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1. Introduction
A central problem in Financial Mathematics concerns portfolio optimization: how to allocate

capital in an optimal allocation between investment opportunities with differing risk characteristics.
A logical objective for maximization is the expected utility of portfolio value at a future time,
measured with respect to a stochastic model of market uncertainty and a concave increasing utility
function, whose concavity models the notion of risk-aversion. A great success in analyzing this
problem within a continuous time model driven by Brownian motion was the work of Merton [15]
in 1969, which provides one of the few explicit solutions of a Hamilton-Jacobi-Bellman (HJB) PDE
in stochastic control. In that work, the utility function U was (typically) a power function:

U(x) =
x1−γ

1− γ
, γ > 0, γ 6= 1,

where γ is known as the constant of (relative) risk aversion; and the stocks were modeled as
geometric Brownian motions which, in one-dimension, means that a stock price St evolves according
to the stochastic differential equation (SDE)

dSt
St

= µdt+ σ dWt,

where W is a standard Brownian motion, µ is a constant expected growth rate, and σ is the constant
volatility parameter. This is the same model used by Black & Scholes in their famous option pricing
analysis [5].

Since Merton’s work, there is a long line of research that relaxes some of the original assumptions
in order to make the model more realistic, for instance by making σ and/or µ themselves stochastic,
allowing for transaction costs, or incorporating the unobservability of the parameters. Here, we
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2 Filtering & Portfolio Optimization

analyze the Merton problem when the growth rate is an unobserved Gaussian process Yt, whose
level is estimated by filtering from observations of the stock price S. By incorporating a time scale
separation in the fluctuations of Y , we can make progress using singular perturbation techniques.

1.1. A Motivating Application
Consider an index portfolio consisting of future contracts in several commodities. For instance,

the S&P GSCI is comprised of 24 commodities from all commodity sectors - energy products,
industrial metals, agricultural products, livestock products, and precious metals. It is typical for
the major indices to establish weights for each commodity at the beginning of the year, and then
let the weights fluctuate throughout the year as prices change. The rollover strategies for well-
known indices vary significantly, but the criterion will depend on whether the market is in contango
(e.g. non-energy products where the yield curve tends to be upward-sloping) or if the market is in
backwardation (e.g. energy markets where the yield curve tends to be downward-sloping). Hence,
the problem is to determine an optimal rollover strategy given the state of the yield curve. We
shall consider the convenience yield (i.e. the portion of the commodity’s yield that is not due to
financing or cost of carry) to be observable only through noisy measurements from the market data.

Let Ft,T denote a future contract at time t ≤ T with maturity at time T . The yield on this
contract is

Yt,T =
1

T − t
log (Ft,T /Ft,t)

where Ft,t is the future contract expiring now and is equivalent to the ‘fair’ spot price. This quantity
embodies three elements of the market: 1) the cost of financing the position, 2) the cost of storage
3) the convenience afforded to the party with direct access to the physical good. The last of these
three points is referred to as the convenience yield. Whether or not there is a convenience yield is
not exactly determinable from the yield curve. This is because the spot price is not something that
really exists in most commodities markets. The widely-held view is that quantities such as the cost
of storage and interest rate are exogenously inserted into the commodities market, but the spot
price is a noisy estimate even in the most liquid markets (other than electricity markets). Hence,
the true yield Yt,T is latent and must be estimated - and will be particularly noisy for the contracts
with short time-to-maturity. In fact, the state of contango and backwardation are also latent. In
the presence of these latent (or unobserved) states, we say that the market has partial information.
In this paper we consider a simplified market with just one commodity, with partial information
being described by a hidden Markov model (HMM). In the most general setting we let St denote
an observable vector of the prices on several commodities portfolios, and we let Yt be a vector of
latent variables for their stochastic rates of returns. Returns on these portfolios are given by

dSit
Sit

= Y it dt+
∑
j

σij dW
i
t

where i is the vector’s index, σσT is a covariance matrix, and Wt is a (vector) Brownian motion.
To make inferences on the state of the yield curve given the history (Su)u≤t, we employ filtering

to keep track of the posterior distribution of Yt. Filtering is advantageous because it brings the
uncertainty of the yield curve into the equations for pricing and hedging, whereas uncertainty
is overlooked when we assume full information and insert a point estimator of Yt (for instance
using a moving average of past returns). A drawback of filtering is that it relies heavily on model
parameters, and spurious posteriors may occur if there is model mis-specification, as the filter might
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be ‘over-learning’. However, the presence of distinct time scales in the HMM (if there are any) can
be exploited to avoid over-learning, because the filtering and control can be approximated with
simpler formulas that rely on roughly-accurate statistical properties of the processes rather than
overly precise dynamics. Model mis-specification may still be an issue, but not as much as it would
have been if perturbation theory, particularly averaging, was not used.

1.2. Related Literature
The extensive literature on optimal investment problems is discussed in many books and survey

articles, and we mention, for instance [19, 22] and [20]. Models where stochastic volatility is driven
by multiscale observable factors were analyzed in [8, 12, 11, 9]. The full information portfolio
problem with a mean reverting drift has been studied by [23] for the complete market (perfectly
correlated) case. The portfolio with partial information has been studied in [21], with Markov chain
switching in [2], and with the effects of discrete trading in [3]. Asymptotic (nonlinear) filtering has
been addressed in [18] and in [17].

1.3. Results in this Paper
In this paper we will explore the problem of portfolio optimization in the presence of partial

observation. The unobserved drift (or commodities yield) Y is a fast mean-revering Ornstein-
Uhlenbeck process with time scale parameter 0 < ε � 1, whose posterior distribution is obtained
using a Kalman filter. The filter is then used as an input for a portfolio problem with the objective of
maximizing expected terminal utility. We quantify the small-ε asymptotic behavior of the Kalman
filter in Section 2, and calculate expansions of the optimized value function in powers of

√
ε in

Section 3. We present numerical examples in Section 4 to show how the partial information value
function compares to that in the full information case, and we also explore some ‘practical’ portfolio
strategies that are sub-optimal, but which do not require tracking the stochastic growth rate that
is moving on a fast time scale.

2. Portfolio Returns & Filtering
We work with the following model for the returns on a traded asset with price St and stochastic

growth rate Yt on a fixed finite time horizon [0, T ]:

dSt
St

= Yt dt+ σ dWt (observed),

dYt =
1

ε
(θ − Yt) dt+

β√
ε
dBt (latent/hidden), (2.1)

where W and B are Brownian motions with correlation coefficient |ρ| < 1: E{dWtdBt} = ρ dt.
The positive parameters σ, ε and β, as well as the long run mean drift level θ are considered to be
known. We denote by Lε:

Lε ,
(
∂

∂t
+

1

2
σ2s2 ∂

2

∂s2
+ ys

∂

∂s

)
+

1√
ε
σβρs

∂2

∂s∂y
+

1

ε
M,

where

M ,
1

2
β2 ∂

2

∂y2
+ (θ − y)

∂

∂y
,

so Lε is ∂
∂t plus the infinitesimal generator of the system (2.1).
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2.1. Filtering
Let (Ft) denote the filtration generated by observing S, defined by the σ-algebra Ft , σ{Su :

u ≤ t}, which is all the information available to the observer at time t ≤ T . For any square-
integrable function g : R→ R, the posterior moment is

ĝt , E{g(Yt)|Ft} ∀t ≤ T. (2.2)

This is the linear Gaussian case for filtering, which means that the Kalman-Bucy filter applies. In
particular, the conditional distribution Yt | Ft is normal:

P
(
Yt ≤ y

∣∣Ft) =
1√

2πΣε(t)

∫ y

−∞
exp

−1

2

(
v − Ŷt√

Σε(t)

)2
 dv

where we have denoted

Ŷt = E
{
Yt
∣∣Ft} (2.3)

Σε(t) = E(Yt − Ŷt)2. (2.4)

The conditioning on Ft is dropped in (2.4) because Ŷt is a Gaussian projection onto the observa-

tions (Su)u≤t, and hence the residual difference (i.e. Yt − Ŷt) is independent of the observations.
Furthermore, we define the (normalized) innovations process as

νt ,
1

σ

∫ t

0

(
dSu
Su
− Ŷudu

)
,

which turns out to be an Ft-adapted Brownian motion. It follows that Ŷt and Σε(t) are solutions
of the equations (see [6] or Chapter 3 of [1]):

dŶt =
1

ε

(
θ − Ŷt

)
dt+

(
Σε(t)

σ
+
βρ√
ε

)
dνt, (2.5)

d

dt
Σε(t) = −2

ε

(
Σε(t)− β2(1− ρ2)

2

)
− 2βρ

σ
√
ε

Σε(t)−
(

Σε(t)

σ

)2

. (2.6)

Equations (2.5) and (2.6) are the essential pieces of the Kalman-Bucy filter, but because they

constitute a conditional or marginal distribution, we refer to (Ŷt,Σ
ε(t)) as a marginal Kalman filter.

2.2. Filter Asymptotics
The posterior distribution of Yt has a convenient limit wherein a dimension reduction takes

place. As ε→ 0, Ŷt converges weakly to a normally distributed random variable and will forget the
history of the observations. This is a consequence of ergodic theory, as we explain in the remainder
of this subsection.

For simplicity, we take Σε(0) ≡ 01. The solution to (2.6) is given explicitly by

Σε(t) = −

(
1− e−td

1− α−
α+
e−td

)
α− ,

1For general Σε(0) ≥ 0, the analysis holds with the same limits as ε→ 0. Verification for general Σε(0) requires
some modification to the terms α± and d.
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where

α± =
(σ2 +

√
εβρσ)±

√
(σ2 +

√
εβρσ)2 + ε

(
βσ
√

1− ρ2
)2

ε

d =
2

ε

(1 +
√
εβρ/σ)2 + ε

(
β
√

1− ρ2

σ

)2
1/2

.

From L’Hôpital’s rule, we have

α− → −
β2(1− ρ2)

2
and α+ →∞ as ε→ 0,

so that

Σε(t)→ Σ(0) ,
β2(1− ρ2)

2
(2.7)

as ε → 0. Furthermore, we can use the right-hand side of (2.6) to determine a
√
ε expansion of

Σε(t):

Σε(t) =

(
1−
√
ε
ρβ

σ

)
Σ(0) + o(

√
ε) for t > 0. (2.8)

Notice the expansion in (2.8) has terms that do not depend on t. This is because the time dependence
of Σε(t) decays exponentially with ε, but the expansion shows us that the location of the steady
state of the solution to (2.6) has a

√
ε perturbation. This expansion will be useful later.

An immediate consequence of the limiting behavior of Σε(t) is that the solution to (2.5) con-
verges weakly,

Ŷt = e−∆t/εŶt−∆t + (1− e−∆t/ε)θ +

∫ t

t−∆t

e−(t−u)/ε

(
Σε(u)

σ
+
ρβ√
ε

)
dνu (2.9)

for an arbitrarily small but fixed constant ∆t > 0. From equation (2.9) we see that the information

from Ft−∆t is contained entirely in Ŷt−∆t, and we also see that Ŷt’s dependence on the history up

to time t−∆t is decaying at an exponential rate. Hence, Ŷt becomes independent of Ft−∆t in the
small-ε limit for any fixed ∆t > 0, which tells us that the limiting posterior of Yt does not depend
on the observations, but instead will tend toward an invariant distribution. Indeed, from equation
(2.9) we see that Ŷt has a weak limit that is normally distributed:

Ŷt ⇒ N

(
θ,
β2ρ2

2

)
as ε→ 0,

where N(a, b2) denotes a normally distributed random variable with mean a and variance b2. From
a data processing point of view, this means that there is little information lost if ε is small, in which
case the filter is still just as accurate with a short history of observations as it would have been
with a long history. We should also point out that Ŷt has an ergodic theory,

E
∣∣∣∣1t
∫ t

0

Ŷudu− θ
∣∣∣∣2 → 0 as ε→ 0,

which can be deduced by integrating equation (2.9) in t and taking the limit in ε.



6 Filtering & Portfolio Optimization

3. The Portfolio Problem with Partial Information
In the Merton problem, an investor allocates his capital dynamically over time between a risky

stock and a riskless bank account to maximize expected utility of wealth at a fixed time horizon
T < ∞. Let πt denote the dollar amount invested in the stock at time t. The value X of his
self-financing portfolio follows

dXt = πt
dSt
St

+ r(Xt − πt) dt

where r ≥ 0 is the risk-free rate, and the process (πt) is the investor’s control process adapted to Ft,
meaning he does not directly observe the drift process Y , and satisfying the admissibility condition

E
∫ T

0
π2
t dt <∞.

Given a smooth utility function U(x) on R+ satisfying the “usual” Inada conditions (see, for
instance, [13]), we define the value function,

Vε(t, x) = sup
π

E{U(XT )|{Xt = x} ∨ Ft}, (3.1)

which is the portfolio problem with partial information. Notice that (3.1) is a non-Markovian
formulation of the problem. However, the Kalman filter fully parameterizes the distribution of Yt|Ft,
and (3.1) turns out to be a Markov control problem, meaning the value function is a deterministic
function of (Xt, Ŷt). From here forward we will take r = 0, to which case the problem can be
reduced by a simple change of variable.

3.1. The HJB Equation
The value function for the full information case (i.e. when Y is observed) is based on the

operator Lε given in Section 2. For the partial information case, the control problem can be
written in its Markovian formulation as follows:

Vε(t, x) = V ε(t, x, y) , sup
π

E{U(XT )|Xt = x, Ŷt = y}.

Furthermore, if it has sufficient regularity, the value function V ε is the solution to an HJB equation,

V εt +
1

2

(
Σε(t)

σ
+
βρ√
ε

)2

V εyy+
(θ − y)

ε
V εy +max

π

{
1

2
σ2π2V εxx+π

(
yV εx +

(
Σε(t) +

σβρ√
ε

)
V εxy

)}
= 0,

(3.2)
for all t < T , and with terminal condition V ε(T, x, y) = U(x) (see for instance [19, Chapter3]).
In general, regularity results for this type of fully-nonlinear HJB PDE problem are not available.
However, our approach here is to perturb around a case for which explicit solutions with sufficient
regularity are known, that is, the case where Yt constant. In addition, for some specific terminal
conditions U(x) (such as power utility), explicit solutions are available for stochastic Yt (see [14]).

From (3.2) we see that the optimal strategy is given in feedback form by

π∗ = − yV εx
σ2V εxx

−
(

Σε(t)

σ2
+

βρ√
εσ

)
V εxy
V εxx

. (3.3)

We will see from the asymptotic expansions that we will construct in this section, that V εxy is
actually of order ε, and so π∗ in equation (3.3) has a well-defined limit as ε goes to zero. Plugging
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π∗ into (3.2) we have the the following nonlinear PDE:

V εt +
1

2

(
Σε(t)

σ

)2

V εyy +
1√
ε

βρΣε(t)

σ
V εyy +

1

ε
L0V

ε −

(
y
σV

ε
x +

(
1
σΣε(t) + βρ√

ε

)
V εxy

)2

2V εxx
= 0, (3.4)

where

L0 ,
1

2
β2ρ2 ∂

2

∂y2
+ (θ − y)

∂

∂y
. (3.5)

Classical solutions to (3.4) exist for logarithmic and power utilities (see [6, 7]), but the small ε
behavior allows us to expand the solution around a simpler constant growth rate classical Merton
problem. We expand V ε in powers of ε,

V ε = V (0) +
√
εV (1) + εV (2) + ε3/2V (3) + . . . , (3.6)

insert into (3.4), and compare powers of ε.
The order ε−1 terms lead to

L0V
(0) − ρ2β2

2

(
V

(0)
xy

)2

V
(0)
xx

= 0,

which allows us to take V (0) to be constant in y: V (0) = V (0)(t, x). Based on this choice for V (0)

and the expansion of Σε(t) in (2.8), the nonlinear term in the HJB PDE can be expanded up to
order

√
ε as(
y
σ

(
V

(0)
x +

√
εV

(1)
x

)
+
√
ε
σ Σ(0)V

(1)
xy + ρβ

(
V

(1)
xy +

√
εV

(2)
xy

))2

2V
(0)
xx

(
1−
√
ε
V

(1)
xx

V
(0)
xx

)
+ . . . ,

in which there are no terms of order ε−1/2. Therefore, there is no contribution by the nonlinear
term at order ε−1/2 and we have

L0V
(1) = 0,

and so V (1) can also be chosen to be constant in y: V (1) = V (1)(t, x).
Collecting order ε0 terms leads us to:

V
(0)
t + L0V

(2) − y2

2σ2

(
V

(0)
x

)2

V
(0)
xx

= 0. (3.7)

We now introduce some useful notation.
Definition 3.1. The risk tolerance function based on the zeroth value function is defined as

R(0)(t, x) , −V
(0)
x (t, x)

V
(0)
xx (t, x)

. (3.8)
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Also we define the operators

Dk ,
(
R(0)(t, x)

)k ∂k

∂xk
(3.9)

and the linear operator

Lt,x,y ,
∂

∂t
+

y2

2σ2
D2 +

y2

σ2
D1. (3.10)

Remark 1. In general, the value function V (0)(t, x) inherits the properties of the utility U(x),

specifically it is increasing and strictly concave in the wealth level x. The quantity −U
′′

U ′ is classically
known as the Arrow-Pratt measure of risk aversion (see for instance [10, Chapter1]). The risk
tolerance given in Definition 3.1 is simply the reciprocal of this measure using the value function
V (0).

In particular, equation (3.7) can be written as

L0V
(2) + Lt,x,yV (0) = 0, (3.11)

because we can write the nonlinear term as

−

(
V

(0)
x

)2

V
(0)
xx

=
−V (0)

x

V
(0)
xx

V (0)
x = D1V

(0) or −

(
V

(0)
x

)2

V
(0)
xx

= −

(
−V (0)

x

V
(0)
xx

)2

V (0)
xx = −D2V

(0). (3.12)

3.2. The Zero-Order Term V(0)

Let µ denote the invariant density,

µ(y) =
1√
πβ2ρ2

e−( y−θβρ )
2

, (3.13)

for which
∫
µ(y)L0g(y)dy = 0 for all g ∈ C2(R) ∩ L2(µ), and denote the average with respect to

the invariant density µ as

〈g〉 ,
∫
g(y)µ(y)dy.

The Fredholm alternative leads us to the following proposition showing that V (0) is equal to
the Merton value function with a constant Sharpe ratio:
Proposition 3.2. The zero-order term V (0) satisfies the PDE,

V
(0)
t − 1

2
λ̄2

(
V

(0)
x

)2

V
(0)
xx

= 0, for t < T , (3.14)

V (0)(T, x) = U(x), (3.15)

with the squared Sharpe ratio given by

λ̄2 =

〈
y2
〉

σ2
=
β2ρ2

2σ2
+
θ2

σ2
. (3.16)
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The solution of (3.14) and (3.15) is the Merton value function with effective Sharpe ratio
√
λ̄2.

Proof. According to the Fredholm alternative, equation (3.11) has a solution for V (0) if and
only if 〈

Lt,x,·V (0)
〉

= 0. (3.17)

Since we know V (0) is constant in y,〈
Lt,x,·V (0)

〉
= 〈Lt,x,·〉V (0) = Lt,xV (0) = 0,

where from here forward we denote

Lt,x , 〈Lt,x,·〉 =
∂

∂t
+

1

2
λ̄2D2 + λ̄2D1, (3.18)

and λ̄ is defined in (3.16). This PDE for V (0) can be re-written as (3.14) using the expressions
(3.12).

We will informally refer to V (0) as solving a nonlinear diffusion equation Lt,xV (0) = 0, and refer
to the Sharpe ratio as a diffusion coefficient: a larger Sharpe ratio clearly means the value function
V (0) diffuses faster, as can be shown easily using comparison principles for (3.14).

3.3. The First-Order Correction V(1)

From equation (3.11), we have

L0V
(2) = − (Lt,x,y − Lt,x)V (0)

= −
(
y2

σ2
− λ̄2

)(
1

2
D2 +D1

)
V (0), (3.19)

and it follows therefore that

V (2) = −φ(y)

(
1

2
D2 +D1

)
V (0) + C(t, x) (3.20)

where φ is a solution to the Poisson equation

L0φ =
y2

σ2
− λ̄2, (3.21)

and C is a constant (in y) of integration. Differentiating (3.20) with respect to x and y yields

V (2)
xy = −1

2
φ′(y)

∂

∂x


(
V

(0)
x

)2

V
(0)
xx

 and V (2)
yy = −1

2
φ′′(y)

(
V

(0)
x

)2

V
(0)
xx

,

which will be useful below.
In the nonlinear term of (3.4), collecting all the terms up to order

√
ε, gives

−1

2

( y
σ

)2

(
V

(0)
x

)2

V
(0)
xx

+
√
ε

 y

σ

 y

σ
V (1)
x − 1

2
ρβφ′(y)

∂

∂x


(
V

(0)
x

)2

V
(0)
xx


R(0) +

1

2

( y
σ

)2 (
R(0)

)2

V (1)
xx

 ,
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with C(t, x) no longer appearing. Then collecting the order
√
ε terms in (3.4) and using the

expansion for Σε(t) in (2.8), we have

L0V
(3) + V

(1)
t − βρ

σ
Σ(0)φ′′(y)

(
V

(0)
x

)2

V
(0)
xx

+

 y

σ

 y

σ
V (1)
x − 1

2
ρβφ′(y)

∂

∂x


(
V

(0)
x

)2

V
(0)
xx


R(0) +

1

2

( y
σ

)2 (
R(0)

)2

V (1)
xx

 = 0,

which can be rearranged to obtain

L0V
(3) + Lt,x,yV (1) +

βρ

σ
Σ(0)φ′′(y)D1V

(0) +
ρβy

2σ
φ′(y)D2

1V
(0) = 0. (3.22)

Applying the Fredholm alternative, the solvability condition for equation (3.22) is

Lt,xV (1) +
βρ

σ
Σ(0) 〈φ′′〉D1V

(0) +
ρβ

2σ
〈yφ′〉D2

1V
(0) = 0, (3.23)

along with the terminal condition V (1)(T, x) = 0.

3.4. Explicit Expression for V(1)

The following result is known from [4], and is used more recently in [16] and [9].
Proposition 3.3. The risk tolerance function R(0) satisfies Black’s (fast diffusion) equation:

R
(0))
t +

1

2
λ̄2
(
R(0)

)2

R(0)
xx = 0 (3.24)

R(0)(T, x) = − U
′(x)

U ′′(x)
, (3.25)

where λ̄2 is defined in (3.16).
We give the derivation for completeness in Appendix A. The following Lemma is derived and

used in [9].
Lemma 3.4. The operators Lt,x and D1 commute when operating on smooth functions.

The proof is given in [9, Lemma 2.3], and we give it again in Appendix A for completeness.
Based on Proposition 3.3 and Lemma 3.4, we have the following explicit expression for the solution
to (3.23):
Proposition 3.5. The correction term V (1) is given explicitly in terms of V (0) as

V (1)(t, x) = (T − t)
(
Aρ1D1 +Aρ2D

2
1

)
V (0), (3.26)

where Aρ1 and Aρ2 are group parameters given by

Aρ1 =
β3ρ(1− ρ2)

2σ
〈φ′′〉 Aρ2 =

βρ

2σ
〈yφ′〉 .

Proof. Based on Lemma 3.4, it is straightforward to verify that (3.26) is the solution to (3.23).
The formula for Aρ1 uses the formula in equation (2.7) in place of Σ(0).
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We can take the result in Proposition 3.5 even further, by taking advantage of the Gaussian
moments in the invariant measure to compute Aρ1 and Aρ2 explicitly. The calculations given in
Appendix A.3 result in the following formulae for the group parameters of Proposition 3.5:

Aρ1 = −β
3ρ

2σ3
(1− ρ2), (3.27)

Aρ2 = − βρ

4σ3

(
β2ρ2 + 4θ2

)
. (3.28)

4. Numerical Study: The Loss in Utility Due to Partial Information
The preceding sections presented an asymptotic value function expansion that is a useful tool

for the portfolio problem with general utility because explicit solutions are not so easy to obtain
when U is not one of the few utilities (e.g. power utility or exponential utility) for which there
are explicit formulae. In fact, the partial information portfolio optimization with power utility was
shown in [6] to have an explicit solution up to a system of Riccati equations. There are also the
explicit solutions of [2] for partial information with power utility and a modulating Markov chain.

The class of utility functions that we consider in this section is a mixture of power utilities
introduced in [9]:

U(x) = c1
x1−γ1

1− γ1
+ c2

x1−γ2

1− γ2
(4.1)

with c1, c2 ≥ 0 and γ1 ≥ γ2 > 0 with γ1, γ2 6= 1. Our study will show how the full information case
compares to the partial case, and will demonstrate how the presence of correlation, measured by
ρ, drives the effects that market incompleteness and partial information have on the value function
at order

√
ε. Note the the principle term V (0) depends on the correlation only through ρ2 in the

average Sharpe ratio λ̄2 in equation (3.16), whereas the correction term V (1) has coefficients Aρ1
and Aρ2 from equations (3.27) and (3.28), respectively, that are cubic in ρ. In contrast, in the
full-informed case we will find that the principle term does not depend on ρ, and the correction
depends on ρ linearly.

We will find that for ε � 1 and ρ < 0, a marginal increase in |ρ| will result in a marginal
increase in utility for both the fully informed investor and the partially informed. Empirical studies
show that ρ is strongly negative, and so this is the case that we consider. The interpretation is the
following: negative ρ is a stabilizing effect, wherein losses to the asset’s value signal an increase in
the expected future gains, particularly as ρ gets close to −1.

4.1. The Full Information Case
Full information is the case when Ft is generated by both Brownian motions (W,B). In this

case, the HJB equation is as follows:

V ε,full

t +
1

ε
L1

0V
ε,full −

(
y
σV

ε,full
x + βρ√

ε
V ε,fullxy

)2

2V ε,fullxx
= 0 (4.2)

V ε,full(T, x, y) = U(x), (4.3)

where L1
0 , 1

2β
2 ∂2

∂y2 + (θ − y) ∂∂y , i.e. it is the operator defined in (3.5) but with the correlation

parameter taken to such that |ρ| = 1. Following the same procedure as Section 3, we expand the
solution to (4.2) in powers of ε,

V ε,full = V (0),full +
√
εV (1),full + εV (2),full + . . . ,
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and based on a solvability condition (similar to (3.17)) we find the zero-order term V (0)(t, x) satisfies
the PDE,

V
(0),full

t − 1

2
λ̄2

1

(
V

(0),full
x

)2

V
(0),full
xx

= 0 for t < T , (4.4)

V (0),full(T, x) = U(x), (4.5)

where λ̄2
1 = β2

2σ2 + θ2

σ2 is the (squared) Sharpe ratio given in (3.16) evaluated at ρ = 1. Therefore,

V (0),full for full information corresponds to a Merton problem with a greater Sharpe ratio than V (0)

for partial information, because λ̄2
1 > λ̄2 for any |ρ| < 1.

Continuing as was done in Section 3, we find the correction term V (1) to be given explicitly in
terms of V (0) as

V (1),full(t, x) = −βρ(T − t)
4σ3

(
β2 + 4θ2

)
(Df

1)2V (0),full(t, x) , (4.6)

with the operator Df
1 = R(0),full(t, x) ∂

∂x where R(0),full comes from V (0),full:

R(0,full)(t, x) , −V
(0,full)
x (t, x)

V
(0,full)
xx (t, x)

.

4.1.1. Comparison with Partial Information Formulas
The HJB equation in (4.2) and the partial information equation of (3.4) are almost the same,

with the following two exceptions:
• L1

0 operates in (4.2) whereas L0 operates in (3.4), and
• Σε(t) is nowhere present in (4.2), which is intuitive because Yt is observed under full

information, meaning that there is no estimation error.
Comparing equations (4.4) and (4.6) with (3.14) and (3.26), respectively, it can be seen that

V (0),full = V (0)
∣∣∣
|ρ|=1

V (1),full = |ρ| V (1)
∣∣∣
|ρ|=1

.

4.2. Numerical Method
Numerical solutions for calculating V (0) and V (1) are based on solving Black’s equation (3.24)

for R(0). From (3.24), it can be determined that V
(0)
x is given by the following formula:

V (0)
x (t, x) = V (0)

x (t, xmax) exp

(∫ xmax

x

1

R(0)(t, ξ)
dξ

)
, (4.7)

where xmax is large enough to where we can used large-x asymptotics to invert V
(0)
x (t, xmax) and

V (0)(t, xmax). The recipe for V (0) is to solve for R(0) and then integrate over x,

V (0)(t, x) = V (0)(t, xmax)−
∫ xmax

x

V (0)
x (t, ξ) dξ.

We now describe our discretization scheme for numerically solving Black’s equation in (3.24).
Let ∆t > 0 be a time step, let ∆x > 0 be a spatial step, and let xmax be a very large (positive)
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number to mark the end of the wealth process’s numerical domain. For n ∈ {0, 1, . . . , (T−t)/∆t} and
j ∈ {0, 1, . . . , xmax/∆x}, we solve numerically at the discrete points {(tn, xj) : tn = T − n∆t, xj =
j∆x} such that the solution is defined as Rnj ≈ R(0)(tn, xj). The numerical scheme is the following:

Rnj −R
n+1
j

∆t
+

1

2
λ̄2
(
Rnj
)2 Rnj+1 − 2Rnj +Rnj−1

(∆x)2
= 0, (4.8)

using the boundary conditions Rn0 = 0 and Rnxmax/∆x
= 1

γ2
. The large-x asymptotics are the

following:

V (0)(t, x) ∼ c1
x1−γ1

1− γ1
g12(t) + c2

x1−γ2

1− γ2
g2(t) for x� 0, (4.9)

where

g2(t) = exp

(
1

2
λ̄2 1− γ2

γ2
(T − t)

)
and g12(t) = exp

(
λ̄2(1− γ1)

γ2
2

(
γ2 −

γ1

2

)
(T − t)

)
.

Based on this the scheme in (4.8) and the the large-x asymptotics in (4.9), the order-zero term is
solved.

To compute the correction term of V (1), some algebra applied to D1, D
2
1, V (0), and V

(0)
x leads

to the following reformulation of the expression in equation (3.26):

V (1)(t, x) = (T − t)
(
Aρ1R

(0) +Aρ2R
(0)(R(0)

x − 1)
)
V (0)
x (t, x),

where R
(0)
x is obtained by numerical differentiation, and V

(0)
x is obtained by numerically integrating

(4.7) for x < xmax and by differentiating the asymptotic approximation in (4.9) for x ≥ xmax. For
the numerics in this section, we take xmax = 20 with ∆x = xmax

400 , and T = 1 with ∆t = .99 γ2
λ̄2∆x

.

4.3. Loss in Utility Due to Partial Information & the Effects of ρ
The effect of ρ on V (0) on the partial and full information cases is described as follows: V (0),full

will diffuse significantly faster than V (0),partial when |ρ| < 1, and so there is an information
premium,

V (0),partial(t, x) < V (0),full(t, x) for t < T , x ≥ 0, and |ρ| < 1.

This follows from the fact that V (0),full and V (0),partial are solutions to a Merton problem, with full
information having a higher Sharpe ratio than partial, namely, λ̄2 < λ̄2

1. It could also be argued that
diffusion in the zero-order terms happens at a faster rate under full information, and a comparison
principle will yield the inequality.

The order-
√
ε term is more nuanced in how it behaves with changes of ρ. For our experiments

we consider cases where ρ ≤ 0 for the following reason: this is a type of stabilizing effect, where
negative returns on the asset suggest that a correction is due, and hence, expected returns will
have a slight increase as returns decrease. Indeed, a highly negative correlation between returns
and drift is part of the framework in [23]. Figures 4.1 and 4.2 show how full information and
partial information can change (relative to each other) for changes in ρ, and with the remaining
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parameters being fixed as ε = .01, θ = .05, σ = .2, β = .2, and T = 1. Also plotted is the certainty
equivalent,

CE(t, x) = U−1(V (0)(t, x) +
√
εV (1)(t, x)),

which tells us how much cash must be held in the risk-free bank account to make the investor utility
indifferent to investing in the risky asset. These plots show us how ρ that is close to zero in absolute
value results in very slow diffusion in the zero-order terms, due to the diffusion coefficient λ̄ being
monotone increasing in |ρ|. Indeed, in Figure 4.1 we see partial information value functions close
to their terminal conditions and partial information CE’s close to the diagonal when ρ = −.3, but
in Figure 4.2 we see that these quantities have diffused further and shifted upward.
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Fig. 4.1. Case ρ = −.30 and ε = .01, with remaining parameters θ = .05, σ = .2, β = .2, and T = 1.

4.4. The Practical Strategy
Recall the optimal strategy π∗t in (3.3), and notice that it is the solution to an unconstrained

optimization problem. It might be considered impractical to implement such a strategy because it
will require the trades to track the fast motion in y. Alternatively, it would be more practical to
perform a constrained optimization wherein the optimal strategy, call it π̄t, has an expansion with
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Fig. 4.2. Case ρ = −.60 and ε = .01, with remaining parameters θ = .05, σ = .2, β = .2, and T = 1.

a zero-order term that does not depend on y. We call this the practical strategy, but find there to
be significant loss in utility because it has the effect of taking ρ = 0.

In terms of a PDE, the practical strategy yields a value function V̄ ε such that

V̄ εt +
1

2

(
Σε(t)

σ

)2

V̄ εyy +
1√
ε

βρΣε(t)

σ
V̄ εyy +

1

ε
L0V̄

ε

+ max
π̄

{
1

2
σ2π̄2V̄ εxx + π̄

(
yV̄ εx +

Σε(t)
√
ε+ σβρ√
ε

V̄ εxy

)}
= 0, (4.10)

where π̄ is an element among the constrained set of strategies for which the zero-order term in the
strategy expansion does not depend on y. In other words, we write the expansion of π̄t in powers
of ε:

π̄t = π̄
(0)
t +

√
επ̄

(1)
t + επ̄

(2)
t + . . . ,

and assume a priori that the zero-order term does not depend on y. Furthermore, we expand the
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practical strategy’s value function:

V ε = V̄ (0) +
√
εV̄ (1) + εV̄ (2) + . . . .

Inserting the expansions of π̄ and V̄ ε into (4.10) (and recall from (2.8) that Σε(t) is regular in
√
ε),

we find from the terms of order ε−1 that V̄ (0) is constant in y, we find from the terms of order
ε−1/2 that V̄ (1) is constant in y, and from the terms of order ε0 we find the following equation:

max
π̄(0)

{
V̄

(0)
t + L0V̄

(2) +
1

2
σ2
(
π̄(0)

)2

V̄ (0)
xx + π̄(0)yV̄ (0)

x

}
= 0. (4.11)

Now, for the optimal π̄
(0)
t not depending on y, the solvability condition for this PDE (by the

Fredholm alternative) is

V̄
(0)
t +

1

2
σ2
(
π̄

(0)
t

)2

V̄ (0)
xx + π̄

(0)
t 〈y〉 V̄ (0)

x = 0.

Hence, because 〈y〉 = θ, it follows that the practical solution’s zero-order value function solves

V̄
(0)
t + max

π̄(0)

{
1

2
σ2
(
π̄(0)

)2

V̄ (0)
xx + π̄(0)θV̄ (0)

x

}
= 0, (4.12)

which is the Merton value function with Sharpe ratio θ
σ . In terms of the Sharpe ratio from the

unconstrained problem,

θ

σ
<
√
λ̄2 for ρ 6= 0.

Based on the numerics from Section 4.3, this means that there will be a significant loss in utility if
the practical strategy is used with ρ away from zero.

Surprisingly, this calculation suggests that the best sub-optimal strategy that does not depend
on tracking the fast moving Y or its filter Ŷ is not the Merton strategy with the constant Sharpe
ratio λ̄, but instead to use the Sharpe ratio θ

σ . In other words, this Sharpe ratio corresponds to
the partial information case at ρ = 0, and that for non-zero ρ, tracking gives an order one utility
enhancement.

5. Summary
We have explored a portfolio optimization problem involving a commodities market wherein

the yield curve is only partially observed. This partial information portfolio problem requires us to
include the Kalman filter for the yields in the conditioning for the value function. We calculated
the small-ε asymptotics behaviour of the Kalman filter, and based on the the HJB equation we
calculated the small-ε expansions of the optimised value function. The methodology is useful for
problems involving general utility functions, because explicit formula for solutions to the HJB
equation are not available. In the numerics we compared the partial information problem to the
full information problem, and found there to be an information premium that depends in large part
on the correlation parameter ρ. We also explored some practical strategies that do not trade the
asset in fast time scales.

Appendix A. Derivations.
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A.1. Proof of Proposition 3.3

Substituting R(0) = −V (0)
x /V

(0)
xx from (3.8) into (3.14) and differentiating with respect to x

yields

V
(0)
tx =

λ̄2

2

(
R(0)

)2

V (0)
xxx + λ̄2R(0)R(0)

x V (0)
xx .

But from R(0)V
(0)
xx = −V (0)

x we have
(
R(0)

)2
V

(0)
xxx = (R

(0)
x + 1)V

(0)
x , and so the above expression

becomes

V
(0)
tx =

λ̄2

2
(R(0)

x + 1)V (0)
x − λ̄2R(0)

x V (0)
x ,

which gives

V
(0)
tx = − λ̄

2

2
(R(0)

x − 1)V (0)
x . (A.1)

Next, differentiating (3.8) with respect to t gives

R
(0)
t = −V

(0)
tx

V
(0)
xx

+
V

(0)
x

(V
(0)
xx )2

V
(0)
txx . (A.2)

Differentiating (A.1) with respect to x yields

V
(0)
txx = − λ̄

2

2
(R(0)

xx − 1)V (0)
xx −

λ̄2

2
R(0)
xxV

(0)
x ,

and substituting this and (A.1) into (A.2) yields (3.24).

A.2. Proof of Lemma 3.4

For any smooth w(t, x), we compute

D2D1w −D1D2w = (R(0))2 ∂
2

∂x2
(R(0)wx)−R(0) ∂

∂x
((R(0))2wxx)

= (R(0))2(R(0)
xxwx + 2R(0)

x wxx +R(0)wxxx)−R(0)(2R(0)R(0)
x wxx + (R(0))2wxxx)

= (R(0))2R(0)
xxwx.

Then

Lt,xD1w =

(
∂

∂t
+

1

2
λ̄2D2 + λ̄2D1

)
D1w

= D1

(
∂

∂t
+

1

2
λ̄2D2 + λ̄2D1

)
w +

(
Rt +

1

2
λ̄2(R(0))2R(0)

xx

)
wx

= D1Lt,xw,

where we have used (3.24).
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A.3. Derivation of Formulas (3.27)-(3.28)

From the definition of µ in (3.13) we can deduce the relation 1
2β

2ρ2µ′ − (θ − y)µ = 0, from
which equation (3.21) can be equivalently written as

β2ρ2

2
(φ′µ)

′
=

(
y2

σ2
− λ̄2

)
µ,

and consequently, since
(

1
µ(y)

)′
= 2(y−θ)

β2ρ2
1

µ(y) , we have

φ′(y) =
2

β2ρ2µ(y)

∫ y

−∞

(
u2

σ2
− λ̄2

)
µ(du)

φ′′(y) =
2

β2ρ2

(
y2

σ2
− λ̄2

)
+

2(y − θ)
β2ρ2

φ′(y).

By definition we have
〈
y2

σ2 − λ̄2
〉

= 0, and therefore, one is left with

〈φ′′〉 =
2

ρ2β2
〈yφ′〉 − 2θ

ρ2β2
〈φ′〉 .

Now, the average of φ′ is

βρ 〈φ′〉 =
2

βρ

〈
1

µ

∫ y

−∞

(
u2

σ2
− λ̄2

)
µ(du)

〉
=

2

βρ

∫ ∞
−∞

∫ y

−∞

(
u2

σ2
− λ̄2

)
µ(u)dudy

= − 2

βρ

∫ ∞
−∞

u

(
u2

σ2
− λ̄2

)
µ(u)du (using integration by parts)

= − 2

βρσ2

〈
y3
〉

+
2λ̄2

βρ
〈y〉

= − 2

βρσ2

(
3θ
β2ρ2

2
+ θ3

)
+

2θ

βρσ2

(
β2ρ2

2
+ θ2

)
= −2θβρ

σ2
,
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and the average of yφ′ is

βρ 〈yφ′〉 =
2

βρ

〈
y

µ

∫ y

−∞

(
u2

σ2
− λ̄2

)
µ(du)

〉
=

2

βρ

∫ ∞
−∞

y

∫ y

−∞

(
u2

σ2
− λ̄2

)
µ(u)dudy

= − 1

βρ

∫ ∞
−∞

u2

(
u2

σ2
− λ̄2

)
µ(u)du (using integration by parts)

= − 1

βρσ2

〈
y4
〉

+
λ̄2

βρ

〈
y2
〉

= − 1

βρσ2

(
3
β4ρ4

4
+ 6θ2 β

2ρ2

2
+ θ4

)
+

1

βρσ2

(
β2ρ2

2
+ θ2

)2

= − 1

βρσ2

(
β4ρ4

2
+ 4θ2 β

2ρ2

2

)
= − βρ

2σ2

(
β2ρ2 + 4θ2

)
,

where explicit expressions for
〈
yk
〉

for k = 0, 1, 2, 3, 4 are obtained because they are Gaussian
moments.
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