 ,

p(i) ≥ p(i−1) + (y −K)+ , (49)(
p
(i)
t + L̃ p(i) − rp(i) − 1

2
γ(1− ρ2)η2y2er(T−t)(p(i)

y )2 +
λ

γ

(
1− b(t, y)ieγp

(i)er(T−t)
))

·
(

(y −K)+ + p(i−1) − p(i)

)
= 0 ,

for (t, y) ∈ [0, T ]× [0,+∞). The boundary conditions are

p(i)(T, y) = i(y −K)+ ,

p(i)(t, 0) = 0 .

The employee’s optimal exercise time for the next option when there are i unexercised ESOs
can be expressed in terms of indifference prices.

τ?i = inf
{
t ≤ u ≤ T : V (i)(u,Xu, Yu) = V (i−1)(u,Xu + (Yu −K)+, Yu)

}
= inf

{
t ≤ u ≤ T : p(i)(u, Yu)− p(i−1)(u, Yu) = (Yu −K)+

}
.

(50)

To understand the meaning of this, let us define the following.

Definition 16 For a holder with i ESOs, we define w(i+1) ≡ w(i+1)(t, x, y) as the premium
that this holder is willing to pay in order to receive one extra ESO (i.e. the (i+ 1)th option).
In other words, w(i+1) satisfies

V (i+1)(t, x− w(i+1), y) = V (i)(t, x, y). (51)

From this definition, w(1) equals the employee’s indifference price for holding one ESO. The
premium can be written as the difference of two indifference prices.

Proposition 17 For t ≤ T and y ∈ R+, we have w(i)(t, y) = p(i)(t, y)− p(i−1)(t, y).
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Proof. We use Definition (51) to obtain the equality

M(t, x) = V (i)(t, x− p(i), y) = V (i−1)(t, x− p(i−1), y).

From this we have
V (i)(t, x, y) = V (i−1)(t, x+ p(i) − p(i−1), y).

Therefore, w(i) := p(i) − p(i−1) satisfies (51).

Proposition 17 implies that we can rewrite the optimal exercise time as

τ?i = inf
{
t ≤ u ≤ T : w(i)(u, Yu) = (Yu −K)+

}
,

which means that the employee holding i ESOs should exercise the next option as soon as the
payoff from immediate exercise is higher than the amount he is willing to pay for it. Under the
assumption of exponential utility, the indifference prices p(i) are wealth-independent, which
implies that the premiums w(i) and the optimal exercise time are also wealth-independent.
For a general utility function, the indifference prices, premiums, and the optimal exercise time
may all depend on wealth.

6.3 The Impact of Multiple Exercises

We first study the effect of multiple exercises on the employee’s exercise policy. In the tra-
ditional no-arbitrage pricing theory for American options, the option holder always exercises
all the options at the same time. In our model, the risk-averse employee exercises his ESOs
at different critical price levels (see Figure 9). This is because the employee’s premium for
an additional option diminishes with respect to the number of options he already owns. As a
result, the employee tends to exercise the first option very early, and the last one much later.
Similar exercise behaviors can be found in Grasselli (2005), Rogers and Scheinkman (2006)
and Henderson (2006).

In order to study the impact of multiple exercises, we compare it with the case with
simultaneous exercise constraint. This constraint allows the employee to choose only one
exercise time for all his ESOs. This is equivalent to the single issue case with the ESO payoff
multiplied by the number of options. As Figure 9 illustrates, his boundary lies somewhere in
the middle.

Finally, we examine the effect of multiple issues on the firm’s granting cost. As the num-
ber of ESOs increases, the employee tends to adopt a more conservative exercising strategy
for every additional option, which in turns results in a diminishing marginal cost. This is
depicted in Figure 10. When there is no vesting, the cost of ESOs with simultaneous exercise
constraint dominates that with multiple exercise rights (see Figure 10 (left)). This is because
the simultaneous exercise constraint prevents the employee from exercising too early, leading
to a higher expected discounted payoff.
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Figure 9: Multiple exercise boundaries: The dashed curves represent the exercise bound-
aries for an employee with 30 ESOs with multiple exercise rights. The bottom one corresponds
to the first option exercised, and the top one corresponds to the last option exercised. When
the employee is granted 30 ESOs with simultaneous exercise constraint, his exercise boundary
(solid line) lies somewhere in the middle.
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Figure 10: Effect of multiple exercises: (Left) When there is no vesting, the cost of ESOs
with simultaneous exercise constraint dominates that with multiple exercise rights. (Right)
However, when vesting is imposed, the difference in costs almost disappears.
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However, when a two-year vesting period is imposed, the costs are almost the same (see
Figure 10 (right)). In the case of multiple exercises, the majority of the employee’s exercise
boundaries are very low, so it is very likely that the company stock will be above most of
them, leading to exercises at the end of the vesting period. Similarly, in the constrained case,
the low boundary implies that the employee will probably exercise all his ESOs at the end of
the vesting period. This result is consistent with the well-known early exercise phenomenon in
ESO empirical studies. As a result, in the presence of vesting, the right of multiple exercises
has negligible influence on the firm’s granting cost.

A Existence of a Generalized Solution

In this Appendix, we investigate the existence and uniqueness of solution to the nonlinear free
boundary problem (12)-(13). The problem has a singularity as y goes to infinity, that is, when
the obstacle term κ approaches zero. To circumvent this difficulty, we alter the obstacle term
slightly

κ̂(t, y) = e−γ(1−ρ
2)(y∧L−K)+er(T−t) ,

with L < ∞. Notice κ̂ ≥ e−γ(1−ρ
2)LerT =: ε > 0. This change imposes a positive lower

bound on the obstacle, and we can choose L sufficiently large so that the error is negligible.
For practical purposes, this free boundary is numerically solved on a bounded domain, which
renders the obstacle term bounded away from zero. So far, we have seen that the employee’s
exercise boundary exists and is bounded above. In such cases, the free boundary problems
corresponding to the original obstacle κ and the altered obstacle κ̂ give the same solution if
L is chosen sufficiently large.

For any bounded function w : [0, T ] × [0,+∞) 7→ [εL, 1] (with constant εL to be specified
later), and stopping time τ ∈ Tt,T , we define

g(t, y; τ, w) := Ẽt,y
{
e−(1−ρ2)λ(τ−t)κ̂(τ, Yτ ) +

∫ τ

t
e−(1−ρ2)λ(u−t)b̃(u, Yu)w(u, Yu)−ρ̂ du

}
,

where b̃(t, y) := λ(1− ρ2)b(t, y) is bounded:

0 ≤ b̃(t, y) ≤ λ(1− ρ2) =: M <∞ .

Also, we define an operator Γ by

Γw(t, y) = inf
τ∈Tt,T

g(t, y; τ, w) . (52)

Then, Γw is also bounded in [εL, 1]. In view of (16), the generalized solution to (12) - (13) is
the function that satisfies

G(t, y) = ΓG(t, y) . (53)

Note that the solution G appears on both sides of the equation. Moreover, we observe that G
is bounded:

e−(1−ρ2)λ(T−t)e−γ(1−ρ
2)(L−K) ≤ G(t, y) ≤ κ̂(t, y) ≤ 1 ,

so we set εL = e−(1−ρ2)(λT+γ(L−K)). Next, we show that Γ is a contraction mapping and thus
has a fixed point.
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Proposition 18 The operator Γ is a contraction mapping on the space of functions bounded
in [εL, 1] with respect to the norm

||v||β := sup
(t,y)∈[0,T ]×[0,L]

e−β(T−t) |v(t, y)|

for 0 < β <∞ sufficiently large. Also, Γ has a unique fixed point.

Notice the norm || · ||β is equivalent to the supremum-norm || · ||∞. We prepare to prove
this proposition with two useful inequalities.

Lemma 19 The following inequality holds:

|Γw1 − Γw2| ≤ sup
τ∈Tt,T

|g(t, y; τ, w1)− g(t, y; τ, w2)|.

Proof. By definition (52),we have

|Γw1 − Γw2| =
∣∣∣∣ inf
τ∈Tt,T

g(t, y; τ, w1)− inf
τ∈Tt,T

g(t, y; τ, w2)
∣∣∣∣

≤ sup
τ∈Tt,T

| g(t, y; τ, w1)− g(t, y; τ, w2) | .

Another useful inequality is that, for a, c > 1, ρ̂ ∈ [1,∞), we have |a−ρ̂ − c−ρ̂| ≤ |a − c|.
Now, we can prove the proposition.
Proof. Let w1 and w2 be two functions bounded in [εL, 1]. We obtain

e−β(T−t)|Γw1 − Γw2|

≤ e−β(T−t) sup
τ∈Tt,T

∣∣∣∣Et,y{∫ τ

t
b̃(s, Ys)

(
w1(s, Ys)−ρ̂ − w2(s, Ys)−ρ̂

)
ds

} ∣∣∣∣
≤ e−β(T−t) sup

τ∈Tt,T
Et,y

{∫ τ

t
b̃(s, Ys)ε

−ρ̂
L

∣∣∣∣(w1(s, Ys)
εL

)−ρ̂
−
(
w2(s, Ys)

εL

)−ρ̂∣∣∣∣ ds}
≤ e−β(T−t) sup

τ∈Tt,T
Et,y

{∫ τ

t
b̃(s, Ys)ε

−ρ̂
L

∣∣∣∣w1(s, Ys)
εL

− w2(s, Ys)
εL

∣∣∣∣ ds}
≤ e−β(T−t)Mε−ρ̂−1

L ||w1 − w2||β sup
τ∈Tt,T

Et,y
{∫ τ

t
eβ(T−s) ds

}

≤
Mε
− 1

1−ρ2
L

β
||w1 − w2||β

If we choose β > Mε
− 1

1−ρ2
L , then Γ is a contraction mapping with respect to the norm || · ||β.

Consequently, Γ has a unique fixed point.
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In conclusion, the problem (12)-(13) has a unique generalized solution. In particular, the
generalized solution can be approximated by the sequence {Gn}n≥0, starting with

G0(t, y) := inf
τ∈Tt,T

Ẽt,y
{
e−(1−ρ2)λ(τ−t)κ̂(τ, Yτ )

}
,

and the rest defined via Gn+1(t, y) = ΓGn(t, y), for n ≥ 0. Then, every member of the sequence
is bounded below by εL, and the contraction mapping property of Γ will ensure convergence
to the solution.
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