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Abstract

In this paper, we present an intensity-based common factor model that is used to analyze the
valuation of common systematic risks in multi-name credit and equity markets. In particular,
we use a hybrid intensity model to price single-name credit instruments such as credit default
swaps (CDSs), multi-name credit derivatives such as collateralized debt obligations (CDOs),
and equity index options such as calls and puts on the S&P 500.

Once we have the expressions for the model prices of these instruments, we then calibrate
the model parameters to fit the market data. We study two problems, the “forward” and
“backward” problems: in the former, we start from equity index options and then compute the
CDO tranche spreads, while in the latter, we fit the parameters to the CDO tranche spreads
and then compute the equity index option prices and implied volatilities. We find that, based
on our hybrid model, the systematic risks in the two markets were similar from 2004 to 2007,
while the credit market incorporated far greater systematic risk than the equity market during
the financial crisis from 2008 to 2010.

1 Introduction

In this paper, we examine the link between equity and credit markets by considering an intensity-
based model that can price both equity index options and CDOs. We employ a hybrid equity-credit
intensity model for examining and comparing the systematic risks in the two markets before and
during the financial crisis.

Recently, there have emerged structural-based hybrid models for pricing equity derivatives and
multi-name credit derivatives such as nth-to-default swaps and CDOs, which have led to empirical
contradictions that we address here. For example, Coval, Jurek, and Stafford [9] consider a one-
period structural model, based on Merton [22] and incorporated within a CAPM framework, in
order to price both index options and CDOs. The state prices are derived from options using an
analog of Breeden and Litzenberger [4] in the presence of an implied volatility smile, while the
model parameters are fitted to the 5-year CDX index spread. The authors conclude that the large
skew from out-of-the-money put options leads to the overpricing of senior tranches, and hence, the
catastrophe risk priced in the equity market is not fully accounted for in the credit market.

On the other hand, a few authors recently have argued that the equity index options market
and multi-name credit derivatives market are indeed consistent. In particular, Collin-Dufresne,
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Goldstein, and Yang [8] use Black-Cox’s dynamic structural model within CAPM to jointly price
long-dated S&P options and CDO tranches. The authors match the entire term structure of CDX
index spreads instead of just the 5-year spread in order to accurately capture information regarding
the timing of expected defaults and the specification of idiosyncratic dynamics. Finally, they
show that the pricing of CDO tranches is consistent with the pricing of equity index options, thus
contradicting the findings reported by Coval, Jurek, and Stafford [9]. In support of Collin-Dufresne,
Goldstein, and Yang [8], Luo and Carverhill [21] employ the three-factor portfolio intensity model of
Longstaff and Rajan [19], which allows for firm-specific, industry, and economywide default events,
and conclude that the CDO tranche market is well integrated with the S&P 500 index option
market. Also, Li and Zhao [18] argue that the model of Coval, Jurek, and Stafford [9], which relies
on out-of-sample analysis, is mis-specified because it is not flexible enough to even capture CDX
tranche prices in sample. In addition, Li and Zhao use a skewed-t copula model to jointly price
index options and CDO tranches, and they conclude that the CDO market is actually efficient.

In this paper, we consider a dynamic hybrid intensity-based model for valuing equity index
options and multi-name credit derivatives. In the single-name case, Carr and Wu [6] discuss a joint
equity-credit framework in which a stock has CIR stochastic volatility and jumps to default, while
the intensity of default is an affine function of the stochastic variance process and an idiosyncratic
process. In Carr and Linetsky [5], the stock price has constant elasticity of variance (CEV) and
jumps to default. Meanwhile, Bayraktar [2] and Bayraktar and Yang [3] consider a jump-to-default
model for the stock, where the intensity is a function of the volatility, which is driven by fast and
slow mean-reverting processes.

We extend this hybrid formulation to the multi-name case. We assume that the intensity is an
affine function of the stock index variance and an idiosyncratic (firm) component, following Carr
and Wu [6] but where we model the stock market index rather than an individual stock. This
modification allows us to price options on the stock index in a closed form because the index and
its variance follow the stochastic volatility with jumps in variance (SVJ-V) model. In addition,
we suppose that the market factor (i.e., the variance) and idiosyncratic processes are affine jump
diffusions (AJDs), as in Mortensen [23]. Then, in this bottom-up approach, we can analytically price
single-name credit derivatives such as CDSs and also efficiently price multi-name credit derivatives
such as CDOs using recursion and Fourier inversion. The semi-analytical valuations allow us to
calibrate our model to i) equity index options and CDSs and ii) CDOs and CDSs, and this allows
us to assess the systematic risks inherent in equity and credit markets. Finally, we compare our
results to related works such as Coval, Jurek, and Stafford [9] and Collin-Dufresne, Goldstein, and
Yang [8], and we explain how our results differ from the existing literature.

Here is an outline of this paper. In Section 2, we introduce the bottom-up intensity-based
common-factor model that we will use for pricing both credit derivatives and equity index options,
and then we discuss the CDO framework, that is, the tranche structure, the payment streams, and
the fair values. In Section 3, we follow up with the algorithms for valuing CDO tranche spreads,
CDS spreads and equity index options under our model. Section 4 describes the sources of the
market data and various market conventions. In Section 5, we assess the systematic risks in the
equity and credit markets in two ways: first, we examine the forward problem where we calibrate
our model parameters from equity index options and CDS spreads and then price CDO tranches;
secondly, we examine the backward problem where we fit the model parameters to CDO tranche
spreads and CDS spreads and then price equity index options. In Section 6, we provide empirical
results for these two problems, and then we conclude the paper in Section 7 by analyzing the
systematic risks in credit and equity markets.
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2 Stochastic Model and CDO Framework

Let (Ω,F ,P∗) be a probability space, where P
∗ is the risk-neutral probability measure reflected

by market prices of credit derivatives. We consider a CDO on a portfolio of M underlying firms,
labelled 1 to M .

2.1 Intensity-Based Common-Factor Model

For i = 1, . . . ,M , we let τi be the default time of the ith firm and we let (λi
t)t≥0 be the intensity

process of firm i. As in Mortensen [23], we suppose that λi
t has the form

λi
t = Xi

t + ciYt, (2.1)

where ci > 0 is a constant, Xi = (Xi
t)t≥0 is the idiosyncratic process for the ith firm, and Y = (Yt)t≥0

is a market factor process that is independent of the Xi but affects all of the firms. We let Xi

and Y be affine jump diffusions (AJDs) that satisfy the stochastic differential equations (SDEs)

dXi
t = κi(x̄i −Xi

t)dt + σi

√

Xi
tdW

i
t + dJ i

t , (2.2)

dYt = κY (ȳ − Yt)dt + σY

√

YtdW
Y
t + dJY

t , (2.3)

where

• W Y ,W 1, . . . ,WM are independent P
∗-Brownian motions,

• JY , J1, . . . , JM are independent compound Poisson processes under P
∗ with respective jump

intensities lY , l1, . . . , lM and exponentially distributed jump sizes with respective means ξY ,
ξ1,. . .,ξM ,

• κi, x̄i, and σi are the respective mean-reversion speed, mean-reverting level, and volatility
parameters for the process Xi,

• κY , ȳ, and σY are the respective mean-reversion speed, mean-reverting level, and volatility
parameters for the process Y , and

• the Feller condition holds for the Xi and for Y :

σ2
i ≤ 2κix̄i, σ2

Y ≤ 2κY ȳ,

so that the processes Xi and Y will stay positive almost surely.

Note that (2.1)-(2.3) is a bottom-up model for credit derivative valuation, since we model the inten-
sity for each underlying firm and then build up the loss distribution for the portfolio. Mortensen
[23] observes that due to the jump components in Xi and Y , this model is able to capture the
high correlation embedded in the senior CDO tranche spreads. Through an empirical analysis,
Feldhütter and Nielsen [15] showed that this model is able to capture both the level and the time
series dynamics of CDO tranche spreads.

In addition to the intensity process defined above, we incorporate the price process for the stock
market index (e.g., the S&P 500 index), as denoted by S = (St)t≥0. As motivated by Carr and Wu
[6], we assume that S has a stochastic variance process which is a constant multiple of the market
factor process Y :

dSt = (r − q)Stdt +
√

bY YtStdW
S
t , (2.4)
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where r is the risk-free interest rate, q is the continuous dividend yield, W S is a P
∗-Brownian

motion and bY is a positive constant. We suppose that the Brownian motions W S and W Y (from
(2.3)) are correlated via

E
∗[dW S

t · dW Y
t ] = ρ dt,

where E
∗ represents the expectation operator under P

∗. Empirical evidence suggests that the market
return process and its volatility are negatively correlated (this is termed the leverage effect); hence,
we assume that ρ < 0. In addition, there is evidence that credit spreads are positively correlated
to the market return volatilities; see, for example, Collin-Dufresne, Goldstein, and Martin [7]. We
capture this relation through the positive coefficients ci in (2.1) and bY in (2.4). The initial values
of the processes Xi, Y , and S are given, respectively, by

Xi
0 = xi

0, Y0 = y0, S0 = S̄0. (2.5)

2.2 CDO Framework

Let us describe the framework of a collateralized debt obligation (CDO) by describing the tranche
structure, the payment legs, and the fair value of the legs. For more details on the CDO framework,
see Lando [17] or Elizalde [13].

We make the assumption that the total notional is 1 unit. We let N = (Nt)t≥0 be the portfolio
loss process, that is,

Nt =

M
∑

i=1

1{τi≤t},

where τi denotes the default time of the ith firm. Usually defaults do not incur full loss of the value
of the underlying bonds, as there is some recovery. Suppose δr ∈ [0, 1) is the fraction recovered, so
that (1− δr) is the fractional loss incurred on each default, sometimes called the loss-given-default.
Then, the fractional portfolio loss is

Lt =
(1 − δr)Nt

M
. (2.6)

2.2.1 CDO Tranches

A typical CDO consists of several tranches, such as equity, mezzanine and senior. Each tranche
is characterized by an attachment (KL) and detachment (KU ) point; an investor who buys this
tranche is responsible for all losses occurring in the interval [KL,KU ]. The equity tranche is the
riskiest and requires the highest premium; the mezzanine tranches are the intermediate tranches
with medium-level risk; the senior (or super senior) tranche is of the highest credit quality and
requires the lowest premium.

Table 1 displays the attachment and detachment points for each of the 6 tranches, namely
the Equity, Mezzanine 1, Mezzanine 2, Mezzanine 3, Senior, and Super Senior tranches, for the
two standardized credit indices, the Dow Jones CDX (comprising North American companies) and
the Dow Jones iTraxx (comprising European companies). In our analysis, we focus on the CDX
tranches because the firms in the CDX appear to be more representative of the firms comprising
the S&P 500 index, on which we compute option prices.

We now define the tranche loss process, which will be used to define the payment legs.

Definition 1. For the tranche characterized by [KL,KU ], the tranche loss at time t is defined by
F (Lt), where Lt is the fractional portfolio loss at time t, given by (2.6), and the function F is
given by

F (x) = (x−KL)+ − (x−KU )+, x ∈ [0, 1].
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Table 1: Attachment (KL) and Detachment (KU ) Points for the Tranches of the Dow Jones CDX
and Dow Jones iTraxx indices.

Equity Mezz 1 Mezz 2 Mezz 3 Senior SuperSen
KL KU KL KU KL KU KL KU KL KU KL KU

CDX 0% 3% 3% 7% 7% 10% 10% 15% 15% 30% 30% 100%

iTraxx 0% 3% 3% 6% 6% 9% 9% 12% 12% 22% 22% 100%

Observe that F is equivalent to the payoff of a call spread on the loss fraction, with “strikes” given
by the attachment and detachment points.

2.2.2 Payment Legs

Each CDO tranche has two legs: the premium or fixed leg comprising an upfront payment along
with periodic payments from the protection buyer to the tranche holder (i.e., the protection seller)
on the remaining notional for the tranche; and the protection or floating leg where payments are
made by the tranche holder to the protection buyer as the losses impact the tranche. The premium
payments are made at the K regular payment dates T1, T2, . . . , TK = T , with

Tk = k∆τ, k = 1, . . . ,K, and ∆τ =
T

K
.

We make the mild assumption that insurance payouts in the protection leg are also made at the
same payment dates, covering all the losses since the previous payment date. To be precise, here
are the payment streams:

(a) For the premium leg, the tranche holder receives from the protection buyer the following:

• an upfront payment of U(KU −KL) at time 0, and

• R(Tk − Tk−1)[KU −KL − F (LTk
)] at each payment date Tk, k = 1, 2, . . . ,K,

where U is the upfront fee, R is the annualized running spread, and the amount KU −KL −
F (LTk

) is the remaining notional for the tranche at time Tk. Note that some tranches pay only
the running spread, while other tranches pay the upfront fee in addition to the running spread;
see Section 4.2 for more details.

(b) For the protection leg, the tranche holder pays the protection buyer

• F (LTk
) − F (LTk−1

) at each payment date Tk, k = 1, 2, . . . ,K.

Here, the difference F (LTk
)− F (LTk−1

) represents the loss incurred between the previous pay-
ment date Tk−1 and the current payment date Tk as it impacts the tranche that the holder is
responsible for.

2.2.3 Fair Value

Under the risk-neutral probability P
∗, the fair value of the premium leg is given by

Prem = U(KU −KL) +R
K

∑

k=1

(Tk − Tk−1)e
−rTk E

∗ [KU −KL − F (LTk
)] , (2.7)
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and the fair value of the protection leg is given by

Prot =

K
∑

k=1

e−rTk E
∗
[

F (LTk
) − F (LTk−1

)
]

. (2.8)

Once we know the fair values of the premium and protection legs, we can compute the running
spread or the upfront fee, depending on which one is given in the market.

Definition 2. (i) When the upfront fee U is given, the running spread is the number R that
equates the fair values of the two legs (2.7) and (2.8) and is hence given by

R =

∑K
k=1 e

−rTk E
∗[F (LTk

) − F (LTk−1
)] − U(KU −KL)

∑K
k=1(Tk − Tk−1)e−rTk E∗[KU −KL − F (LTk

)]
. (2.9)

(ii) On the other hand, when the running spread R is given, the upfront fee is the number U that
equates the fair values of the two legs (2.7) and (2.8) and is hence given by

U =
1

KU −KL

[

K
∑

k=1

e−rTk E
∗[F (LTk

) − F (LTk−1
)]

−R

K
∑

k=1

(Tk − Tk−1)e
−rTk E

∗[KU −KL − F (LTk
)]

]

.

(2.10)

To compute the expectations E
∗[F (LTk

)], k = 1, . . . ,K, in (2.9) and (2.10), we need to determine
the portfolio loss distribution, as explained below in Section 3.1.

3 Product Valuation

In this section, we discuss the valuation of CDOs, CDSs, and equity index options under our hybrid
intensity model.

3.1 Intensity-Based Valuation of CDOs

In this section, we describe our algorithm for valuing CDO tranches under the intensity-based
common factor model of Section 2. Recall that τi is the default time of the ith firm. Let U = (Ut)t≥0

be the integrated market factor process, defined by

Ut =

∫ t

0
Ysds, t ≥ 0,

where Y satisfies the SDE (2.3).

3.1.1 Single-Name Conditional Default Probabilities

Given the integrated market factor Ut = u, the conditional default probability for the ith firm is
equal to

pi(t|u) := P
∗{τi ≤ t | Ut = u}

= 1 − E
∗[e−

R t
0

λi
sds | Ut = u]

= 1 − e−ciuE
∗[e−

R t
0 Xi

sds] since λi
s = Xi

s + ciYs with Xi ⊥⊥ Y

= 1 − e−ciueαi(t)+βi(t)x
i
0 , (3.1)
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where the functions αi(·) and βi(·) are given explicitly by Equation (A.4) in Appendix A.1, using
q = −1 and the suitable parameters for the process Xi.

3.1.2 Conditional Loss Distribution

Let us determine the conditional loss distribution for the portfolio. As the CDO contains a hetero-
geneous pool of firms, we use the recursive algorithm suggested by Andersen, Sidenius, and Basu
[1] and employed by Mortensen [23]. With t > 0 fixed, we define Pk(m|u) as the probability of
exactly m defaults by time t among the first k entities, conditional on the integrated market factor
taking the value u. Explicitly, we have

Pk(m|u) = P
∗{Nk

t = m | Ut = u},

where Nk
t denotes the number of defaults by time t among the first k entities. For the recursion, we

start from P0(m|u) = 1{m=0}, m = 0, . . . ,M, and then we use conditional independence to obtain
the following recurrence relation, for k = 1, . . . ,M :

Pk(m|u) = Pk−1(m|u)(1 − pk(t|u)) + Pk−1(m− 1|u)pk(t|u), m = 1, . . . , k,

Pk(0|u) = Pk−1(0|u)(1 − pk(t|u)),
(3.2)

with the convention Pk(m|u) = 0 for m > k, and where pk(t|u) is given by (3.1). Finally, the
conditional loss distribution for the total portfolio, given Ut = u, is

P
∗{Nt = m | Ut = u} = P

∗{NM
t = m | Ut = u} = PM (m|u), m = 0, 1, . . . ,M. (3.3)

3.1.3 Density of Integrated Market Factor

Let us determine the density fUt of the integrated market factor Ut =
∫ t
0 Ysds by fast Fourier

transform (FFT) methods. To that end, the characteristic function of Ut is defined by

ΦUt(r) := E
∗[eirUt ] =

∫ ∞

0
eirufUt(u)du, r ∈ R, (3.4)

which is known in closed form via the solution of Riccati ODEs, as described in Appendix A.2. By
Fourier inversion, the density is given by

fUt(u) =
1

2π

∫

R

e−iurΦUt(r)dr, u > 0.

Now, for some fixed integer NU , we employ the Fourier grid points rj = (j − 1)∆r, j = 1, . . . , NU ,
and uk = (k − 1)∆u, k = 1, 2, . . . , NU , to obtain the approximation

fUt(uk) ≈
1

π

NU
∑

j=1

Re
(

e−i∆r∆u(j−1)(k−1)ΦUt(∆r(j − 1))∆r
)

.

Since the discrete Fourier transform (DFT) requires that ∆r ·∆u = 2π
NU

, we can re-write the density
as

fUt(uk) ≈
NU
∑

j=1

Re

(

e
−i 2π

NU
(j−1)(k−1) ∆r

π
ΦUt(∆r(j − 1))

)

, k = 1, . . . , NU . (3.5)

Since we are only concerned with the real part of the summation in (3.5), the approximation relies
on finding a suitable value r̄ such that Re(ΦUt(r)) ≈ 0 for r > r̄; then, from the boundary condition,
we set ∆r = r̄/(NU − 1).
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3.1.4 Portfolio Loss Distribution

The portfolio loss distribution is computed by integrating the conditional probability over the range
of the integrated market factor. In particular, we have

P
∗{Nt = k} =

∫ ∞

0
P
∗{Nt = k | U(t) = u} fUt(u)du, k = 0, . . . ,M, (3.6)

where the conditional probability P
∗{Nt = k | Ut = u} is given by (3.3) and the density fUt is given

by (3.5).

3.1.5 CDO Tranche Spread

Once we have computed the loss distribution P
∗{Nt = k}, k = 0, . . . ,M , from (3.6), we can calculate

the expected tranche loss E
∗[F (Lt)] at time t using the relation (2.6) and a simple weighted average:

E
∗[F (Lt)] =

M
∑

k=0

F

(

(1 − δr)k

M

)

P
∗{Nt = k}. (3.7)

Finally, to obtain the running spread R in (2.9) and the upfront fee U in (2.10), we substitute the
expected tranche loss (3.7) at the payment dates T1, . . . , TK . At time T0 = 0, the expected tranche
loss is simply E

∗[F (L0)] = E
∗[F (0)] = 0 since N0 = 0.

3.2 Credit Default Swap Valuation

For a brief description of a credit default swap (CDS) and its risk-neutral valuation, see Appendix B
of Mortensen [23]. For a more detailed description of CDSs, see, for example, Duffie [10].

The CDS spread is given by the value S̄i that equates the premium and protection legs and is
given by the closed-form expression

S̄i = (1 − δr)
K̄
X

k=1

e
−r(T̄k+T̄k−1)/2

h

P
∗{τi > T̄k−1} − P

∗{τi > T̄k}
i

ffi

K̄
X

k=1

 

(T̄k − T̄k−1)e
−rT̄kP

∗{τi > T̄k} +
T̄k − T̄k−1

2
e
−r(T̄k+T̄k−1)/2

h

P
∗{τi > T̄k−1} − P

∗{τi > T̄k}
i

!

,

(3.8)

where T̄ is the maturity of the CDS (with notional of one dollar), T̄1, . . . , T̄K̄ = T̄ are the payment
dates, and δr is the constant recovery rate.

3.3 Pricing of Equity Index Options

Recall that from the SDEs (2.3) and (2.4), the stock index (St) and the market factor (Yt) satisfy
the respective SDEs

dSt = (r − q)Stdt +
√

bY YtStdW
S
t ,

dYt = κY (ȳ − Yt)dt+ σY

√

YtdW
Y
t + dJY

t ,

where W S and W Y are correlated Brownian motions with E
∗[dW S

t · dW Y
t ] = ρ dt, and JY is a

compound Poisson process with jump intensity lY and exponentially distributed jump sizes with
mean ξY . Noting that Zt := bY Yt, t ≥ 0, defines the variance process for (St), we have the stochastic
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volatility with jumps in volatility (SVJ-V) model, as introduced in Section 4 of Duffie, Pan, and
Singleton [12], that is,

dSt = (r − q)Stdt+
√

ZtStdW
S
t ,

dZt = κZ(z̄ − Zt)dt + σZ

√

ZtdW
Z
t + dJZ

t ,
(3.9)

whereWZ = W Y , JZ is a compound Poisson process with intensity lZ and exponentially distributed
jump sizes with mean ξZ , and the parameters for Z are given by κZ = κY , σZ =

√
bY σY , z̄ = bY ȳ,

z0 = bY y0, lZ = lY , and ξZ = bY ξY . Hence, the variance parameters in the model are given by

χ = {κZ , σZ , z̄, z0, lZ , ξZ , ρ}. (3.10)

In the proposition below, we give the price of a call option on the stock index under the SVJ-V
model. First, we define the relevant variables for pricing. In particular, we let

β̄(τ, u) = − ā(u)(1 − e−γ(u)τ )

2γ(u) − (γ(u) + b̄(u))(1 − e−γ(u)τ )
. (3.11)

where b̄, ā, and γ are given, respectively, by

b̄(u) = σZρu− κZ ,

ā(u) = u(1 − u),

and

γ(u) =
√

b̄(u)2 + ā(u)σ2
Z .

Also, we define

ᾱ(τ, u) = α0(τ, u) − lZτ + lZ

∫ τ

0
θ(u, β̄(s, u))ds, (3.12)

where α0 is given by

α0(τ, u) = −rτ + (r − q)uτ − κZ z̄

(

γ(u) + b̄(u)

σ2
Z

τ +
2

σ2
Z

log

[

1 − γ(u) + b̄(u)

2γ(u)
(1 − e−γ(u)τ )

])

,

and θ is the transform of the jump-size distribution ν for (St, Zt):

θ(c1, c2) =

∫

R2

ec1z1+c2z2dν(z1, z2), c1, c2 ∈ C.

Remark 1. In this SVJ-V model, the first component (i.e., the stock process) does not have jumps,
while the second component (i.e., the variance process) has an exponential jump distribution with
mean ξZ. Hence, the jump-size distribution ν is identified by

dν(z1, z2) = δ0(dz1)1(0,∞)(z2)
1

ξZ
e
−

z2
ξZ dz2, z1, z2 ∈ R,

and the transform of ν is given by

θ(c1, c2) =

∫

R+

ec2z2
1

ξZ
e
−

z2
ξZ dz2 =

1

1 − c2ξZ
, when Re(c2) <

1

ξZ
.

Integrating θ(u, β̄(s, u)) with respect to s, we obtain the integral in the expression for ᾱ above:
∫ τ

0

θ(u, β̄(s, u))ds =

∫ τ

0

1

1 − β̄(s, u)ξZ
ds =

∫ τ

0

2γ(u) − (γ(u) + b̄(u))(1 − e−γ(u)s)

2γ(u) + [ξZ ā(u) − (γ(u) + b̄(u))](1 − e−γ(u)s)
ds

=
γ(u) − b̄(u)

γ(u) − b̄(u) + ξZ ā(u)
τ − 2ξZ ā(u)

γ(u)2 − (b̄(u) − ξZ ā(u))2
log

(

1 − (γ(u) + b̄(u)) − ξZ ā(u)

2γ(u)
(1 − e−γ(u)τ )

)

.
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Proposition 1. Let (St, Zt) be the stock index process and variance process satisfying the SVJ-V
model in (3.9), and let χ be the set of variance parameters (3.10). Denote ψχ as the discounted
transform of the log-state price st = log St:

ψχ(u, (s, z), t, T ) = E
∗,χ

[

e−r(T−t)eusT | st = s, Zt = z
]

.

Then, the price C at time 0 of a European call option with strike K and maturity T can be written as

C(0,K, T, (S̄0, z0), χ) = E
∗,χ

[

e−rT (ST −K)+ | S0 = S̄0, Z0 = z0
]

= G1,−1(− logK; (log S̄0, z0), T, χ) −KG0,−1(− logK; (log S̄0, z0), T, χ)
, (3.13)

where Ga,b, for a, b ∈ R, is given by

Ga,b(w; (s, z), T, χ) =
ψχ(a, (s, z), 0, T )

2
− 1

π

∫ ∞

0

Im
(

ψχ(a+ iξb, (s, z), 0, T )e−iξw
)

ξ
dξ.

Here, Im(c) denotes the imaginary part of c ∈ C, and ψχ simplifies to

ψχ(u, (s, z), t, T ) = exp
(

ᾱ(T − t, u) + us+ β̄(T − t, u)z,
)

,

with ᾱ and β̄ defined by (3.12) and (3.11), respectively. In addition, the price P of a European put
option can be obtained from the put-call parity relation,

P = C − S̄0e
−qT +Ke−rT .

Proof. Here is an outline of the proof. First, the form of C in (3.13) arises from the payoff of a
standard call option; see, for example, Heston [16]. Then, the expression of Ga,b arises from Fourier
inversion as stated in Proposition 2 (and proven in Appendix A) of Duffie, Pan, and Singleton [12].
Finally, the reduced form of ψχ is provided in Section 4 of Duffie, Pan, and Singleton [12].

4 Market Data and Conventions

In this section, we discuss the source of the market data, the CDX Series information, and the CDS
conventions and adjustments that will be used in our empirical testing of the model.

4.1 Data

Our primary data are equity index options, CDS spreads, and CDO tranche spreads. In particular,
we consider European put options on the S&P 500 index (SPX), CDS spreads based on the under-
lying firms of the CDX North American Investment Grade Index (CDX.NA.IG), and CDO tranche
spreads written on the CDX.NA.IG. We obtained the SPX option data from OptionMetrics via
Wharton Research Data Services (WRDS), and we retrieved the CDS and CDO tranche spreads
from Bloomberg.

To compare risks across equity and credit markets, it seems plausible to examine instruments
with similar maturities. However, we note that the credit instruments in the market, in general,
had longer maturities than the equity index options. In this case, we selected the SPX options with
the longest maturities of just over two years, we considered CDSs with maturities of 1 and 5 years,
and we examined CDOs with maturities of 5 years.
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4.2 CDX Series Information

In this subsection, we provide general information for the CDX.NA.IG series, which rolls over
every 6 months, on March 20 and September 20 of each year, with a possible one- or two-day
settlement lag. For Series 1 to 11, that is, up until early 2009, only the equity tranche (0-3%) paid
an upfront fee with a running spread of R = 500 bps, while the other tranches had no upfront
fee. We note, however, that these conventions changed for off-the-run (i.e., not current) series
beginning in mid-2009. In particular, as of June 20, 2009, for Series 11 and earlier, the equity (0-
3%), mezzanine 1 (3-7%), and mezzanine 2 (7-10%) tranche spreads are now quoted as upfront fees
with 500-bp coupons, while the mezzanine 3 (10-15%), senior (15-30%), and super senior (30-100%)
tranche spreads in the market are quoted as upfront fees with 100-bp coupons. For Series 12 to 14,
coinciding with the tail end of the credit crisis, we note that all of the tranches paid upfront fees
but had a lower running spread of R = 100 bps. Lastly, we note that the tranche structure was
altered for Series 15, which rolled in September 2010, and for all subsequent series. In particular,
for these newer series, the 4 tranches are 0-3%, 3-7%, 7-15%, and 15-100%, and the market spreads
are quoted as upfront fees with respective running spreads of 500 bps, 100 bps, 100 bps, and 25 bps.

In our calibration, we ignore the super senior tranche (corresponding to the 30-100% tranche for
Series 1 to 14 and the 15-100% tranche for Series 15 and beyond) of the CDO as it is very illiquid
and difficult to fit to an intensity model. Note that Mortensen [23], Papageorgiou and Sircar [24],
Collin-Dufresne, Goldstein, and Yang [8], and others also do not consider the super senior tranche.
In particular, Collin-Dufresne, Goldstein, and Yang [8] argue that calibrating market dynamics
to match the super senior tranche impacts equity state prices significantly only for moneyness
levels around 0.2 or lower (corresponding to very illiquid products); this indicates that one cannot
‘extrapolate’ the information in option prices to deduce information regarding the super senior
tranche.

4.3 CDS Conventions and Adjustments

The maturity of the credit default swaps fall on the International Monetary Market (IMM) Dates,
in particular, March 20, June 20, September 20 and December 20 of each calendar year. Thus,
for example, a ‘five-year’ contract traded any time between September 21, 2005 and December 20,
2005 would have termination date of December 20, 2010, implying that the actual maturity would
be more than 5 years.

The CDX spread is the coupon for the CDS index and is equivalent to the running spread for
the [0%, 100%] tranche of the CDX. To avoid a theoretical arbitrage, the CDX spread should equal
the average of the CDS spreads, but in practice, this is not the case; the difference is termed the
CDS-CDX basis.

Table 2 below shows the CDX spreads compared with the average CDS spreads from the market
for 15 selected dates from 2004 to 2010 that we will use for our testing. We observe that for all
of the dates since March 2008, the average CDS spreads are indeed larger than the CDX spreads
observed in the market.

To correct this basis on each date, we first scale all of the 5-year CDS spreads in the market by
a constant factor so that the average of the new 5-year spreads matches the 5-year CDX spread.
Then, we multiply the 1-year CDS spreads in the market by the same factor (i.e., the ratio of
the new 5-year CDS spreads to the old 5-year CDS spreads) in order to keep the ratios between
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Date Series CDX Avg. CDS

Aug. 23, 2004 Series 2 70 69.44

Dec. 5, 2005 Series 5 49 45.94

Oct. 31, 2006 Series 7 34 36.75

Jul. 17, 2007 Series 8 45 41.10

Mar. 14, 2008 Series 9 182 191.71

Jun. 20, 2008 Series 10 115 157.07

Oct. 16, 2008 Series 11 173 279.03

Jan. 8, 2009 Series 9 220 306.66

Apr. 8, 2009 Series 9 258 353.28

Jul. 8, 2009 Series 12 139 173.65

Sep. 8, 2009 Series 12 121 160.15

Dec. 8, 2009 Series 13 98 104.33

Mar. 8, 2010 Series 13 89 92.28

Jun. 8, 2010 Series 9 141 168.32

Sep. 8, 2010 Series 9 118 140.56

Table 2: 5-year CDX and Average 5-year CDS Spreads (bps)

the 1-year and 5-year CDS spreads unchanged. In particular, we set, for i = 1, . . . ,M ,

S̄i
new(5) = S̄i

market(5) ·
S̄CDX(5)

1
M

∑M
i=1 S̄

i
market(5)

,

S̄i
new(1) = S̄i

market(1) ·
S̄i

new(5)

S̄i
market(5)

= S̄i
market(1) ·

S̄CDX(5)
1
M

∑M
i=1 S̄

i
market(5)

.

(4.1)

We note that these adjustments are similar to those done by Feldhütter [14], who points out the
maturity mismatch between the CDO and the underlying CDS contracts and then adjusts all the
CDS spreads for a particular maturity by a constant factor such that the average CDS spread
matches the CDX level reported by Markit.

5 Assessing Systematic Risks: Forward and Backward Problems

In this section, we describe the “forward” and “backward” calibration problems, which allow us
to analyze the systematic risks inherent in credit and equity markets. First, in Section 5.1 we
consider the forward problem, in which we start from equity index options, fit the CDS spreads
and then compare the CDO tranche spreads from the model and the market. Then, in Section 5.2,
we consider the backward problem, in which we fit the model parameters to the CDO tranche
spreads and CDS spreads and then compare the equity index option volatilities from the model
and the market. Subsequently, in Section 6, we present relevant empirical results for the calibration
procedures in both the forward and backward directions.

5.1 Forward Problem: From Equity Index Options to CDO Tranche Spreads

In this section, we consider the forward problem, going from equity index options to CDO tranche
spreads. In particular, we first calibrate the market factor parameters to the S&P 500 option data.
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Then, using the market parameters as input, we calibrate the idiosyncratic parameters to the CDS
spread data. Next, using the calibrated market and idiosyncratic parameters, we compute the
CDO tranche spreads from the intensity-based model, and we compare the model spreads to the
market-observed spreads. This idea is illustrated in Figure 1 below.

Figure 1: Forward Problem: From Equity Index Options to CDO Tranche Spreads

5.1.1 Calibration of Market Factor

We wish to calibrate the market factor parameters,

χY = {κY , σY , ȳ, y0, lY , ξY , ρ, bY }, (5.1)

to the implied volatilities of S&P 500 options, as motivated by Coval, Jurek, and Stafford [9].
From Proposition 1 in Section 3.3 above, we know the analytical call price C under the SVJ-V

model and hence, we can uniquely determine the Black-Scholes implied volatility, σimp model(χY ),
for any set of market factor parameters χY . We also know the implied volatilities of the S&P 500
options from the market, say σj

imp market, j = 1 . . . , J̄ , for some integer J̄ . Then, to calibrate the
market factor parameters χY , we run an optimization scheme to minimize the sum of squared errors
(SSE),

SSE =

J̄
∑

j=1

(

σj
imp model(χY ) − σj

imp market

)2
. (5.2)

This can be implemented, for example, by using the lsqnonlin function in MATLAB.

5.1.2 Calibration of Idiosyncratic Components

For i = 1, . . . ,M , we wish to calibrate the idiosyncratic parameters,

ηi = {κi, σi, x̄i, x
i
0, li, ξi, ci}, (5.3)

to the adjusted market CDS spreads for the ith firm, where we recall that the market spreads are
adjusted according to Equation (4.1) in Section 4.3. Here is our calibration procedure for the ith

firm, i = 1, . . . ,M .
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1. We first define w̄ ∈ [0, 1] as a correlation parameter that represents the systematic share of
the intensities, and hence, 1 − w̄ represents the idiosyncratic share of the intensities. This
correlation parameter can be chosen freely; for example, we can set w̄ to be the calibrated
value from the backward problem in Section 5.2.

2. We make the following parsimonious assumptions for the idiosyncratic parameters:

κi = κY , li = lY
1 − w̄

w̄
,

ci =
w̄x̄i

(1 − w̄)ȳ
, σi =

√
ciσY , ξi = ciξY ,

where the market factor parameters κY , σY , ȳ, lY , and ξY were calibrated above in Sec-
tion 5.1.1. (As for the rest of the market factor parameters in the set χY , y0 is an input for
the CDS pricing below while ρ and bY are not used in the calibration of the idiosyncratic com-
ponents.) From these assumptions for the idiosyncratic parameters, we observe that κi and
li are fixed; ci, σi, and ξi are dependent on x̄i; and x̄i and xi

0 are to be explicitly calibrated.

3. We calibrate {x̄i, x
i
0} to the 1-year and 5-year CDS spreads from the market, while enforcing

the above conditions for the idiosyncratic parameters κi, li, ci, σi, and ξi.

We now provide more precise details of the calibration. We let S̄i,j
market and S̄i,j

model(χY , ηi) be
the respective market and model CDS spreads for maturity Tj, with T1 = 1 and T2 = 5. Here,
the model spread is computed from the closed-form expression (3.8), using the set of market
factor parameters χY and the set of idiosyncratic parameters ηi. Then, for the calibration, we
minimize the sum of squared differences between the market and model-implied CDS spreads,
that is,

2
∑

j=1

(

S̄i,j
model(χY , ηi) − S̄i,j

market

)2
.

This optimization can be implemented, for example, by using the lsqnonlin function in MAT-
LAB.

5.1.3 Market vs. Model CDO Tranche Spreads

Once we have calibrated the market factor parameters χY and the idiosyncratic parameters ηi,
for i = 1, . . . ,M , we price the CDO tranche spreads in our model by following the algorithm in
Section 3.1. Then, by comparing the model and market tranche spreads, we analyze the systematic
risks in equity and credit markets. In particular, since the model is calibrated to equity index
options, we observe that if the senior spreads in the market are larger (smaller) than those from the
model, then this indicates that the systematic risk in the credit market is greater (smaller) than
that in the equity market.

5.2 Backward Problem: From CDO Tranche Spreads to Equity Index Options

In this section, we analyze the systematic risks inherent in credit and equity markets by considering
the backward problem, going from CDO tranche spreads to equity index options. In particular, we
first calibrate the market factor and idiosyncratic parameters to both the CDO tranche spreads and
the CDS spreads from the market. Then, using the calibrated parameters, we compute the equity
index option prices from the SVJ-V model and obtain the corresponding Black-Scholes implied
volatilities. Finally, we compare the model implied volatilities to the market implied volatilities,
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and by examining the volatility skews, we measure the systematic tail risks inherent in credit and
equity markets. This idea is illustrated in Figure 2 below.

Figure 2: Backward Problem: From CDO Tranche Spreads to Equity Index Options

5.2.1 Fitting Parameters to CDO Tranches and CDS Spreads

We wish to fit the market factor parameters χY in (5.1) and the idiosyncratic parameters ηi in (5.3),
for i = 1, . . . ,M , to both the CDO tranche spreads and CDS spreads. Note that the market factor
parameters ρ and bY do not impact the pricing of the credit derivatives and hence are free to be
chosen later on. Let us explain how we calibrate the rest of the market factor parameters,

ηY := {κY , σY , ȳ, y0, lY , ξY },

along with the idiosyncratic parameters

ηi = {κi, σi, x̄i, x
i
0, li, ξi, ci}.

Due to the large number of parameters (6 + 7M) that need to be calibrated, we use a parsimo-
nious version of the model that is both practical and flexible. In particular, we follow Section 4.2
of Mortensen [23] and we minimize the deviations from the market CDO tranche spreads while
matching the individual credit curves.

5.2.2 Market vs. Model Implied Volatilities

Finally, once we have calibrated the model parameters ηY and ηi, i = 1, . . . ,M , to the CDO tranche
spreads and CDS spreads from the market, we can compare the Black-Scholes implied volatility
skews from the market to those from the fitted model.

Let us now describe our procedure. For the market, we select put options of the longest
maturity, that is, approximately two years, for the 15 selected dates shown in Table 2 in Section 4.3.
Meanwhile, for the model, we use the fitted parameters ηY from Section 5.2.1 and we choose a range
of values for the free parameters bY and ρ (in the set χY from (5.1)). We note that under this
SVJ-V model, as specified in Section 3.3, bY determines the level of the Black-Scholes implied
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volatility curve, while ρ determines the skew/smile of the curve. Hence, we select bY to match the
level of the curve, and then we vary ρ to try to match the skew. In this backward problem, we
observe that if the model skew is greater (less) than the market skew for a wide range of ρ, then
this indicates that the risk in the credit market is greater (less) than that in the equity market.

6 Empirical Quantification of Systematic Risks

Here we present the empirical results for both the forward problem and the backward problem,
based on the 15 selected dates in Table 2.. Throughout this section, we use the following set of
parameters for the CDO:

M = 125; r = 0.04; δr = 0.35; T = 5; ∆τ = Tk − Tk−1 = 0.25, k = 1, . . . ,K;

and for the CDS, we suppose that T̄ ∈ {1, 5} and T̄k − T̄k−1 = 0.25, k = 1, . . . , K̄.

6.1 Forward Problem

In this section, we present the numerical results for the forward problem, starting from the equity
index options, calibrating to the CDS spreads, and comparing the values for the CDO tranche
spreads.

6.1.1 Implied Volatility

Figures 3 and 4 display the market implied volatility and the model calibrated volatility for the 15
dates above. For each date, we considered the options with maturity closest to two years.
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Figure 3: Implied Volatility, Aug. 23, 2004 to June 20, 2008
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Figure 4: Implied Volatility, Oct. 16, 2008 to Sep. 8, 2010

6.1.2 CDS Spreads

Once we have calibrated the market factor parameters, we then calibrate the idiosyncratic param-
eters ηi, i = 1, . . . ,M , to the (adjusted) market CDS spreads with maturities of 1 and 5 years,
following the procedure described in Section 5.1.2. Table 3 displays the average of the 1-year and
5-year spreads from the market and the calibrated model. We generally obtained a good fit for the
CDS spreads except for the 1-year spreads on Oct. 31, 2006 and Jul. 17, 2007, but in those cases,
the absolute differences were small.

6.1.3 CDO Tranche Spreads

Table 4 compares the 5-year CDO tranche spreads from the market (CDX.NA.IG) and the model
for various dates from Aug. 2004 to Sep. 2010. The model spreads are computed from the
intensity-based model via the algorithm in Section 3.1, using the calibrated parameters χY and ηi,
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1-yr 5-yr
Market Model Rel. Diff. Market Model Rel. Diff.

Aug. 23, 2004 24.62 25.17 2.21% 70.00 69.77 -0.33%
Dec. 5, 2005 14.22 15.53 9.18% 49.00 47.90 -2.25%
Oct. 31, 2006 8.71 11.62 33.45% 34.00 33.01 -2.92%
Jul. 17, 2007 16.93 19.14 13.00% 45.00 44.05 -2.11%
Mar. 14, 2008 138.86 135.98 -2.07% 182.00 185.33 1.83%
Jun. 20, 2008 87.52 88.57 1.20% 115.00 115.38 0.33%
Oct. 16, 2008 155.52 163.64 5.22% 173.00 166.28 -3.89%
Jan. 8, 2009 240.18 240.19 0.01% 220.00 220.02 0.01%
Apr. 8, 2009 295.37 295.54 0.06% 258.00 257.86 -0.05%
Jul. 8, 2009 131.39 131.40 0.01% 139.00 139.00 0.00%
Sep. 8, 2009 135.31 129.53 -4.27% 121.00 128.64 6.31%
Dec. 8, 2009 59.09 61.13 3.46% 98.00 96.90 -1.12%
Mar. 8, 2010 45.75 47.65 4.15% 89.00 88.12 -0.99%
Jun. 8, 2010 111.49 112.06 0.50% 141.00 140.68 -0.23%
Sep. 8, 2010 104.86 103.52 -1.28% 118.00 119.51 1.28%

Table 3: Forward Problem: Average 1-yr and 5-yr CDS Spreads (bps)

i = 1, . . . ,M , above. Here, the relative difference is defined as

Rel. Diff. =
Model −Market

|Market| ,

where we note that the absolute value in the denominator is used to indicate that the model spread
is greater than the market spread when the relative difference is positive whereas the market spread
is greater when the relative difference is negative. In terms of the outputs in the table, the tranche
spreads that are quoted in percentages (%) are upfront fees while those quoted in bps (no percent-
age signs) are running spreads; see Section 4.2 for details on the CDX series.

Table 4: 5-year CDO Tranche Spreads

Date (Series) Source 0-3% 3-7% 7-10% 10-15% 15-30%
Aug. 23, 2004 Market 40.00% 312.50 122.50 42.50 12.50
(Series 2) Model 45.84% 394.38 130.05 59.21 13.17

Rel. Diff. 14.59% 26.20% 6.16% 39.31% 5.37%

Dec. 5, 2005 Market 41.10% 117.50 32.90 15.80 7.90
(Series 5) Model 44.53% 128.84 31.37 19.63 7.24

Rel. Diff. 8.34% 9.65% -4.66% 24.24% -8.32%

Oct. 31, 2006 Market 23.66% 88.26 18.75 7.25 3.43
(Series 7) Model 23.71% 112.17 14.70 4.60 2.79

Rel. Diff. 0.19% 27.09% -21.61% -36.58% -18.53%

Jul. 17, 2007 Market 31.76% 156.36 33.95 17.23 5.59
(Series 8) Model 36.48% 151.89 13.12 4.73 4.27

Rel. Diff. 14.88% -2.86% -61.35% -72.55% -23.62%

Mar. 14, 2008 Market 67.92% 836.90 462.22 265.56 129.45
(Series 9) Model 88.60% 2,235.78 735.12 186.26 12.59

Rel. Diff. 30.44% 167.15% 59.04% -29.86% -90.27%
Continued on next page
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Table 4 – continued from previous page

Date (Series) Source 0-3% 3-7% 7-10% 10-15% 15-30%

Jun. 20, 2008 Market 51.55% 447.32 240.75 124.01 66.66
(Series 10) Model 76.67% 888.82 165.36 25.12 2.48

Rel. Diff. 48.73% 98.70% -31.31% -79.75% -96.28%

Oct. 16, 2008 Market 71.50% 1,297.00 676.67 209.34 66.50
(Series 11) Model 83.52% 1,637.50 611.51 222.54 25.03

Rel. Diff. 16.81% 26.25% -9.63% 6.30% -62.36%

Jan. 8, 2009 Market 74.91% 39.75% 811.03 446.13 111.25
(Series 9) Model 91.90% 51.08% 785.96 255.26 24.86

Rel. Diff. 22.68% 28.51% -3.09% -42.78% -77.66%

Apr. 8, 2009 Market 76.76% 45.80% 15.25% 520.21 137.00
(Series 9) Model 93.47% 58.38% 16.43% 339.31 31.12

Rel. Diff. 21.76% 27.46% 7.71% -34.77% -77.29%

Jul. 8, 2009 Market 64.00% 34.89% 16.73% 6.80% -0.83%
(Series 12) Model 88.61% 44.61% 12.94% 0.84% -4.05%

Rel. Diff. 38.45% 27.85% -22.63% -87.68% -387.63%

Sep. 8, 2009 Market 62.38% 27.31% 10.88% 5.21% -1.84%
(Series 12) Model 82.59% 28.28% 5.12% -1.59% -4.10%

Rel. Diff. 32.40% 3.56% -52.92% -130.51% -122.62%

Dec. 8, 2009 Market 53.42% 22.54% 8.57% 1.75% -2.44%
(Series 13) Model 72.47% 26.67% 7.67% 0.21% -3.85%

Rel. Diff. 35.67% 18.34% -10.48% -87.93% -57.90%

Mar. 8, 2010 Market 53.81% 19.75% 7.38% 0.88% -2.60%
(Series 13) Model 64.85% 20.74% 5.91% 0.05% -3.56%

Rel. Diff. 20.51% 5.01% -19.97% -94.69% -36.83%

Jun. 8, 2010 Market 52.95% 14.95% -1.61% 0.81% -1.48%
(Series 9) Model 72.36% 8.62% -9.14% -1.92% -2.29%

Rel. Diff. 36.65% -42.31% -467.58% -336.60% -54.89%

Sep. 8, 2010 Market 47.98% 7.23% -5.78% -0.52% -1.71%
(Series 9) Model 66.26% 2.92% -9.55% -1.97% -2.08%

Rel. Diff. 38.10% -59.57% -65.14% -279.63% -21.63%

For further examination, Figures 5 and 6 below show separate time series plots for the equity
(0-3%) and senior (15-30%) tranches (after removing the July 8, 2009 outlier). We observe that for
the dates between 2004 and 2007, the equity and senior tranche spreads in the market are similar
to those in the calibrated model. Hence, this signifies that the systematic risks in equity and credit
markets were similar up until 2007. On the other hand, for all of the newer dates since March 2008,
the equity tranche spreads observed in the market are much lower than the model spreads, while
the senior tranche spreads from the market are significantly larger than the corresponding model
spreads. In particular, the credit market accounts for larger losses impacting the senior tranches
than as predicted by the model, which is calibrated to equity index options. Hence, we find that in
this forward problem, the CDO market contained more systematic risk than was seen in the equity
index options market since 2008.
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Figure 5: Time Series of Relative Differences for Equity CDO Tranche

Figure 6: Time Series of Relative Differences for Senior CDO Tranche

6.2 Backward Problem

In this section, we present the numerical results for the backward problem, where we calibrate our
model to CDO tranche spreads and CDS spreads and then compare the implied volatilities from
equity index options.

6.2.1 Calibrating to CDO and CDS Spreads

Table 5 displays the average 1-year and 5-year CDS spreads from the market and the calibrated
model, following the calibration procedure in Section 5.2.1. Note that the market and model CDS
spreads are close in most cases, with the exception of the 1-year spreads on Oct. 31, 2006, in which
case the absolute difference is small.

In Table 6, we show the market tranche spreads and the model tranche spreads fitted to the
data for the period Aug. 2004 to Sep. 2010, following the procedure described in Section 5.2.1.
Here, RMSE stands for the root-mean square price error relative to bid/ask CDO tranche spreads
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1-yr 5-yr
Market Model Rel. Diff. Market Model Rel. Diff.

Aug. 23, 2004 24.62 25.93 5.31% 70.00 69.38 -0.88%
Dec. 5, 2005 14.22 15.03 5.67% 49.00 48.19 -1.66%
Oct. 31, 2006 8.71 11.26 29.28% 34.00 33.20 -2.37%
Jul. 17, 2007 16.93 17.57 3.77% 45.00 44.47 -1.18%
Mar. 14, 2008 138.86 150.55 8.43% 182.00 167.54 -7.95%
Jun. 20, 2008 87.52 98.47 12.52% 115.00 102.64 -10.75%
Oct. 16, 2008 155.52 167.27 7.55% 173.00 162.14 -6.28%
Jan. 8, 2009 240.18 252.93 5.31% 220.00 204.23 -7.17%
Apr. 8, 2009 295.37 309.91 4.92% 258.00 240.20 -6.90%
Jul. 8, 2009 131.39 139.20 5.94% 139.00 130.06 -6.43%
Sep. 8, 2009 135.31 146.93 8.59% 121.00 108.33 -10.47%
Dec. 8, 2009 59.09 63.22 7.00% 98.00 95.11 -2.95%
Mar. 8, 2010 45.75 49.89 9.06% 89.00 86.65 -2.64%
Jun. 8, 2010 111.49 123.77 11.01% 141.00 127.57 -9.53%
Sep. 8, 2010 104.86 112.04 6.84% 118.00 110.28 -6.54%

Table 5: Backward Problem: Average 1-yr and 5-yr CDS Spreads (bps)

and is computed according to

RMSE =

√

√

√

√

1

5

5
∑

k=1

(

Rk,model −Rk,marketmid

Rk,market ask −Rk,market bid

)2

, (6.1)

whereRk,model denotes the model CDO tranche spread for tranche k, k = 1, . . . , 5, and Rk,market mid,
Rk,market bid, Rk,market ask denote the corresponding mid, bid, and ask tranche spreads from the
market. Note that the RMSE is generally less than 10 except for one of the dates (i.e., Apr. 8,
2009) during the crisis.

Table 6: Fitting the CDO Tranche Spreads

Date (Series) Source 0-3% 3-7% 7-10% 10-15% 15-30% RMSE

Aug. 23, 2004 Market 40.00% 312.50 122.50 42.50 12.50
(Series 2) Bid-Ask 2.00% 15.00 7.00 7.00 3.00

Model 48.04% 349.62 120.25 60.36 14.96 2.43

Dec. 5, 2005 Market 41.10% 117.50 32.90 15.80 7.90
(Series 5) Bid-Ask 0.80% 6.80 5.30 3.00 1.00

Model 42.47% 112.59 30.63 21.48 8.95 1.29

Oct. 31, 2006 Market 23.66% 88.26 18.75 7.25 3.43
(Series 7) Bid-Ask 0.31% 1.25 1.11 0.64 0.97

Model 25.72% 88.44 21.54 9.64 3.91 3.60

Jul. 17, 2007 Market 31.76% 156.36 33.95 17.23 5.59
(Series 8) Bid-Ask 0.27% 1.81 1.60 1.61 1.50

Model 32.20% 157.53 35.60 17.00 5.79 0.92

Mar. 14, 2008 Market 67.92% 836.90 462.22 265.56 129.45
(Series 9) Bid-Ask 0.56% 9.21 9.07 9.11 4.97

Model 67.77% 843.35 440.26 288.30 125.56 1.63
Continued on next page
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Table 6 – continued from previous page

Date Source 0-3% 3-7% 7-10% 10-15% 15-30% RMSE

Jun. 20, 2008 Market 51.55% 447.32 240.75 124.01 66.66
(Series 10) Bid-Ask 0.78% 7.37 6.50 4.75 3.37

Model 51.92% 459.27 226.01 139.51 51.56 2.78

Oct. 16, 2008 Market 71.50% 1,297.00 676.67 209.34 66.50
(Series 11) Bid-Ask 1.50% 50.00 26.67 11.33 10.00

Model 77.84% 1,386.39 588.96 269.74 53.74 3.52

Jan. 8, 2009 Market 74.91% 39.75% 811.03 446.13 111.25
(Series 9) Bid-Ask 0.53% 0.41% 8.79 8.79 3.60

Model 77.51% 33.94% 830.44 413.34 82.60 7.84

Apr. 8, 2009 Market 76.76% 45.80% 15.25% 520.21 137.00
(Series 9) Bid-Ask 0.34% 0.42% 0.35% 5.45 1.82

Model 81.38% 37.37% 12.86% 494.26 132.64 11.51

Jul. 8, 2009 Market 64.00% 34.89% 16.73% 6.80% -0.83%
(Series 12) Bid-Ask 0.52% 0.53% 0.63% 0.48% 0.25%

Model 66.67% 29.97% 15.73% 7.61% -0.94% 4.86

Sep. 8, 2009 Market 62.38% 27.31% 10.88% 5.21% -1.84%
(Series 12) Bid-Ask 0.50% 0.50% 0.50% 0.50% 0.29%

Model 61.48% 20.77% 7.75% 1.27% -3.45% 7.83

Dec. 8, 2009 Market 53.42% 22.54% 8.57% 1.75% -2.44%
(Series 13) Bid-Ask 1.00% 0.78% 0.62% 0.50% 0.40%

Model 54.74% 19.45% 9.05% 3.88% -1.26% 2.99

Mar. 8, 2010 Market 53.81% 19.75% 7.38% 0.88% -2.60%
(Series 13) Bid-Ask 1.00% 1.00% 1.13% 0.75% 0.50%

Model 54.70% 17.92% 7.30% 2.19% -2.32% 1.22

Jun. 8, 2010 Market 52.95% 14.95% -1.61% 0.81% -1.48%
(Series 9) Bid-Ask 0.52% 0.45% 0.43% 0.28% 0.09%

Model 52.27% 8.38% -3.62% 0.96% -1.98% 7.32

Sep. 8, 2010 Market 47.98% 7.23% -5.78% -0.52% -1.71%
(Series 9) Bid-Ask 0.25% 0.25% 0.25% 0.26% 0.05%

Model 47.75% 5.25% -6.18% -1.03% -2.10% 5.10

6.2.2 Market vs. Model Implied Volatilities

Figures 7 to 9 display the implied volatility plots from the market and the model for

ρ ∈ {−0.30,−0.45,−0.60,−0.75,−0.90}.

For the dates in 2004, 2006, and 2007, we find that the market curve has similar skew to the model
curve, and for Dec. 5, 2005, the market curve actually has greater skew. Hence, this signifies that
the equity risk was equal to or greater than the credit risk up until 2007. Meanwhile, for all of the
newer dates since 2008, we find that the model curves have greater skew than the market curves,
and this indicates that the systematic risk in the credit market was greater than that in the equity
market for this recent period.
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Figure 7: Market vs. Model Implied Vols, Aug. 23, 2004 to Jul. 17, 2007
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Figure 8: Market vs. Model Implied Vols, Mar. 14, 2008 to Jul. 8, 2009
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Figure 9: Market vs. Model Implied Vols, Sep. 8, 2009 to Sep. 8, 2010
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7 Conclusions

In our hybrid multi-name equity-credit model, we analyzed the systematic risks in equity and
credit markets, and we obtained different results before and during the crisis. First, based on pre-
crisis data from 2004 to 2007, we found that the systematic risks in equity and credit markets were
similar; this result differs from Coval, Jurek, and Stafford [9] but is consistent with Collin-Dufresne,
Goldstein, and Yang [8], Luo and Carverhill [21], and Li and Zhao [18]. Meanwhile, we found that
during the financial crisis from 2008 to 2010, the credit market incorporated far greater systematic
risk than the equity market; we recall that Collin-Dufresne, Goldstein, and Yang [8] and Luo and
Carverhill [21] all concluded that the systematic risks were similar based on the crisis data up to
Sep. 2008. Let us review our results during the crisis in more detail here.

For the forward problem in Section 6.1, we find that for the dates since 2008, after fitting the
model parameters to the equity index options and CDS spreads, the junior CDO tranche spreads
from the model are much larger than those observed in the market, while the senior CDO tranche
spreads from the model are smaller than the corresponding market spreads. Hence, the credit
market accounted for larger losses impacting the senior CDO tranches than as predicted by the
model, suggesting that the credit market contained more systematic risk than was seen in the
equity market. For the backward problem in Section 6.2, we observed that for the more recent
dates since 2008, after fitting the parameters to the CDO and CDS spreads, the implied volatility
curves from the model had greater skew than those from the market. This indicates that based
on the framework of our model, the systematic risk in the credit market was greater than that in
the equity market. Combining the results from the forward and backward cases, we conclude from
our hybrid model that the systematic risk in the credit market was greater than that in the equity
market during the credit crisis from 2008 to 2010.

Finally, we provide some economic rationale for why the systematic risk in the credit market
was larger than that in the equity market during the credit crisis. First, we note that the S&P 500
index option market is more developed than the CDX market and that investors generally have
a better understanding of the systematic risks embedded in the equity market, especially during
harsh times such as crises. We speculate that investors of credit derivatives would hence be more
risk-averse and perhaps pay extra to hedge against the systematic risks in the credit market during
the crisis.

A Technical Results for an Integrated Affine Jump Diffusion

In this appendix, we give technical results for an integrated affine jump diffusion (AJD) as it relates
to the pricing of CDOs and equity index options for the model in Section 2.1. In particular, we
first give the moment generating function and then we provide the characteristic function of an
integrated AJD.

We define the integrated AJD by Ut ≡
∫ t
0 Ysds, where Y = (Yt)t≥0 is an AJD as defined in

Section 2.1. Recall that Y satisfies the SDE

dYt = κ(ȳ − Yt)dt + σ
√

YtdW
Y
t + dJt, Y0 = y0, (A.1)

where W Y is a standard P
∗-Brownian motion, and J is an independent compound Poisson process

with jump intensity l and exponentially distributed jumps with mean ξ. The Laplace transform of
the jump size distribution ν is

ψ(c) =

∫

R+

eczdν(z) =

∫

R+

ecz
1

ξ
e−

1
ξ
zdz =

1

1 − cξ
,
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for c ∈ C and Re(c) < 1/ξ.

A.1 Moment Generating Function

By Duffie, Pan, and Singleton [12], it follows that for t > 0 and q ∈ R,

E
∗
[

eqUt
]

= E
∗
[

eq
R t
0 Ysds

]

= eα(t)+β(t)y0 , (A.2)

where α(·) and β(·) solve the pair of Riccati ODEs

α′(t) = κȳβ(t) + l
ξβ(t)

1 − ξβ(t)
, β′(t) = −κβ(t) +

1

2
σ2β(t)2 + q, (A.3)

with boundary conditions α(0) = β(0) = 0. Appendix B of Duffie and Gârleanu [11] provides an
explicit solution, as follows:

α(t) = −2κȳ

σ2
log

(

c1 + d1e
−γt

c1 + d1

)

+
κȳ

c1
t+ l

(

d1/c1 − d2/c2
−γd2

)

log

(

c2 + d2e
−γt

c2 + d2

)

+ l
1 − c2
c2

t,

β(t) =
1 − e−γt

c1 + d1e−γt
,

(A.4)

where

γ =
√

κ2 − 2σ2q, c1 =
κ+ γ

2q
, c2 = 1 − ξ

c1
, d1 =

−κ+ γ

2q
, d2 =

d1 + ξ

c1
. (A.5)

Hence, the moment generating function of an integrated AJD is known in closed form.

A.2 Characteristic Function

Setting q = iv for v ∈ R in (A.2) gives an explicit formula for the characteristic function of the
integrated AJD at time t:

E
∗
[

eivUt
]

= eα(t)+β(t)y0 , (A.6)

where α(·) and β(·) solve the pair of complex-valued ODEs in (A.3). Repeating the derivation by
Duffie and Gârleanu [11] here for the complex-valued case, we arrive at the solution (A.4). In this
case, we interpret γ in (A.5) as

|γ2|1/2 exp(i arg(γ2)/2),

where for any z ∈ C, arg(z) is defined such that z = |z| exp(i arg(z)) with −π < arg(z) ≤ π.
Moreover, we take log(z) = log(|z|)+ i arg(z), although any other branch of the complex logarithm
would work as well, since the logarithm of γ shows up only in the exponent of (A.6). See Lord
and Kahl [20] for a discussion on evaluating transforms of the form (A.6) with a complex-valued
exponent.
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