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Abstract

Empirical evidence from equity markets clearly shows that the volatility of asset returns
varies randomly in time. Typically, this randomness is referred to as stochastic volatility. In
this article, we review how stochastic volatility can be modeled, and the use of asymptotic
analysis to quantify (i) how the presence of stochastic volatility affects option prices, and (ii)
how stochastic volatility affects investment strategies.

1 Introduction

Understanding and measuring the inherent uncertainty in market volatility is crucial for portfolio
optimization, risk management and derivatives trading. The problem is made difficult since volatil-
ity is not directly observed. Rather, volatility is a statistic of the observable returns of, for example,
a stock, and so estimates of it are at best noisy. Among the major empirical challenges have been
separating contributions of diffusive and jump components of log returns, typical time-scales of
fluctuation and memory effects. Until recently, data was limited to low frequencies, typically daily.
The availability of high-frequency data over the past twenty years brings with it issues of deci-
phering market micro-structure effects such as bid-ask bounce, which contaminate the potential
usefulness of such large data sets, and we refer to the recent book Aı̈t-Sahalia and Jacod (2014) for
an overview of the difficulties.

The major problem that has been the driver of stochastic volatility models is the valuation
and hedging of derivative securities. This market grew in large part from the landmark paper by
Black and Scholes (1973), which showed how to value simple options contracts when volatility is
constant. Even at the time of their paper, Black and Scholes realized that the constant volatility
assumption was a strong idealization. In an empirical paper Black and Scholes (1972), the authors
tested their option price formulas and concluded: “we found that using past data to estimate the
variance caused the model to overprice options on high-variance stocks and underprice options
on low-variance stocks.” Indeed the overwhelming evidence from time-series data reveals that
volatility exhibits unpredictable variation. In addition, as we will describe below, option prices
exhibit a significant departure from the Black-Scholes (constant volatility) theory, the “implied
volatility skew”, which can be explained by allowing volatility to vary randomly in time.
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A second important problem is portfolio optimization: namely how to optimally invest capital
between a risky stock and a riskless bank account. In a continuous time stochastic model with
constant volatility, the pioneering work was by Robert Merton (Merton (1969) and Merton (1971),
reprinted in the book Merton (1992)). Since then, understanding the effect of volatility uncertainty,
stochastic growth rate, transaction costs, price impact, illiquidity and other frictions on the portfolio
choice problem has generated considerable research. Here we will focus on the effect of stochastic
volatility and present some new results in Section 3.

The increased realism obtained by allowing volatility to be stochastic comes with increased
computational difficulties. Moreover, there is no broad consensus concerning how to best model
volatility. Here we will discuss some computationally efficient approaches, focusing particularly on
asymptotic approximations.

1.1 Options and Implied Volatility

The most liquidly traded derivatives contracts are call and put options, which give the option
holder the right to buy (in the case of a call) or sell (in the case of a put) one unit of the underlying
security at a fixed strike price K on a fixed expiration date T . Here we are focusing specifically on
European-style options (i.e., no early exercise), which are typically traded on indices such as the
S&P500. If St represents the price of a stock or index at time t, then a European-style derivative
has a payoff at time T which is a function h of ST . In the case of calls and puts the payoff functions
are h(S) = (S −K)+ and h(S) = (K − S)+ respectively.

1.1.1 Black-Scholes model

In the Black-Scholes model, the stock price S is a geometric Brownian motion described by the
following stochastic differential equation (SDE)

dSt

St
= µ dt+ σ dWt, (1.1)

where W is a standard Brownian motion with respect to a historical (or real world or physical)
probability measure P. Here the parameters are the expected growth rate µ and the volatility
σ, both assumed constant. The remarkable finding of Black and Scholes (1973) is that the no-
arbitrage price of an option does not depend on µ, and so, to price an option, the only parameter
that needs to be estimated from data is the volatility σ. Unless otherwise stated, we shall assume
throughout this article that interest rates are zero.

It will be convenient to introduce the following notation:

τ := T − t, x := logSt, k := logK,

where t is the current time, and K and T are the strike and expiration date respectively of a call
or put option. Then, for fixed (t, T, x, k), the Black-Scholes pricing formula for a call option with
time to expiration τ > 0 is given by

uBS(σ) := exN(d+(σ))− ekN(d−(σ)), d±(σ) :=
1

σ
√
τ

(
x− k ±

σ2τ

2

)
, (1.2)
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where N is the CDF of a standard normal random variable, and we have stressed the volatility
argument σ in the notation.

It turns out that the Black-Scholes price (1.2) can be expressed as the expected payoff of the
option, but where the expectation is taken with respect to a different probability measure Q under
which the stock price is a martingale (that is, it is a pure fluctuation process with no trend or
growth rate). This means that there is a so-called risk-neutral world in which the stock price
follows the dynamics

dSt

St
= σ dWQ

t ,

where WQ is a Brownian motion under Q, and the call option price (1.2) can be expressed as the
conditional expectation

uBS(σ) = EQ[(ST −K)+ | logSt = x],

where EQ denotes that the expectation is taken under the probability measure Q.

1.1.2 Implied Volatility

The implied volatility of a given call option with price u (which is either observed in the market or
computed from a model) is the unique positive solution I of

uBS(I) = u. (1.3)

It is the volatility parameter that has to be put into the Black-Scholes formula to match the observed
price u.

Note that the implied volatility I depends implicitly on the maturity date T and the log strike
k as the option price u will depend on these quantities. The map (T, k) #→ I(T, k) is known as the
implied volatility surface. If market option prices reflected Black-Scholes assumptions, I would be
constant and equal to the stock’s historical volatility σ. However, in equities data, the function
I(T, ·) exhibits downward sloping behavior in k, whose slope varies with the option maturities T ,
as illustrated in Figure 1. This downward slope is known as the implied volatility skew.

These features of the implied volatility surface can be reproduced by enhancing the Black-
Scholes model (1.1) with stochastic volatility and/or jumps. One focus of this chapter will be to
survey some approaches taken to capturing the implied volatility skew.

1.2 Volatility Modeling

While the overwhelming evidence from time-series and option price data indicates that the volatility
σ in (1.1) should be allowed to vary stochastically in time:

dSt

St
= µ dt+ σt dWt,

there is no consensus as to how exactly the (stochastic) volatility σt should be modeled.
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Figure 1: Implied volatility from S&P 500 index options on May 25, 2010, plotted as a function of
log-moneyness to maturity ratio: (k − x)/(T − t). DTM = “days to maturity.”
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1.2.1 No-arbitrage Pricing and Risk-Neutral Measure

In standard option-pricing theory, it is assumed that markets do not admit arbitrage. No arbitrage
pricing implies that all traded asset prices (after discounting) are martingales under some proba-
bility measure Q, typically referred to as a risk-neutral measure. Consequently, the price ut of an
option at time t with payoff ϕ(ST ) at time T is given by

ut = EQ[h(ST )|Ft], (1.4)

where Ft is the history of the market up to time t. Typically there are non-traded sources of ran-
domness such as jumps or stochastic volatility. As a result, there exist infinitely many risk-neutral
measures. The non-uniqueness of these measures is often referred to as market incompleteness,
meaning not every derivative asset can be perfectly hedged. In practice, one assumes that the
market has chosen a specific risk-neutral measure, which is consistent with observed option prices.

In what follows, we will model asset dynamics under a unique risk-neutral pricing measure Q,
which we assume has been chosen by the market. Under Q, we have

St = eXt , dXt = −1
2σ

2
t dt+ σtdW

Q
t , (1.5)

which describes the dynamics of Xt = log St. Below, we review some of the most common models
of volatility and discuss some of their advantages and disadvantages.

1.2.2 Local Volatility Models

In local volatility (LV) models, the volatility σt of the underlying is modeled as a deterministic
function σ(·, ·) of time t, and the time-t value of the underlying Xt. That is,

dXt = −
1

2
σ2(t,Xt) dt+ σ(t,Xt)dW

Q
t , (local volatility)

Typically, one assumes that the function σ(t, ·) increases as x decreases in order to capture the
leverage effect, which refers to the tendency for the value of an asset to decrease as its volatility
increases.

One advantage of local volatility models is that markets remain complete, meaning that deriva-
tives written on S can be hedged perfectly – just as in the Black-Scholes model. While market
completeness is convenient from a theoretical point of view, it is not necessarily a realistic prop-
erty of financial markets. Indeed, if markets are complete, then one can ask: why do we need
derivatives?

Another advantage of local volatility models is that they can provide a very tight fit to option
prices quoted on the market. In fact, Dupire (1994) shows that there exists a local volatility model
that can exactly match option prices quoted on the market and that there is an explicit formula
for how to construct this model from observed call and put prices under the assumption that they
can be interpolated across continuous strikes and maturities. However, a tight fit must be balanced
with stability: local volatility models are notoriously bad at providing stability and typically need
to be re-calibrated hourly.
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1.2.3 Stochastic Volatility Models

In a stochastic volatility (SV) model, promoted in the late 1980s by Hull and White (1987), Scott
(1987) and Wiggins (1987), the volatility σt of the underlying is modeled as a deterministic function
σ(·) of some auxiliary process Y , which is usually modeled as a diffusion:

dXt = −
1

2
σ2(Yt) dt+ σ(Yt) dW

Q
t ,

dYt = α(Yt) dt+ β(Yt) dB
Q
t , (stochastic volatility) (1.6)

d⟨WQ, BQ⟩t = ρdt,

with |ρ| < 1. Here, BQ is a Brownian motion that is correlated with WQ. One typically takes the
correlation ρ to be negative in order capture the empirical observation that when volatility goes up,
stock prices tend to go down, the leverage effect. In a single factor stochastic volatility setting such
as described by (1.6), derivatives written on S cannot be perfectly hedged by continuously trading
a bond and the underlying S alone. However, a derivative written on S can be perfectly replicated
by continuously trading a bond, the underlying S and single option on S. Thus, assuming options
can be traded continuously can complete the market. However, as transaction costs on options are
much higher than on stocks, and as their liquidity is typically lower, this assumption typically is not
made. Unlike the local volatility case, there is no explicit formula for constructing Y dynamics and
a volatility function σ(·) so that model-induced option prices fit observed market prices exactly.

It is common to assume that the volatility driving process Y is mean-reverting, or ergodic,
meaning there exists a distribution Π such that the ergodic theorem holds:

lim
t→∞

1

t

∫ t

0
g(Ys)ds =

∫
g(y)Π(dy),

for all bounded functions g.
Equation (1.6) actually refers specifically to one-factor stochastic volatility models. One can

always introduce another auxiliary process Z, and model the volatility σt as a function σ(·, ·) of
both Y and Z. If S, Y and Z are driven by three distinct Brownian motions, then continuously
trading a bond, the underlying S and two options on S would be required to perfectly hedge further
options on S. Multi-factor stochastic volatility models have the ability of fit option prices better
than their one-factor counterparts. But, each additional factor of volatility brings with it additional
computational challenges. Multi-factor and multiscale stochastic volatility models are discussed at
length in Fouque et al. (2011).

1.2.4 Local-Stochastic Volatility Models

As the name suggests, local-stochastic volatility (LSV) models combine features of both local volatil-
ity and stochastic volatility models by modeling the volatility σt as a function σ(·, ·, ·) of time t,
the underlying X and an auxiliary process Y (possibly multidimensional). For example

dXt = −
1

2
σ2(t,Xt, Yt) dt+ σ(t,Xt, Yt) dW

Q
t ,

dYt = f(t,Xt, Yt) dt+ β(t,Xt, Yt) dB
Q
t , (local-stochastic volatility) (1.7)

d⟨WQ, BQ⟩t = ρdt,
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where |ρ| < 1. Note that the class of models described by (1.7) nests all LV models and all (one-
factor) SV models. However, while LSV models offer more modeling flexibility than LV or SV
models separately, these models also present new computational challenges. Indeed, while there
exists LV and SV models for which option prices can be computed in closed form (or semi-closed
form, for instance up to Fourier inversion), explicit formulas for option prices are available in an
LSV setting only when ρ = 0. We remark that having a closed form formula or a fast approximation
is crucial for the inverse problem of calibrating an LSV model from observed option prices.

1.2.5 Models with Jumps

Some authors argue that diffusion models of the form (1.5) are not adequate to capture the complex
dynamics of stock price processes because diffusion models do not allow stock prices to jump.
Discontinuities in the stock price process can be modeled by adding a jump term dJt to the process
(1.5) as follows

dXt =

(
−
1

2
σ2t − λ

∫
(ez − 1)F (dz)

)
dt+ σdWQ

t + dJt,

and this type of model dates back to Merton (1976). Here, jumps arrive as a Poisson process with
intensity λ and have distribution F , and the drift of X is compensated to ensure that S = eX is a
martingale under Q. As with SV models, jumps render a market incomplete. Adding jumps also
to volatility can help fit the strong implied volatility smile that is commonly observed for short
maturity options, and we refer to Bakshi et al. (1997) for an analysis.

1.2.6 ARCH & GARCH Models

Although our focus will be on the continuous-time models, it is worth mentioning that discrete-time
models for stock returns are widely studied in econometrics literature. A large class of discrete-
time models are the autoregressive conditional heteroskedasticity (ARCH) processes introduced
by Engle (1982), later generalized under the name GARCH. The discrete-time models that are
closest to the type of continuous-time stochastic volatility models (1.6) driven by diffusions are the
EGARCH models developed in Nelson (1991, 1990). Those papers also discuss convergence of the
discrete-time EGARCH process to an exponential Ornstein-Uhlenbeck continuous-time stochastic
volatility model.

2 Asymptotic Regimes and Approximations

Given a model and its parameters, computing expectations of the form (1.4) one time is straightfor-
ward using Monte Carlo methods or a numerical solution of the associated pricing partial integro-
differential equation (PIDE). However, when the computation is part of an iterative procedure to
calibrate the model to the observed implied volatility surface, it becomes important to have a fast
method of computing option prices or model-induced implied volatilities. As a result, a number of
different efficient approximation methods have developed.

Broadly speaking, there are two methods of setting up asymptotic expansions for option pricing
and implied volatility. In contract asymptotics, one considers extreme regimes specific to the option
contract, in other words, large or small time-to-maturity (T − t), or large or small strikes K. In the
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model asymptotics approach, one views the complicated incomplete market model as a perturbation
around a more tractable model, often the Black-Scholes model (1.1).

2.1 Contract Asymptotics

The foundational papers in this approach appeared in 2004. The main result from Lee (2004),
commonly referred to as the moment formula relates the implied volatility slope at extreme strikes
to the largest finite moment of the stock price. We refer to the recent book Gulisashvili (2012) for
an overview of this and related asymptotics.

The approach pioneered by Berestycki et al. (2004) uses large deviations calculations for the
short-time regime. The regime where the time-to-maturity is large is studied by Tehranchi (2009).
However, for the rest of this article we concentrate on model asymptotics as they are adaptable to
other option contracts and, moreover, are amenable to nonlinear portfolio optimization problems
as we discuss in Section 3.

2.2 Model Asymptotics

We will present the analysis in terms of the log-stock price Xt = logSt, and consider a European
option with payoff ϕ(XT ) at time T , where ϕ(x) = h(ex). There may be other factors such as
stochastic volatility driving the stock price dynamics, and we denote these by the (possibly multi-
dimensional) process Y . If (X,Y ) is (jointly) a Markov process, then the time t price u(t, x, y) of
the European option is an expectation of the form

u(t, x, y) = EQ[ϕ(XT )|Xt = x, Yt = y].

Here, we are using the Markov property of (X,Y ) to replace the filtration Ft in (1.4) with the
time-t values of (X,Y ).

Under mild conditions on the processes (X,Y ) and the payoff function ϕ, the function u(t, x, y)
is sufficiently smooth to be the solution of the Kolmogorov backward equation (KBE)

(∂t +A(t))u = 0, u(T, x) = ϕ(x), (2.1)

where the operator A(t) is the generator of (X,Y ) (which may have t-dependence from the co-
efficients of (X,Y )). The operator A(t) is, in general, a second order partial integro-differential
operator. Unfortunately, equation (2.1) rarely has a closed-form solution – especially when we
include realistic features such as jumps and stochastic volatility. As such, one typically seeks an
approximate solution to (2.1). We will discuss an approach to this using perturbation theory (also
referred to as asymptotic analysis).

Perturbation theory is a classical tool developed to solve problems arising in physics and engi-
neering. We describe its use here to find an approximate solution to (typically) a PIDE starting from
the exact solution of a related PIDE. More specifically, suppose the integro-differential operator
A(t) in (2.1) can be written in the form

A(t) =
∞∑

n=0

εnAn(t), (2.2)
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where each An(t) in the sequence (An(t)) is an integro-differential operators, and ε > 0 is a (typically
small) parameter. Formally, one seeks an approximate solution to (2.1) by expanding the function
u as a power series in the parameter ε

u =
∑

n=0

εnun. (2.3)

Inserting the expansion (2.2) for A(t) and the expansion (2.3) for u into the PIDE (2.1), and
collecting like powers of ε, one finds

O(1) : (∂t +A0(t))u0 = 0, u0(T, x, y) = ϕ(x),

O(ε) : (∂t +A0(t))u1 = −A1(t)u0, un(T, x, y) = 0,

...
...

...

O(εn) : (∂t +A0(t))un = −
∞∑

k=1

Ak(t)un−k, un(T, x, y) = 0.

The approximating sequence of functions (un) are then found by solving the above nested sequence
of PIDEs.

This method is most useful when the fundamental solution Γ0 (also referred to as the Green’s

function) corresponding to the operator A0(t), is available in closed form. It is the solution of

(∂t +A0(t))Γ0(t, x, y;T, ξ,ω) = 0, Γ0(T, x, y;T, ξ,ω) = δ(x− ξ)δ(y − ω),

where δ(·) is the Dirac delta function (or point mass at zero).
Upon finding Γ0, the approximating sequence of functions (un) can be written down directly:

u0(t, x, y) = P0(t, T )ϕ(x) :=

∫
dξdω Γ0(t, x, y;T, ξ,ω)ϕ(ξ), (2.4)

un(t, x, y) =

∫ T

t
dt1P0(t, t1)

n∑

k=1

Akun−k(t1, x, y). (2.5)

Here the operator P0(t, T ) is referred to as the semigroup generated by A0(t).
Finding an appropriate decomposition of the generator A(t) =

∑∞
n=0An(t) is a bit of an art.

In general the most appropriate decomposition will depend strongly on the underlying process X
(from which A(t) is derived). As a starting point, it will help to identify operators A0 for which the
fundamental solution Γ0 can be written in closed form or semi-closed form, and we shall discuss
some examples in Section 2.4.

2.3 Implied Volatility Asymptotics

Models are typically calibrated to implied volatilities rather than to prices directly. As such, it is
useful to have closed-form approximations for model-induced implied volatilities. In this section, we
will show how to translate an expansion for option prices into an expansion for implied volatilities.
Throughout this section we fix a model for X = log S, a time t, a maturity date T > t, the initial
values Xt = x and a call option payoff ϕ(XT ) = (eXT − ek)+. Our goal is to find the implied
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volatility for this particular call option. To ease notation, we will suppress much of the dependence
on (t, T, x, k). However, the reader should keep in mind that the implied volatility of the option
under consideration does depend on (t, T, x, k), even if this is not explicitly indicated.

Assume that the option price u has an expansion of the form

u = u0 +
∑

n=1

εnun, where u0 = uBS(σ0), for some σ0 > 0. (2.6)

We wish to find the implied volatility I corresponding to u, which is the unique positive solution
of (1.3). To find the unknown implied volatility I, we expand it in powers of ε as follows:

I = I0 + Eε, where Eε =
∞∑

n=1

εnIn.

Expanding uBS(I) about the point I0 we find

uBS(I) = uBS(I0 + Eε)

= uBS(I0) +
∞∑

n=1

(Eε)n

n!
∂σu

BS(I0)

= uBS(I0) + εI1∂σu
BS(I0) + ε2

(
I2∂σ + 1

2!I
2
1∂

2
σ

)
uBS(I0)

+ ε3
(
I3∂σ + 1

2!2I1I2∂
2
σ + 1

3!I
3
1∂

3
σ

)
uBS(I0) + · · · . (2.7)

Inserting the expansion (2.6) for u and the expansion (2.7) for uBS(I) into equation (1.3), and
collecting like powers of ε we obtain

O(1) : u0 = uBS(I0),

O(ε) : u1 = I1∂σu
BS(I0),

O(ε2) : u2 =
(
I2∂σ + 1

2!I
2
1∂

2
σ

)
uBS(I0)

O(ε3) : u3 =
(
I3∂σ + 1

2!2I1I2∂
2
σ + 1

3!I
3
1∂

3
σ

)
uBS(I0).

Using u0 = uBS(σ0), we can solve for the sequence (In) recursively. We have

O(1) : I0 = σ0, (2.8)

O(ε) : I1 =
1

∂σuBS(I0)
u1,

O(ε2) : I2 =
1

∂σuBS(I0)

(
u2 −

(
1
2!I

2
1∂

2
σ

)
uBS(I0)

)

O(ε3) : I3 =
1

∂σuBS(I0)

(
u3 −

(
1
2!2I1I2∂

2
σ + 1

3!I
3
1∂

3
σ

)
uBS(I0)

)
. (2.9)

Note that the implied volatility expansion involves bothmodel independent andmodel dependent

terms:

model independent :
∂nσu

BS(I0)

∂σuBS(I0)
model dependent :

un
∂σuBS(I0)

. (2.10)
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The model independent terms are always explicit. For example, using (1.2), a direct computation
reveals

∂2σu
BS(σ)

∂σuBS(σ)
=

(k − x)2

tσ3
−

tσ

4
,

∂3σu
BS(σ)

∂σuBS(σ)
= −

t

4
+

(k − x)4

t2σ6
−

3(k − x)2

tσ4
−

(k − x)2

2σ2
+

t2σ2

16
.

Higher order terms are also explicit. Whether or not the model dependent terms in (2.10) can be
computed explicitly (i.e., meaning without numerical integration or special functions) depends on
the specific form the sequence (un) takes.

2.4 Tractable models

We say that a model X is tractable if its generator A0(t) admits a closed-form (or semi-closed form)
fundamental solution Γ0. A large class of tractable models are the exponential Lévy models. In
this class, a traded asset S = eX is described by the following Lévy-Itô SDE

dXt = µ dt+ σdWQ
t +

∫

R

z dÑt(dz). (2.11)

Here, WQ is a standard Brownian motion and Ñ is an independent compensated Poisson random
measure

dÑt(dz) = dNt(dz)− ν(dz)dt.

The last term in (2.11) can be understood as follows: for any Borel set A the process N(A) is a
Poisson process with intensity ν(A). Thus, the probability that X experiences a jump of size z ∈ A
in the time interval [t, t+dt) is ν(A)dt. In order for S to be a martingale, the drift µ must be given
by

µ = −
1

2
σ2 −

∫

R

ν(dz)(ez − 1− z).

The generator A0 of X is given by

A0 = µ∂x +
1

2
σ2∂2xx +

∫
ν(dz)(θz − 1− z∂x), (2.12)

where the operator θz is a shift operator : θzf(x) = f(x+ z).
When X has no jump component (i.e., when ν ≡ 0), the generator A0 has a fundamental

solution Γ0 that can be written in closed-form as a Gaussian kernel:

Γ0(t, x;T, y) =
1√

2πσ2(T − t)
exp

(
−
(x− y + µ(T − t))2

2σ2(T − t)

)
.

More generally, when jumps are present, the generator A0 has a fundamental solution Γ0 which is
available in semi-closed form as a Fourier transform:

Γ0(t, x;T, y) =
1

2π

∫
dξ eiξ(x−y)+(T−t)Φ0(ξ), (2.13)
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where

Φ0(ξ) = iµξ −
1

2
σ2ξ2 +

∫
ν(dz)(eiξz − 1− iξz).

The function Φ0 is referred to as the characteristic exponent of X, since it satisfies

EQ[eiξXT |Xt = x] = eiξx+(T−t)Φ0(ξ).

Using (2.4) and (2.13) we can express the action of the semigroup operator P0(t, T ) on a general
function ψ as follows:

P0(t, T )ψ(x) =

∫
dy Γ0(t, x;T, y)ψ(y) =

1

2π

∫
dy

∫
dξ eiξ(x−y)+(T−t)Φ0(ξ)ψ(y)

=
1

2π

∫
dξ eiξx+(T−t)Φ0(ξ)ψ̂(ξ),

where ψ̂ is the Fourier transform of ψ:

ψ̂(ξ) :=

∫
dy e−iξyψ(y).

Because the semigroup operator P0(t, T ) corresponding to A0 is well-understood in the expo-
nential Lévy setting, if one can write the generator A of a process X as A =

∑∞
n=0 ε

nAn with A0

given by (2.12), then one can use (2.4)-(2.5) to find approximate solutions to the full pricing PIDE
(∂t +A)u = 0.

2.5 Model Coefficient Polynomial Expansions

Model coefficient expansions are developed in a series of papers Lorig et al. (2015c, 2014a, 2015b,
2014b, 2015a). The authors’ method (which we shall henceforth refer to as “LPP”) can be used to
find closed-form asymptotic approximations for option prices and implied volatilities in a general
d-dimensional Markov setting. Here, for simplicity, we focus on two simple cases: (i) general
2-dimensional local-stochastic volatility (LSV) models, and (ii) general scalar Lévy-type models.

2.5.1 LSV models

We consider a general class of models, in which an asset S = eX is modeled as the exponential of
a Markov diffusion process X that satisfies the SDEs

dXt = −
1

2
σ2(Xt, Yt) dt+ σ(Xt, Yt) dW

Q
t ,

dYt = f(Xt, Yt) dt+ β(Xt, Yt) dB
Q
t ,

d⟨WQ, BQ⟩t = ρdt,

where WQ and BQ are correlated Brownian motions. This is as in the model discussed in Section
1.2.4 except we remove the explicit t-dependence in the coefficients for simplicity. Note that the
drift of X is −1

2σ
2, which ensures that S = eX is a Q-martingale and so the stock price is arbitrage

free.

12



The generator A of X is given by

A = a(x, y)(∂2xx − ∂x) + f(x, y)∂y + b(x, y)∂2yy + c(x, y)∂2xy , (2.14)

where we have defined

a(x, y) :=
1

2
σ2(x, y), b(x, y) :=

1

2
β2(x, y), c(x, y) := ρσ(x, y)β(x, y).

For general coefficients (σ,β, f) there is no closed form (or even semi-closed form) expression of Γ
the fundamental solution corresponding to A. Thus, we seek a decomposition of A =

∑∞
n=0An for

which the order zero operator A0 admits a closed form fundamental solution Γ0.
The LPP approach is to expand the coefficients of A in polynomial basis functions where the

zeroth order terms in the expansion are constant. Specifically,

χ(x, y) =
∞∑

n=0

χn(x, y), χ ∈ {a, b, c, f},

where χ0 is a constant and χn(x, y) depends polynomially on x and y for every n ≥ 1. For example,
Taylor series:

χn(x, y) =
n∑

k=0

Xk,n−k(x− x̄)k(y − ȳ)n−k, Xk,n−k =
1

k!(n − k)!
∂kx∂

n−k
y χ(x̄, ȳ), (2.15)

or Hermite polynomials:

χn(x, y) =
n∑

k=0

Xk,n−kHk,n−k(x, y), Xk,n−k = ⟨Hk,n−k,χ⟩.

In the Taylor series example, (x̄, ȳ) is a fixed point in R2. In the Hermite polynomial example, the
brackets ⟨·, ·⟩ indicate an L2 inner product with a Gaussian weighting. The Hermite polynomials
(Hn,m) form a complete basis in this space and (properly weighted) are orthonormal ⟨Hn,m,Hi,j⟩ =
δn,iδm,j .

Upon expanding the coefficients of A in polynomial basis functions, one can formally write the
operator A as

A =
∞∑

n=0

An, with An =
n∑

k=0

Ak,n−k, (2.16)

where

Ak,n−k = ak,n−k(x, y)(∂
2
xx − ∂x) + fk,n−k(x, y)∂y + bk,n−k(x, y)∂

2
yy + ck,n−k(x, y)∂

2
xy.

Note that the operator A in (2.16) is of the form (2.2) if one sets ε = 1.
Moreover, the order zero operator

A0 = A0,0 = a0,0(∂
2
xx − ∂x) + f0,0∂y + b0,0∂

2
yy + c0,0∂

2
xy.
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has a fundamental solution Γ0 which is a Gaussian density:

Γ0(t, x, y;T, ξ,ω) =
1

2π
√

|C|
exp

(
−
1

2
(η −m)TC−1(η −m)

)
, η =

(
ξ
ω

)
,

with covariance matrix C and mean vector m given by

C = (T − t)

(
2a0,0 c0,0
c0,0 2b0,0

)
, m =

(
x− (T − t)a0,0
y + (T − t)f0,0

)
.

Since Γ0 is available in closed form, one can use (2.4) and (2.5) to find u0 and the sequence of
functions (un)n≥1 respectively. After a bit of algebra, one can show that

un(t, x, y) = Lnu0(t, x, y), (2.17)

where the operator Ln is of the form

Ln =
∑

k,m

η(n)k,m(t, x, y)∂ky∂
m
x (∂2x − ∂x).

The precise form of the coefficients (η(n)k,m) will depend on the choice of polynomial basis function.
If the coefficients of A are smooth and bounded, then the small-time-to-maturity accuracy of the
price approximation is

sup
x,y

|u(t, x, y)− ūn(t, x, y)| = O((T − t)(n+3)/2), ūn(t, x, y) :=
n∑

k=0

uk(t, x, y).

The proof can be found in Lorig et al. (2015a).
The LPP price expansion also leads to closed-form expressions for implied volatility. Indeed, for

European call options, one can easily show that u0 = uBS(
√

2a0,0). Therefore, the series expansion
for u is of the form (2.6), and hence (I0, I1, I2, I3) can be computed using (2.8) – (2.9). Moreover,
the model dependent terms (un/∂σuBS) appearing in (2.8) – (2.9) can be computed explicitly with
no numerical integration. This is due to the fact that un can be written in the form (2.17). For
details, we refer the reader to Lorig et al. (2015b).

Example: Heston

Consider the Heston (1993) model, under which the risk-neutral dynamics of X are given by

dXt = −
1

2
eYtdt+ eYt/2dWQ

t ,

dYt =
(
(κθ − 1

2δ
2)e−Yt − κ

)
dt+ δ e−Yt/2dBQ

t ,

d⟨WQ, BQ⟩t = ρdt.

The generator of (X,Y ) is given by

A =
1

2
ey

(
∂2x − ∂x

)
+

(
(κθ − 1

2δ
2)e−y − κ

)
∂y +

1

2
δ2e−y∂2y + ρ δ∂x∂y.

14



Thus, using (2.14), we identify

a(x, y) =
1

2
ey, b(x, y) =

1

2
δ2e−y, c(x, y) = ρ δ, f(x, y) =

(
(κθ − 1

2δ
2)e−y − κ

)
.

We fix a time to maturity τ and log-strike k. Assuming a Taylor series expansion (2.15) of the
coefficients of A with (x̄, ȳ) = (x, y), the time t levels of (X,Y ), one computes

I0 = ey/2,

I1 =
1

8
e−y/2τ

(
−δ2 + 2 (−ey + θ)κ+ eyδρ

)
+

1

4
e−y/2δρ(k − x),

I2 =
−e−3y/2

128
τ2

(
δ2 − 2θκ

)2
+

ey/2

96
τ2

(
5κ2 − 5δκρ + δ2

(
−1 + 2ρ2

))

+
e−y/2

192
τ
(
−4τθκ2 − τδ3ρ+ 2τδθκρ+ 2δ2

(
8 + τκ+ ρ2

))

+
1

96
e−3y/2τδρ

(
5δ2 + 2 (ey − 5θ)κ− eyδρ

)
(k − x) +

1

48
e−3y/2δ2

(
2− 5ρ2

)
(k − x)2.

The expression for I3 is also explicit, but omitted for brevity. In Figure 2 we plot the approximate
implied volatility (I0+ I1+ I2+ I3) as well as the exact implied volatility I, which can be computed
using the pricing formula given in Heston (1993) and then inverting the Black-Scholes formula
numerically.

2.5.2 Lévy-type models

In this Section, we explore how the LPP method can be applied to compute approximate option
prices in a one-dimensional Lévy-type setting. Specifically, we consider an asset S = eX , where X
is a scalar Lévy-type Markov process. Under some integrability conditions on the size and intensity
of jumps, every scalar Markov process on R can be expressed as the solution of a Lévy-Itô SDE of
the form:

dXt = µ(Xt)dt+
√
2a(Xt)dW

Q
t +

∫
zdÑt(Xt−,dz),

whereWQ is a standard Brownian motion and Ñ is a state-dependent compensated Poisson random
measure

dÑt(x,dz) = dNt(x,dz)− ν(x,dz)dt.

Note that jumps are now described by a Lévy kernel ν(x,dz), which is a Lévy measure for every
x ∈ R. In order for S to be a martingale, the drift µ must be given by

µ(x) = −a(x)−
∫

R

ν(x,dz)(ez − 1− z).

The generator A of X is

A = µ(x)∂x + a(x)∂2xx +

∫
ν(x,dz)(θz − 1− z∂x).
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Figure 2: Exact (solid) and approximate (dashed) implied volatilities in the Heston model. The
horizontal axis is log-moneyness (k − x). Parameters: κ = 1.15, θ = 0.04, δ = 0.2, ρ = −0.40
x = 0.0, y = log θ.
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For general drift µ(x) variance a(x) and Lévy kernel ν(x,dz) there is no closed form (or even
semi-closed form) expression for the fundamental solution Γ corresponding to A. Thus we seek a
decomposition of generator A =

∑
nAn for which A0 has a fundamental solution Γ0 available in

semi-closed form.
Once again, the LPP approach of expanding the coefficients and Levy kernel of A in polynomial

basis functions will lead to the desired form for the expansion of A. Specifically, let

µ(x) =
∞∑

n=0

µn(x), a(x) =
∞∑

n=0

an(x), ν(x,dz) =
∞∑

n=0

νn(x,dz),

where µ0(x) = µ0, a0(x) = a0 and ν0(x,dz) = ν0(dz), and higher order terms µn(x), an(x) and
νn(x,dz) depend polynomially on x. For example

Taylor series : an(x) =
1

n!
∂nxa(x̄) · (x− x̄)n,

Hermite polynomial : an(x) = ⟨Hn, a⟩ ·Hn(x),

and similarly for µ and ν. Upon expanding the coefficients of A in polynomial basis functions, one
can formally write the operator A as A =

∑∞
n=0An, where A0 is given by

A0 = µ0∂x + a0∂
2
xx +

∫
ν0(dz)(e

z∂x − 1− z∂x), (2.18)

and each An for n ≥ 0 is of the form

An = µn(x)∂x + an(x)∂
2
xx +

∫
νn(x,dz)(θz − 1− z∂x).

Comparing (2.18) with (2.12), we see that A0 is the generator of a Lévy process. Thus, using
(2.13), the fundamental solution Γ0 corresponding to A0 can be written as a Fourier integral

Γ0(t, x;T, y) =
1

2π

∫
dξ eiξ(x−y)+(T−t)Φ0(ξ),

where

Φ0(ξ) = iµ0ξ − a0ξ
2 +

∫
ν0(dz)(e

iξz − 1− iξz).

Since Γ0 is available in closed form, one can use (2.4) and (2.5) to find u0 and un respectively.
Explicit computations are carried out in Lorig et al. (2015c).

In this case, it is convenient to express un(t, x) as an (inverse) Fourier transform of ûn(t, x).
Defining

Fourier transform : ûn(t, ξ) = F[un(t, ·)](ξ) :=
∫

dx e−iξxun(t, x),

Inverse transform : un(t, x) = F
−1[ûn(t, ·)](x) :=

1

2π

∫
dx eiξxûn(t, ξ),
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we have

ûn(t, ξ) =
n∑

k=1

∫ T

t
dt1 e

(t1−t)Φ0(ξ)
∫

Rd
0

νk(i∂ξ,dz)
(
eiξz − 1− iξz

)
ûn−k(t1, ξ)

+
n∑

k=1

∫ T

t
dt1 e

(t1−t)Φ0(ξ)
(
µk(i∂ξ)(iξ)ûn−k(t1, ξ) + ak(i∂ξ)(iξ)

2ûn−k(t1, ξ)
)
,

where û0(t, ξ) is given by

û0(t, ξ) = eiξx+(T−t)Φ0(ξ)ϕ̂(ξ).

2.6 Small ‘vol of vol’ expansion

Lewis (2000) considers a stochastic volatility model of the form

dXt = −
1

2
Yt dt+

√
Yt dW

Q
t ,

dYt = α(Yt) dt+ εβ(Yt) dB
Q
t ,

d⟨WQ, BQ⟩t = ρdt.

The parameter ε is referred to as the volatility of volatility or vol of vol for short. The generator A
of (X,Y ) is given by

A = A0 + εA1 + ε2A2,

where

A0 =
y

2

(
∂2x − ∂x

)
+ α(y)∂y , A1 = ρ

√
yβ(y)∂x∂y, A2 =

1

2
β2(y)∂2y .

Thus, A is of the form (2.2). Moreover, the solution of

(∂t +A0)Γ0 = 0, Γ0(T, x, y;T, ξ) = δ(x − ξ),

is given by a Gaussian

Γ0(t, x, y;T, ξ, ζ) =
1√

2πσ2(t, T )
exp

(
−
(ξ − x− σ2(t, T )/2)2

2σ2(t, T )

)
δ(ζ − η(t)),

where σ2(t, T ) =
∫ T
t η(s) ds, and η(s) is the solution of the following ODE:

dη(s)

ds
= α(η(s)), η(t) = y.

Since Γ0 is available in closed form up to finding η, one can use (2.4) and (2.5) to find u0 and the
sequence of functions (un) respectively. In particular, for European calls one finds

u0 = uBS(σ̄(t, T )), σ̄(t, T ) =

√
σ2(t, T )

T − t

As the order zero price is equal to the Black-Scholes price, computed with volatility σ̄(t, T ), one
can apply the implied volatility asymptotics of Section 2.3 to find approximate implied volatilities.
Explicit expressions for approximate implied vols are given in Lewis (2000) for the case α(y) =
κ(θ − y) and β(y) = yγ .
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2.7 Separation of time-scales approach

In Fouque et al. (2000, 2011), the authors develop analytic price approximations for interest rate,
credit and equity derivatives. The authors’ approach (henceforth referred to as FPSS) exploits
the separation of time-scales that is observed in volatility time-series data. More specifically,
the authors consider a class of multiscale diffusion models in which the volatility of an under-
lying is driven by two factors, Y and Z, operating on fast and slow time-scales respectively.
Lorig and Lozano-Carbassé (2015) extend the FPSS method to models with jumps. Here, for
simplicity we consider an exponential Lévy-type model with a single slowly-varying factor, which
drives both the volatility and jump-intensity.

Consider a model for a stock S = eX , whereX is modeled under the risk-neutral pricing measure
as the solution of the following Lévy-Itô SDE

dXt = µ(Zt) dt+ σ(Zt) dW
Q
t +

∫

R

s dÑt(Zt−,ds),

dZt =
(
ε2c(Zt)− εΓ(Zt) g(Zt)

)
dt+ ε g(Zt) dB

Q
t , (risk-neutral measure Q)

d⟨WQ, BQ⟩t = ρdt.

Here, WQ and BQ are correlated Brownian motions and Ñ is a compensated state-dependent
Poisson random measure with which we associate a Lévy kernel ζ(z)ν(ds). The drift µ(z) is fixed
by the Lévy kernel and volatility so that S = eX is a martingale:

µ(z) = −
1

2
σ2(z) − ζ(z)

∫

R

ν(ds) (es − 1− s) .

Note that the volatility σ and Lévy kernel ζν are driven by Z, which is slowly-varying in the
following sense. Under the physical measure P, the dynamics of Z are given by

dZt = ε2c(Zt) dt+ ε g(Zt) dB̃t, (physical measure P)

where B̃t = BQ
t −

∫ t
0 Γ(Zs) ds is a standard P-Brownian motion (Γ is known as the market price of

risk associated with B̃). The infinitesimal generator of Z under the physical measure

AZ = ε2
(
1

2
g2(z)∂2z + c(z)∂z

)

is scaled by ε2, which is assumed to be a small parameter: ε2 << 1. Thus, Z fluctuates over an
intrinsic time-scale 1/ε2, which is large.

Due to the separation of time-scales the (X,Z) process has a generator that naturally factors
into three terms of different powers of ε, just as in (2.2):

A = A0 + εA1 + ε2A2,

where A0, A1 and A2 are given by

A0 = µ(z)∂x +
1

2
σ2(z)∂2x + ζ(z)

∫

R

ν(ds)(θs − 1− s∂x), (2.19)
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A1 = −Γ(z)g(z)∂z + ρg(z)σ(z)∂x∂z,

A2 =
1

2
g2(z)∂2z + c(z)∂z .

Here, the shift operator θs acts on the x variable. Comparing equations (2.12) and (2.19), we
observe that, for fixed z, the operator A0 above is the generator of a Lévy process. As the operator
A0 in (2.19) acts only on the variable x, the variable z serves only as a parameter. Thus we have

Γ0(t, x, z;T, y) =
1

2π

∫
dξ eiξ(x−y)+(T−t)Φ0(ξ,z),

where

Φ0(ξ, z) := iµ(z)ξ −
1

2
σ2(z)ξ2 + ζ(z)

∫
ν(ds)(eiξs − 1− iξs).

Because A is of the form (2.2) (set An = 0 for n ≥ 3), and since the fundamental solution Γ0

corresponding to A0 is known, we can use (2.4) and (2.5) to write u0 and u1 explicitly. For an
option with payoff ϕ(XT ) we have

u0(t, x, z) =

∫
dxϕ(y)

1

2π

∫
dξ eiξ(x−y)+(T−t)Φ0(ξ,z) =

1

2π

∫
dξ eiξ(x−y)+(T−t)Φ0(ξ,z)ϕ̂(ξ),

where ϕ̂ is the Fourier transform of ϕ.
A similar computation yields the following expression for u1:

u1(t, x, z) =
(T − t)/2

2π

∫

R

dξ eiξx+tΦ0(ξ,z)ϕ̂(ξ)Mξ(z),

where

Mξ(z) = V1(z)(−iξ3 + ξ2) + U1(z)

(
ξ2

∫

R

ν(ds)(es − 1− s) + iξ

∫

R

ν(ds)(eiξs − 1− iξs)

)

+ V0(z)(−ξ2 − iξ) + U0(z)

(
−iξ

∫

R

ν(ds)(es − 1− s) +

∫

R

ν(ds)(eiξs − 1− iξs)

)
,

and

V1(z) =
1

2
g(z)ρσ(z)∂zσ

2(z), V0(z) = −
1

2
g(z)Γ(z)∂zσ

2(z),

U1(z) = g(z)ρσ(z)∂zζ(z), U0(z) = −g(z)Γ(z)∂zζ(z).

If the coefficients of A and the payoff function are smooth and bounded, then one can establish the
following accuracy for the first order price approximation

|u(t, x, z) − (u0(t, x, z) + εu1(t, x, z))| = O(ε2),

which holds pointwise. Note that, to compute the approximate price of an option u0 + εu1,
one does not need full knowledge of (g,σ,Γ, ζ, ρ, z, ε). Rather, at order ε, the information con-
tained in these five functions and two variables is entirely captured by four group parameters

(εU1(z), εU0(z), εV1(z), εV0(z)). The values of these four parameters can be obtained by calibrating
to observed call and put prices, as described in detail in Lorig and Lozano-Carbassé (2015).
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2.8 Comparison of the Expansion schemes

The approximation methods presented in Sections 2.5, 2.6 and 2.7 exploit different small parameters
in A and therefore work best (i.e., provide the most accurate approximations) in different regimes.
Rigorous accuracy results must be obtained on a case-by-case basis. However, it is generally true
that the accuracy of ūn :=

∑n
k=0 uk depends on how well Ān :=

∑n
k=0 approximates A.

For example, the Taylor series expansion described in Section 2.5 works best if the coefficients
of A are slowly varying. In this case, the coefficients can be well-approximated by a Taylor series
of low order. Thus, a highly accurate approximation of A can be obtained with only a few terms.

The approximation considered in Section 2.6 works best when the diffusion coefficient of the
volatility-driving process Y is small in comparison to the drift coefficient of Y and the drift and
diffusion coefficients of X.

Finally, the approximation considered in Section 2.7 when the drift coefficient of the volatility-
driving process Z is small in comparison to the diffusion coefficient of Z, which in turn is small in
comparison to the drift and diffusion coefficients of X. As previously mentioned, this means that
the intrinsic time-scale of Z must be slow in comparison to the intrinsic time-scale of X.

3 Merton Problem with Stochastic Volatility: Model Coefficient

Polynomial Expansions

A landmark pair of papers on optimal investment strategy by Robert Merton analyzed the problem
of how an investor should optimally allocate his wealth between a riskless bond and some risky
assets, in order to maximize his expected utility of wealth. This problem, and its variation are now
referred to as the Merton problem.

In the original papers, each of the risky assets follows geometric Brownian motion with constant
volatility. This modeling assumption is convenient from the standpoint of analytic tractability, but
is not realistic in practice, as it does not allow for stochastic volatility. Because of this, there
has been much interest in analyzing how an investor’s optimal investment strategy changes in the
presence of stochastic volatility. Here we focus on asymptotic methods for analyzing the stochastic
control problem associated with portfolio optimization.

Analysis with multiscale stochastic volatility models described in Section 2.7 was presented in
the case of simple power utilities in (Fouque et al., 2000, Section 10.1), and expansions for a hedging
problem in Jonsson and Sircar (2002b,a) in the dual optimization problem, both for fast mean-

reverting stochastic volatility. In Fouque et al. (2012), expansions are constructed directly in the
primal problem under both fast and slow volatility fluctuations. Indifference pricing approximations
with exponential utility and fast volatility were studied in Sircar and Zariphopoulou (2005). In this
section, we present some new approximations for the Merton problem with stochastic volatility.

3.1 Models & Dynamic Programming Equation

The polynomial expansion techniques outlined in Section 2.5 can be extended to find explicit
asymptotic solutions to the Merton problem in a general local-stochastic volatility (LSV) setting,
i.e., σt = σ(t, St, Yt). To fix ideas, however, we consider the simpler stochastic volatility (SV)
setting, in which a risky asset S, under the physical probability measure P, is the solution of the
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following SDE

dSt = µ(Yt)St dt+ σ(Yt)St dB
S
t , dYt = c(Yt) dt+ β(Yt) dB

Y
t , d⟨BS, BY ⟩t = ρdt.

Here, BS and BY are standard Brownian motions with correlation ρ. Let W denote the wealth
process of an investor who holds πt units worth of currency in S at time t, and has (Wt − πt) units
of currency in a bond. For simplicity, we assume the risk-free rate of interest is zero. As such, the
wealth process W satisfies

dWt =
πt
St

dSt = πtµ(Yt) dt+ πtσ(Yt) dB
S
t .

Observe that S does not appear in the dynamics of the wealth process W .
An investor chooses πt to maximize his expected utility of wealth at a time T in the future,

where utility is measure by a smooth, increasing and strictly concave function U : R+ → R, and the
objective to maximize is EU(WT ). Increasing describes preference for more wealth than less, while
concavity captures risk aversion, more concave being more risk averse. The analysis is illustrated
with power utility functions in Section 3.3.

We define the investor’s value function u by

u(t, y, w) := sup
π∈Π

E[U(WT )|Yt = y,Wt = w],

where Π the set of admissible strategies:

Π :=
{
π adapted : E

∫ T

0
π2t σ

2(Yt) dt < ∞ and Wt ≥ 0 a.s.
}
,

where adapted means adapted to the filtration generated by (BS, BY ).
Assuming that u ∈ C1,2([0, T ],R,R+), the value function solves the Hamilton-Jacobi-Bellman

partial differential equation (HJB-PDE) problem

(∂t +A
Y )u+max

π∈R
A

πu = 0, u(T, y, w) = U(w), (3.1)

where
(
AY +Aπ

)
is the generator of (Y,W ) assuming a Markov investment strategy πt = π(t, Yt,Wt).

Specifically, the operators AY and Aπ are given by

A
Y = c(y)∂y +

1

2
β2(y)∂2y ,

A
π = π(t, y, w)µ(y)∂w +

1

2
π2(t, y, w)σ2(y)∂2w + π(t, y, w)ρσ(y)β(y)∂y∂w.

The optimal strategy π∗ is given by

π∗ = argmax
π∈R

A
πu = −

µ(∂wu) + ρβσ(∂y∂wu)

σ2(∂2wu)
, (3.2)

where, for simplicity (and from now on), we have omitted the arguments (t, y, w).
Inserting the optimal strategy π∗ into the HJB-PDE (3.1) yields

(
∂t +A

Y
)
u+N(u) = 0, (3.3)

where N(u) is a nonlinear term:

N(u) = −1
2λ

2 (∂wu)
2

∂2wu
− ρβλ

(∂wu)(∂y∂wu)

∂2wu
− 1

2ρ
2β2

(∂y∂wu)2

∂2wu
.

Here, we have introduced the Sharpe ratio λ(y) := µ(y)/σ(y).
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3.2 Asymptotic Approximation

For general {β, c,λ} there is no closed form solution of (3.3). Hence, we seek an asymptotic
approximation for u. To this end, using equation (2.15) from Section 2.5.1 as a guide, we expand
the coefficients in (3.3) in a Taylor series about an arbitrary point ȳ. Specifically, for any function
χ : R → R we may formally write

χ(y) =
∞∑

n=0

εnχn(y), χn(y) :=
1

n!
∂ny χ(ȳ) · (y − ȳ)n, ε = 1, (3.4)

where we have once again introduced ε for purposes of accounting. We also expand the function u
as a power series in ε

u =
∞∑

n=0

εnun, ε = 1. (3.5)

Now for each group of coefficients appearing in (3.3), we insert an expansion of the form (3.4), and
we define

An := cn∂y + (12β
2)n∂

2
y , n ∈ {0} ∪ N. (3.6)

We also insert into (3.3) our expansion (3.5) for u.
Next, collecting terms of like powers of ε, we obtain at lowest order

(∂t +A0)u0 − (12λ
2)0

(∂wu0)2

∂2wu0
− (ρβλ)0

(∂wu0)(∂y∂wu0)

∂2wu0
− (12ρ

2β2)0
(∂y∂wu0)2

∂2wu0
= 0,

with u0(T, y, w) = U(w). We can look for a solution u0 = u(t, w) that is independent of y, and
then we have

∂tu0 − (12λ
2)0

(∂wu0)2

∂2wu0
= 0, u0(T,w) = U(w). (3.7)

We observe that (3.7) is the same nonlinear PDE problem that arises when one considers an
underlying that has a constant drift µ0 = µ(ȳ), diffusion coefficient σ0 = σ(ȳ) and Sharpe ratio
λ0 = λ(ȳ) = µ(ȳ)/σ(ȳ).

It is convenient to define the risk-tolerance function

R0 :=
−∂wu0
∂2wu0

,

and the operators
Dk = Rk

0∂
k
w, k = 1, 2, . · · · .

We now proceed to the order O(ε) terms. Using u0 = u0(t, w) and (3.7) we obtain

(∂t +A0)u1 + (12λ
2
0)D2u1 + λ20D1u1 + (ρβλ)0D1∂yu1 = −(12λ

2)1D1u0,

u1(T, y, w) = 0,

which is a linear PDE problem for u1.
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We can re-write equations (3.8)-(3.9) more compactly as

(∂t +A0 +B0(t))u1 +H1 = 0, u1(T, y, w) = 0, (3.10)

where the linear operator B(t) and the source term H1 are given by

B0(t) =
1
2λ

2
0D2 + λ20D1 + (ρβλ)0D1∂y, H1 = (12λ

2)1R0∂wu0.

Observe that (3.10) is a linear PDE for u1.
The following change of variables (see Fouque et al. (2012)) will be useful for solving the PDE

problem (3.10). Define

u1(t, y, w) = q1(t, y, z(t, w)), z(t, w) = − log ∂wu0(t, w) +
1
2λ

2
0(T − t). (3.11)

Inserting (3.11) into (3.10), we find that q1 satisfies

0 = (∂t +A0 + C0)q1 +Q1, q1(T, y, z) = 0, (3.12)

where the operator C0 is given by

C0 =
1
2λ

2
0∂

2
z + (ρβλ)0∂y∂z, (3.13)

and the function Q1 satisfies H1(t, y, w) = Q1(t, y, z(t, w)).
Now, from (3.6) and (3.13), we observe that the operator (A0+C0) is the infinitesimal generator

of a diffusion in R2 whose drift vector and covariance matrix are constant. The semigroup P0(t, t′)
generated by (A0 + C0) is given by

P0(t, T )G(y, z) :=

∫

R2

dη dζ Γ0(t, y, z;T, η, ζ)G(η, ζ),

where Γ0, the fundamental solution corresponding to (∂t +A0 + C0), is a Gaussian kernel:

Γ0(t, y, z;T, η, ζ) =
1√

(2π)3|C|
exp

(
−
1

2
mTC−1m

)
,

with covariance matrix C and vector m given by

C = (T − t)

(
(β2)0 (ρβλ)0
(ρβλ)0 (λ2)0

)
, m =

(
η − y − (T − t)c0

ζ − z

)
.

By Duhamel’s principle, the unique classical solution to (3.12) is given by

q1(t) =

∫ T

t
dsP0(t, s)Q1(s),

In the case of a general utility function, (3.7) is easily solved numerically, for instance by solving
the fast diffusion (or Black’s) equation for the risk tolerance function R0 (see Fouque et al. (2012)).
Then u1 can also be computed numerically using the formulas above. In the case of power utility
there are explicit formulas, as given in Section 3.3.
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Having obtained an approximation for the value function u ≈ u0+u1 we now seek an expansion
for the optimal control π∗ ≈ π∗0 + π∗1. Inserting the expansion (3.4) of the coefficients and the
expansion (3.5) for u into (3.2), and collecting terms of like powers of ε we obtain

O(1) : π0 = −
µ0(∂wu0)

(σ2)0(∂2wu0)
, (3.14)

O(ε) : π1 = −π0
(σ2)1
(σ2)0

− π0
(∂2wu1)

(∂2wu0)
− µ1

(∂wu0)

(σ2)0(∂2wu0)

− µ0
(∂wu1)

(σ2)0(∂2wu0)
− (ρβσ)0

(∂y∂wu1)

(σ2)0(∂2wu0)
. (3.15)

Higher order terms for the both the value function u and the optimal control π∗ can be obtained
in the same manner as u1 and π1. Analysis of the asymptotic formulas for different utility functions
and stochastic volatility models is presented in more detail in Lorig and Sircar (2014).

3.3 Power Utility

Finally, we consider a utility function U from the Constant Relative Risk Aversion (CRRA), or
power family:

CRRA utility : U(w) :=
w1−γ

1− γ
, w > 0, γ > 0, γ ̸= 1,

where γ is called the risk aversion coefficient. Here all the quantities above can be computed
explicitly.

The explicit solution u0 to (3.7) is

u0(t, w) = U(w) exp

(
1

2
λ20

(
1− γ

γ

)
(T − t)

)
.

The risk-tolerance function is R0 =
w
γ , and the transformation in (3.11) is then

z(t, w) = γw + (T − t)

(
2γ − 1

γ

)
1
2λ

2
0.

An explicit computation reveals that u1 is given by

u1(t, y, w) = q1(t, y, z(t, w))

=
1− γ

γ
u0(t, w)

(
1
2λ

2(ȳ)
)′ (

(T − t)(y − ȳ) + 1
2(T − t)2

(
c0 +

1−γ
γ ρβ0λ0

))
.

For the specific case ȳ = y, the above expression simplifies to

u1(t, y, w) =
1− γ

γ
u0(t, w)

(
1
2λ

2(y)
)′ ( 1

2(T − t)2
(
c0 +

1−γ
γ ρβ0λ0

))
.

Using these explicit representations of u0 and u1 the expressions (3.14) and (3.15) for the optimal
stock holding approximations become

π∗0 =
µ0

γσ20
,
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π∗1(t, y) = (y − ȳ)

(
µ′(ȳ)

γσ20
−

µ0

γσ40

(
σ2(ȳ)

)′
)
+

(1− γ)(T − t)

γσ0

(
ρβ0

1
γ

(
1
2λ

2(ȳ)
)′)

.

For the specific case ȳ = y, the formula for π∗1 simplifies to

π∗1(t, y) =
(1− γ)(T − t)

γσ0
ρβ0

1
γ

(
1
2λ

2(y)
)′
.

4 Conclusion

Asymptotic methods can be used to analyze and simplify pricing and portfolio optimization prob-
lems, and we have presented some examples and methodologies. A key insight is to perturb problems
with stochastic volatility around their constant volatility counterparts to obtain the principle effect
of volatility uncertainty.

These approaches reduce the dimension of the effective problems that have to be solved, and
often lead to explicit formulas that can be analyzed for intuition. In the context of portfolio
problems accounting for stochastic volatility, recent progress has been made in cases where there
are transaction costs (Bichuch and Sircar (2014); Kallsen and Muhle-Karbe (2013)), stochastic risk
aversion that varies with market conditions (Dong and Sircar (2014)), and under more complex
local-stochastic volatility models (Lorig and Sircar (2014)).

26



References

Aı̈t-Sahalia, Y. and J. Jacod (2014). High-Frequency Financial Econometrics. Princeton University
Press.

Bakshi, G., C. Cao, and Z. Chen (1997, December). Empirical performance of alternative option
pricing models. J. Finance 52 (5).

Berestycki, H., J. Busca, and I. Florent (2004). Computing the implied volatility in stochastic
volatility models. Communications on Pure and Applied Mathematics 57 (10), 1352–1373.

Bichuch, M. and R. Sircar (2014). Optimal investment with transaction costs and stochastic volatil-
ity. Submitted .

Black, F. and M. Scholes (1972). The valuation of option contracts and a test of market efficiency.
Journal of Finance 27, 399–417.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. The journal of

political economy 81 (3), 637–654.

Dong, Y. and R. Sircar (2014). Time-inconsistent portfolio investment problems. In D. Crisan,
B. Hambly, and T. Zariphopoulou (Eds.), Stochastic Analysis and Applications 2014 - In Honour

of Terry Lyons. Springer.

Dupire, B. (1994). Pricing with a smile. Risk 7 (1), 18–20.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of
united kingdom inflation. Econometrica 50.

Fouque, J.-P., G. Papanicolaou, and R. Sircar (2000). Derivatives in Financial Markets with

Stochastic Volatility. Cambridge University Press.

Fouque, J.-P., G. Papanicolaou, R. Sircar, and K. Solna (2011). Multiscale stochastic volatility for

equity, interest rate, and credit derivatives. Cambridge: Cambridge University Press.

Fouque, J.-P., R. Sircar, and T. Zariphopoulou (2012). Portfolio optimization & stochastic volatility
asymptotics. Submitted .

Gulisashvili, A. (2012). Analytically tractable stochastic stock price models. Springer.

Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to
bond and currency options. Rev. Financ. Stud. 6 (2), 327–343.

Hull, J. and A. White (1987, June). The Pricing of Options on Assets with Stochastic Volatilities.
Journal of Finance 42 (2), 281–300.

Jonsson, M. and R. Sircar (2002a). Optimal investment problems and volatility homogenization
approximations. In A. Bourlioux, M. Gander, and G. Sabidussi (Eds.), Modern Methods in

Scientific Computing and Applications, Volume 75 of NATO Science Series II, pp. 255–281.
Kluwer.

27



Jonsson, M. and R. Sircar (2002b, October). Partial hedging in a stochastic volatility environment.
Mathematical Finance 12 (4), 375–409.

Kallsen, J. and J. Muhle-Karbe (2013). The general structure of optimal investment and consump-
tion with small transaction costs. Submitted .

Lee, R. W. (2004). The moment formula for implied volatility at extreme strikes. Mathematical

Finance 14 (3), 469–480.

Lewis, A. (2000). Option Valuation under Stochastic Volatility. Finance Press.
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