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Abstract

Two major financial market complexities are transaction costs and uncertain volatility, and we analyze
their joint impact on the problem of portfolio optimization. When volatility is constant, the transaction
costs optimal investment problem has a long history, especially in the use of asymptotic approximations
when the cost is small. Under stochastic volatility, but with no transaction costs, the Merton prob-
lem under general utility functions can also be analyzed with asymptotic methods. Here, we look at
the long-run growth rate problem when both complexities are present, using separation of time scales
approximations. This leads to perturbation analysis of an eigenvalue problem. We find the first term
in the asymptotic expansion in the time scale parameter, of the optimal long-term growth rate, and of
the optimal strategy, for fixed small transaction costs. We give a proof of accuracy in the case of fast
mean-reverting stochastic volatility, which is based on the finite time problem analyzed in the companion
Part II of this paper.

AMS subject classification 91G80, 60H30.

JEL subject classification G11.

Keywords Transaction costs, optimal investment, asymptotic analysis, utility maximization, stochastic
volatility.

1 Introduction

The portfolio optimization problem, first analyzed within a continuous time model in Merton [1969], ig-
nores two key features that are important for investment decisions, namely transaction costs and uncertain
volatility. Both these issues complicate the analysis of the expected utility maximization stochastic control
problem, and obtaining closed-form optimal policies, or even numerical approximations, is challenging due to
the increase in dimension by incorporating a stochastic volatility variable, and the singular control problem
that arises by considering proportional transaction costs. Here, we develop asymptotic approximations for
a particular long-run investment goal in a model with transaction costs and stochastic volatility.

The typical problem has an investor who can invest in a market with one riskless asset (a money market
account), and one risky asset (a stock), and who has to pay a transaction cost for selling the stock. The costs
are proportional to the dollar amount of the sale, with proportionality constant λ > 0. The investment goal
is to maximize the long-term growth rate. The original works all assumed stocks with constant volatility.
Transaction costs were first introduced into the Merton portfolio problem by Magill and Constantinides
[1976] and later further investigated by Dumas and Luciano [1991]. Their analysis of the infinite time
horizon investment and consumption problem gives an insight into the optimal strategy and the existence of
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a “no-trade” (NT) region. Under certain assumptions, Davis and Norman [1990] provided the first rigorous
analysis of the same infinite time horizon problem. These assumptions were weakened by Shreve and Soner
[1994], who used viscosity solutions to also show the smoothness of the value function.

When λ > 0, and the volatility is constant, the optimal policy is to trade as soon as the position is
sufficiently far away from the Merton proportion. More specifically, the agent’s optimal policy is to maintain
her position inside a NT region. If the investor’s position is initially outside the NT region, she should
immediately sell or buy stock in order to move to its boundary. She will trade only when her position is on
the boundary of the NT region, and only as much as necessary to keep it from exiting the NT region, while
no trading occurs in the interior of the region; see Davis et al. [1993].

There is a trade-off between the amount of transaction costs paid due to portfolio rebalancing and the
width of the NT region. A smaller NT region generally increases the amount spent paying transaction
costs in maintaining the optimal portfolio. Not surprisingly, the same behavior persists when volatility is
stochastic, but in this case, the boundaries of NT region in general will no longer be straight lines as before.
Hence, the approach of this paper is to find a simple strategy that will be asymptoticaly optimal in both the
volatility scaling and transaction costs parameters.

Small transaction cost asymptotic expansions (in powers of λ1/3) were used in Janecek and Shreve
[2004] for an infinite horizon investment and consumption problem. This approach allows them to find
approximations to the optimal policy and the optimal long-term growth rate, and is also used in Bichuch
[2012] for a finite horizon optimal investment problem. The survey article Guasoni and Muhle-Karbe [2013]
describes recent results using so-called shadow price to obtain small transaction cost asymptotics for the
optimal investment policy, its implied welfare, liquidity premium, and trading volume. All of the above
mentioned literature on transaction costs assumes constant volatility. Some recents exceptions are Kallsen
and Muhle-Karbe [2013a,b], where the stock is a general Itô diffusion, and Soner and Touzi [2013] where
the stock is described by a complete (local volatility) model. We summarize some of this literature and the
individual optimization problems and models that they study in Table 1.

Paper Model Utility Objective Solution

Dumas and Luciano [1991] B-S Power LTGR Explicit
Davis and Norman [1990] B-S Power ∞-consumption Numerical
Shreve and Soner [1994] B-S Power ∞-consumption Viscosity
Davis et al. [1993] B-S Exponential Option pricing Viscosity
Whalley and Wilmott [1997] B-S Exponential Option pricing λ-expansion
Janecek and Shreve [2004] B-S Power ∞-consumption λ-expansion
Bichuch [2012] B-S Power T <∞ λ-expansion
Dai et al. [2009] B-S Power T <∞ ODEs Free-Bdy
Gerhold et al. [2014] B-S Power LTGR λ-expansion
Goodman and Ostrov [2010] B-S General T <∞ λ-expansion
Choi et al. [2013] B-S Power ∞-consumption ODEs Free-Bdy
Kallsen and Muhle-Karbe [2013a] Itô General T ≤ ∞, consumption λ-expansion
Kallsen and Muhle-Karbe [2013b] Itô Exponential Option pricing λ-expansion
Soner and Touzi [2013] Local Vol General on R+ ∞-consumption λ-expansion
Caflisch et al. [2012] Stoch vol Exponential Option pricing λ-SV expansion
This paper Stoch vol Power LTGR SV expansion

Table 1: Problems, models and solution approaches. The acronyms used are: B-S = Black-Scholes, LTGR
= Long-Term Growth Rate, SV=Stochastic Volatility, Free-Bdy=Free Boundary.

Our approach exploits the fast mean-reversion of volatility (particularly when viewed over a long in-
vestment horizon) leading to a singular perturbation analysis of an impulse control problem. We treat the
case, when the volatility is slowly mean reverting separately. This complements multiscale approximations
developed for derivatives pricing problems described in Fouque et al. [2011] and for optimal hedging and
investment problems in Jonsson and Sircar [2002] and Fouque et al. [2013] respectively. Recently, Caflisch
et al. [2012] study indifference pricing of European options with exponential utility, fast mean-reverting
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stochastic volatility and small transaction costs which scale with the volatility time scale. The current trans-
action cost problem can be characterized as a free-boundary problem. The fast mean-reversion asymptotics
for the finite horizon free boundary problem arising from American options pricing was developed in Fouque
et al. [2001], and recently there has been interest in similar analysis for perpetual (infinitely-lived) American
options (used as part of a real options model) in Ting et al. [2013], and for a structural credit risk model
in McQuade [2013]. Here, we also have an infinite horizon free-boundary problem, but it is, in addition, an
eigenvalue problem.

In Section 2 of this paper, we introduce our model and objective function and give the associated
Hamilton-Jacobi-Bellman (HJB) equation. In Section 3 we perform the formal asymptotic analysis. We
first consider the fast-scale stochastic volatility in Section 4, where we find the first correction term in the
power expansion of the value function, and as a result also find the corresponding term in the power expan-
sion of the optimal boundary. We perform similar analysis in the case of slow-scale stochastic volatility in
Section 5. In Section 6 we show numerical calculations based on our results, and give an alternative intuitive
explanation to the findings. We give a proof of accuracy in Section 4.3 for the case of fast mean-reverting
stochastic volatility combined with a small transaction cost expansion. This is based on the finite time
problem analysis in the companion Part II of this paper Bichuch and Sircar [2015].

We summarize the results obtained in the paper in Section 7, and leave some technical computations to
the Appendix.

2 A Class of Stochastic Volatility Models with Transaction Costs

An investor can allocate capital between two assets – a risk-free money market account with constant rate
of interest r, and risky stock S that evolves according to the following stochastic volatility model:

dSt
St

= (µ+ r) dt+ f(Zt) dB
1
t ,

dZt =
1

ε
α(Zt) dt+

1√
ε
β(Zt) dB

2
t ,

where B1 and B2 are Brownian motions, defined on a filtered probability space (Ω,F , {F(t)}t≥0,P), with
constant correlation coefficient ρ ∈ (−1, 1): d

〈
B1, B2

〉
t

= ρ dt. We assume that f(z) is a smooth, bounded
and strictly positive function, and that the stochastic volatility factor Zt is a fast mean-reverting process,
meaning that the parameter ε > 0 is small, and that Z is an ergodic process with a unique invariant
distribution Φ that is independent of ε. We refer to [Fouque et al., 2011, Chapter 3] for further technical
details and discussion. Additionally r, µ are positive constants, and α, β are smooth functions: examples will
be specified later for computations.

2.1 Investment Problem

The investor must choose a policy consisting of two adapted processes L and M that are nondecreasing and
right-continuous with left limits, and L0− = M0− = 0. The control Lt represents the cumulative dollar value
of stock purchased up to time t, while Mt is the cumulative dollar value of stock sold. Then, the wealth X
invested in the money market account and the wealth Y invested in the stock follow

dXt = rXt dt− dLt + (1− λ) dMt,

dYt = (µ+ r)Yt dt+ f(Zt)Yt dB
1
t + dLt − dMt.

The constant λ ∈ (0, 1) represents the proportional transaction costs for selling the stock.
Next, we define the standard solvency region, see for example Davis and Norman [1990]

S , {(x, y); x+ y > 0, x+ (1− λ) y > 0} , (2.1)

which is the set of all positions, such that if the investor were forced to liquidate immediately, she would
not be bankrupt. This leads to a definition that a policy (Ls,Ms)

∣∣
s≥t is admissible for the initial position

Zt = z and (Xt−, Yt−) = (x, y) starting at time t−, if (Xs, Ys) is in the closure of solvency region, S, for
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all s ≥ t. (Since the investor may choose to immediately rebalance his position, we have denoted the initial
time t−). Let A(t, x, y, z) the set of all such policies. Clearly, if (x, y) ∈ S then we can always liquidate
the position, and then hold the resulting cash position in the risk-free money market account. It is easy to
adapt the proof in Shreve and Soner [1994] (for the constant volatility case) to show that A(t, x, y, z) 6= ∅ if
and only if (t, x, y, z) ∈ [0,∞)× S × R.

We work with CRRA or power utility functions U(w) defined on R+:

U(w) :=
w1−γ

1− γ
, γ > 0, γ 6= 1,

where γ is the constant relative risk aversion parameter. We are interested in maximizing:

sup
(L,M)∈A(0,x,y,z)

lim inf
T→∞

1

T
logU−1

(
Ex,y,z0

[
U
(
XT + YT − λY +

T

)])
, (x, y, z) ∈ S × R,

where Ex,y,zt [·] := E[·
∣∣Xt− = x, Yt− = y, Zt = z]. This is a problem in optimizing long term growth.

To see the economic interpretation note that the quantity U−1
(
Ex,y,z0

[
U
(
XT + YT − λY +

T

)])
is the cer-

tainty equivalent of the terminal wealth XT + YT − λY +
T . Hence if we can match this certainty equiv-

alent with (x + y − λy+) e(r+δε)T – the investor’s initial capital compounded at some rate r + δε, then
1
T logU−1

(
Ex,y,z0

[
U
(
XT + YT − λY +

T

)])
= r + δε. For a survey and literature on this choice of objective

function we refer to Guasoni and Muhle-Karbe [2013]. This choice of optimization problem ensures the
simplest HJB equation, which in this case turns out to be linear and time independent.

2.2 HJB Equation

Consider first the value function for utility maximization at a finite time horizon T :

V̂ (t, x, y, z) = sup
(L,M)∈A(t,x,y,z)

Ex,y,zt

[
U
(
XT + YT − λY +

T

)]
.

From Itô’s formula it follows that

dV̂ (t,Xt, Yt, Zt)

=

(
V̂t + rXtV̂x + (µ+ r)YtV̂y +

1

2
f2(Zt)Y

2
t V̂yy +

1√
ε
ρf(Zt)β(Zt)YtV̂yz

)
dt

+
1

ε

(
α(Zt)V̂z +

1

2
β2(Zt)V̂

2
zz

)
dt+ f(Zt)YtV̂y dB

1
t +

1√
ε
β(Zt)Vz dB

2
t

+
(
V̂y − V̂x

)
dLt +

(
(1− λ)V̂x − V̂y

)
dMt.

Since V̂ must be a supemartingale, the dt, dLt and dMt terms must not be positive. It follows that V̂y−V̂x ≤ 0

and (1− λ)V̂x − V̂y ≤ 0. Alternatively,

1 ≤ V̂x

V̂y
≤ 1

1− λ
. (2.2)

We will define the no-trade (N̂T) region, associated with V̂ , to be the region where both of these inequalities

are strict. Moreover, for the optimal strategy, V̂ is a martingale, and so the dt term above must be zero
inside the N̂T region. Thus it will then satisfy the HJB equation

max
{

(∂t +Dε)V̂ , (∂y − ∂x)V̂ , ((1− λ) ∂x − ∂y) V̂
}

= 0, V̂ (T, x, y, z) = U(x+ y − λy+), (2.3)

where

Dε = rx∂x + (µ+ r) y∂y +
1

2
f2(z)y2∂2

yy +
1√
ε
ρf(z)β(z)y∂2

yz

+
1

ε

(
α(z)∂z +

1

2
β2(z)∂2

zz

)
.
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For simplicity of exposition and to avoid technicalities, the following assumptions will be assumed to hold
throughout this section. Later, in Section 4.3, where an accuracy proof is presented a different set of (more
technical) assumption will be used instead.

Assumption 2.1. The value function V̂ is a classical solution of the HJB equation (2.3).

Remark 1. Shreve and Soner [1994] show that the value function is a viscosity solution of the appropriate
HJB equation in case of constant model coefficients. This proof can be modified and extended to our case
of stochastic volatility. However, in the interest of brevity, this will be omitted. Additionally, it easily
follows that V̂ is smooth (twice continuously differentiable in y and z and once continuously differentiable

in t and x), strictly inside the following regions: the N̂T region, and the regions where (∂y − ∂x)V̂ = 0,

and ((1− λ) ∂x − ∂y) V̂ = 0. Additionally, it is common to assume that this smoothness is also true on the

boundary of the N̂T region, see, for instance, Goodman and Ostrov [2010]. This assumption is known as the
smooth fit assumption. Note, that Assumption 2.1 incorporates all the above assertions and claims into one.

Next, we look for a solution of the HJB equation (2.3) of the form

V (t, x, y, z) = x1−γvλ,ε (ζ, z) e(1−γ)(r+δε)(T−t), ζ =
y

x
, (2.4)

where δε is a constant, and the function vλ,ε is to be found. However, we will not impose the final time
condition on V . For now, we will only assume that it is smooth and vλ,ε does not change sign, and is zero
or negative infinity on the boundary in case γ ∈ (0, 1) and γ > 1 respectively. We will define the NT region
(associated with V ) as the region where (∂t +Dε)V = 0. Additionally, for the rest of this section we will
assume that

Assumption 2.2. We will assume that V is sufficiently smooth, that is V is twice continuously differentiable
in y and z, with bounded first derivatives in y and z, and once continuously differentiable in t and x, and
that |V (t, x, y, z)| > 0, (t, x, y, z) ∈ [0, T ]×S×R, and V = U on [0, T ]×∂S×R. Additionally, we will assume
that for any point (t, x, y, z) in the NT region, the ratio y/x is bounded. Moreover, we will also assume that

there exists optimal strategy for V̂ .

Remark 2. This assumption has been proved in the constant coefficients case, see for example Janecek and
Shreve [2004], and is also common in the transaction costs literature: see for example Goodman and Ostrov
[2010] or Kallsen and Muhle-Karbe [2013a]. Note also that this is very natural assumption as, in the limit
when ε, λ→ 0, the optimal strategy is expected to converge to the (constant) Merton proportion.

We note that V is not equivalent to the value function V̂ , since we have not imposed the final time
condition V (T, x, y, z) = U(x + y − λy+). In fact there is no reason to believe that the final time condition
can be satisfied if V is given by (2.4).

Proposition 2.3. Under Assumptions 2.1, 2.2 there exists a constant C > 0, such that 1
CV ≤ V̂ ≤ CV .

The proof is given in the Appendix A.
It then follows that δε is the optimal growth rate and the NT region for the long-term optimal growth

problem can be defined as the region where (∂t +Dε)V = 0. In other words,

lim inf
T→∞

1

T
logU−1

(
V̂ (0, x, y, z)

)
= lim inf

T→∞

1

T
logU−1 (V (0, x, y, z))

= lim inf
T→∞

1

T

log V (0, x, y, z)

1− γ
= r + δε.

Inserting the transformation (2.4) into (2.3) leads to the following equation for (vλ,ε, δε):

max

{
1

ε
L0 +

1√
ε
L1 + (L2 − (1− γ) δε·) , B, S

}
vλ,ε = 0, (2.5)
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where we define the operators in the NT region by

L0 =
1

2
β2(z)∂2

zz + α(z)∂z, L1 = ρf(z)β(z)ζ∂2
ζz, L2 =

1

2
f2(z)ζ2∂ζζ + µζ∂ζ , (2.6)

and the buy and sell operators by

B = (1 + ζ) ∂ζ − (1− γ)· , (2.7)

S =

(
1

1− λ
+ ζ

)
∂ζ − (1− γ)· , (2.8)

respectively. For future reference, we also define their derivatives

B′ = ∂ζB = (1 + ζ) ∂ζζ + γ∂ζ ,

S ′ = ∂ζS =

(
1

1− λ
+ ζ

)
∂ζζ + γ∂ζ .

2.3 Free Boundary Formulation & Eigenvalue Problem

We will look for a solution to the variational inequality (2.5) in the following free-boundary form. The NT
region is defined by (2.2), but for the function V . Using the transformation (2.4), this translates to

1 + ζ < (1− γ)

(
vλ,ε

vλ,εζ

)
<

1

1− λ
+ ζ

for vλ,ε(ζ, z). Similar to the case with constant volatility, we assume that there exists a no-trade region,

within which
(

1
εL0 + 1√

ε
L1 + (L2 − (1− γ) δε·)

)
vλ,ε = 0, with boundaries `ε(z) and uε(z). We write this

region as
min{`ε(z), uε(z)} < ζ < max{`ε(z), uε(z)},

where `ε(z) and uε(z) are free boundaries to be found. In typical parameter regimes, we will have 0 <
`ε(z) < uε(z), so we can think of them as lower and upper boundaries respectively, with `ε being the buy
boundary, and uε the sell boundary. (The other two possibilities are that `ε < uε < 0 with `ε being the buy
boundary, and uε the sell boundary, or that `ε < uε < 0 with `ε being the sell boundary, and uε the buy
boundary. Under a constant volatility model these cases can be categorized explicitly in term of the model
parameters: see Remark 3).

Inside this region we have from the HJB equation (2.5) that(
1

ε
L0 +

1√
ε
L1 + (L2 − (1− γ) δε)

)
vλ,ε = 0, ζ ∈ (`ε(z), uε(z)). (2.9)

The free boundaries `ε and uε are determined by continuity of the first and second derivatives of vλ,ε with
respect to ζ, that is looking for a C2 solution. In the buy region,

Bvλ,ε = 0 in ζ < `ε(z), (2.10)

and so the smooth pasting conditions at the lower boundary are

Bvλ,ε |`ε(z) = (1 + `ε(z)) vλ,εζ (`ε(z))− (1− γ)vλ,ε(`ε(z)) = 0, (2.11)

B′vλ,ε |`ε(z) := (1 + `ε(z)) vλ,εζζ (`ε(z)) + γvλ,εζ (`ε(z)) = 0. (2.12)

In the sell region, the transaction cost enters and we have:

Svλ,ε = 0 in ζ > uε(z). (2.13)
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Therefore the sell boundary conditions are:

Svλ,ε |uε(z) =

(
1

1− λ
+ uε(z)

)
vλ,εζ (uε(z))− (1− γ)vλ,ε(uε(z)) = 0, (2.14)

S ′vλ,ε |uε(z) :=

(
1

1− λ
+ uε(z)

)
vλ,εζζ (uε(z)) + γvλ,εζ (uε(z)) = 0. (2.15)

We note that (2.9), (2.10) and (2.13) are homogeneous equations with homogeneous boundary conditions
(2.11), (2.12), (2.14) and (2.15), and so zero is a solution. However the constant δε is also to be determined,
and in fact it is an eigenvalue found to exclude the trivial solution and give the optimal long-term growth
rate. In the next section, we construct an asymptotic expansion in ε for this eigenvalue problem using these
equations.

3 Fast-scale Asymptotic Analysis

Inside the no-trade region we look for an expansion for the value function of the form

vλ,ε = vλ,0 +
√
ε vλ,1 + εvλ,2 + · · · , (3.1)

as well as for the free boundaries

`ε = `0 +
√
ε `1 + ε`2 + · · · , uε = u0 +

√
ε u1 + εu2 + · · · , (3.2)

and the optimal long-term growth rate

δε = δ0 +
√
εδ1 + · · · , (3.3)

which are asymptotic as ε ↓ 0. In other words, we look for the bounded functions vλ,i, `i, ui, δi, i = 0, 1, 2,
and such that the error |vλ,ε −

(
vλ,0 +

√
ε vλ,1 + εvλ,2

)
| = o(ε), with similar error estimates holding for

expansions (3.2) and (3.3).
Crucial to this analysis is the Fredholm alternative (or centering condition) as detailed in Fouque et al.

[2011]. In preparation, we will use the notation 〈·〉 to denote the expectation with respect to the invariant
distribution Φ of the process Z, namely

〈g〉 :=

∫
g(z)Φ(dz).

The Fredholm alternative tells us that a Poisson equation of the form

L0v + χ = 0

has a solution v only if the solvability condition 〈χ〉 = 0 is satisfied, and we refer for instance to [Fouque
et al., 2011, Section 3.2] for technical details.

It is also convenient to introduce the differential operators

Dk = ζk
∂k

∂ζk
, k = 1, 2, · · · , (3.4)

so that the operators L1 and L2 in (2.6) can be expressed as

L1 = ρf(z)β(z)∂zD1, L2 =
1

2
f(z)2D2 + µD1.

In the following, a key role will be played by the squared-averaged volatility σ̄ defined by

σ̄2 =
〈
f2
〉
. (3.5)
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The principal terms in the expansions will be related to the constant volatility transaction costs problem,
and we define the operator LNT(σ; δ) that acts in the no trade region by

LNT(σ; δ) =
1

2
σ2D2 + µD1 − (1− γ) δ· , (3.6)

and it is written as a function of the parameters σ and δ.
The zero-order terms in each of the asymptotic expansions (3.1), (3.2) and (3.3) are known and will be

re-derived in Section 4. In the rest of this section, we calculate the next terms in the above asymptotic
expansion in the case of fast-scale stochastic volatility.

3.1 Power expansion inside the NT region

In this subsection we will concentrate on constructing the expansion inside the NT region (lε(z), uε(z)),
where (2.5) holds. We now insert the expansion (3.1) and match powers of ε.

The terms of order ε−1 lead to L0v
λ,0 = 0. Since the L0 operator takes derivatives in z, we seek a solution

of the form vλ,0 = vλ,0(ζ), independent of z.
At order ε−1/2, we have L1v

λ,0 + L0v
λ,1 = 0. But since L1 takes a derivative in z, L1v

λ,0 = 0, and so
L0v

λ,1 = 0. Again, we seek a solution of the form vλ,1 = vλ,1(ζ) that is independent of z.
The terms of order one give

(L2 − (1− γ) δ0) vλ,0 + L1v
λ,1 + L0v

λ,2 = 0.

Since we have that L1 takes derivatives in z, and vλ,1 is independent of z, we have that

(L2 − (1− γ) δ0) vλ,0 + L0v
λ,2 = 0. (3.7)

This is a Poisson equation for vλ,2 with 〈(L2 − (1− γ) δ0)〉 vλ,0 = 0 as the solvability condition. We observe
that

〈(L2 − (1− γ) δ0·)〉 = LNT(σ̄; δ0),

where σ̄ is the square-averaged volatility defined in (3.5), and LNT is the constant volatility no trade operator
defined in (3.6). Then we have

LNT(σ̄; δ0)vλ,0 = 0, (3.8)

which, along with boundary conditions we will find in the next subsection, will determine vλ,0.
To find the equation for the next term vλ,1 in the approximation, we proceed as follows. We write the

first term of (3.7) as

(L2 − (1− γ) δ0) vλ,0 = ((L2 − (1− γ) δ0)− LNT(σ̄; δ0)) vλ,0 =
1

2

(
f2(z)− σ̄2

)
D2v

λ,0.

The solutions of (3.7) are given by

vλ,2 = −L−1
0 (L2 − (1− γ) δ0) vλ,0 = −1

2
L−1

0

(
f2(z)− σ̄2

)
D2v

λ,0 = −1

2
(φ(z) + c(ζ))D2v

λ,0, (3.9)

where c(ζ) is independent of z, and φ(z) is a solution to the Poisson equation

L0φ(z) = f2(z)− σ̄2. (3.10)

Continuing to the order
√
ε terms, we obtain

(L2 − (1− γ) δ0) vλ,1 + L1v
λ,2 + L0v

λ,3 − (1− γ)δ1v
λ,0 = 0.

Once again, this is a Poisson equation for vλ,3 whose centering condition implies that

〈(L2 − (1− γ) δ0)〉 vλ,1 +
〈
L1v

λ,2
〉
− (1− γ)δ1v

λ,0 = 0.
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From (3.9), it follows that

LNT(σ̄; δ0)vλ,1 − (1− γ)δ1v
λ,0 = −

〈
L1v

λ,2
〉

=
1

2
〈L1φ〉D2v

λ,0 =
1

2
ρ 〈βfφ′〉D1D2v

λ,0. (3.11)

We define

V3 = −1

2
ρ 〈βfφ′〉 . (3.12)

Then we write the equation (3.11) as

LNT(σ̄; δ0)vλ,1 = −V3D1D2v
λ,0 + (1− γ)δ1v

λ,0. (3.13)

3.2 Boundary Conditions

So far we have concentrated on the PDE (2.5) in the NT region. We now insert the expansions (3.1) and
(3.2) into the boundary conditions (2.11)–(2.15). The terms of order one from (2.11) and (2.12) give

Bvλ,0 |`0= 0, and B′vλ,0 |`0= 0, (3.14)

while the terms of order one from (2.14) and (2.15) give

Svλ,0 |u0
= 0, and S ′vλ,0 |u0

= 0, (3.15)

Since vλ,0 is independent of z, these equations imply that `0 and u0 are also independent of z (they are
constants).

Taking the order
√
ε terms in (2.11) gives

(1 + `0)
(
vλ,1ζ (`0) + `1v

λ,0
ζζ (`0)

)
+ `1v

λ,0
ζ (`0)− (1− γ)

(
vλ,1(`0) + `1v

λ,0
ζ (`0)

)
= 0.

Using the fact that Bvλ,0 |`0= 0, we see the terms in `1 cancel, and we obtain

Bvλ,1 |`0= 0, (3.16)

which is a mixed-type boundary condition for vλ,1 at the boundary `0.
From the order

√
ε terms in (2.12), we obtain

`1

(
vλ,0ζζ (`0) + (1 + `0) vλ,0ζζζ(`0) + γvλ,0ζζ (`0)

)
+
[
(1 + `0) vλ,1ζζ (`0) + γvλ,1ζ (`0)

]
= 0,

and so, as vλ,1 does not depend on z, `1 is also a constant (independent of z) given by

`1 = −

(
B′vλ,1 |`0

(1 + `0) vλ,0ζζζ(`0) + (1 + γ)vλ,0ζζ (`0)

)
. (3.17)

Similar calculations can be performed on the (right) sell boundary uε ≈ u0 +
√
εu1, where Svλ,ε = 0.

The analogous equations to (3.16) and (3.17) are

Svλ,1 |u0
= 0. (3.18)

u1 = −

 S ′vλ,1 |u0(
1

1−λ + u0

)
vλ,0ζζζ(u0) + (1 + γ)vλ,0ζζ (u0)

 . (3.19)

Note that (3.18) is a mixed-type boundary condition for vλ,1 at the boundary u0, and (3.19) determines the
constant correction term u1 to the sell boundary.
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3.3 Determination of δ1

The next term vλ,1 in the asymptotic expansion solves the ODE (3.13), with boundary conditions (3.16) and
(3.18), but we also need to find δ1 which appears in the equation. In fact, the Fredholm solvability condition
for this equation determines δ1, and so we look for the solution w of the homogeneous adjoint problem.

To do that we first multiply both sides of (3.13) by w and integrate from `0 to u0:∫ u0

`0

wLNTv
λ,1dζ = −V3

∫ u0

`0

D1D2v
λ,0wdζ + (1− γ)δ1

∫ u0

`0

vλ,0wdζ. (3.20)

Integration by parts gives∫ u0

`0

wLNTv
λ,1dζ =

∫ u0

`0

vλ,1L∗NTw dζ +

[
σ̄2

2
vλ,1ζ ζ2w − σ̄2

2
(ζ2w)′vλ,1 + µζwvλ,1

]u0

`0

, (3.21)

where L∗NT = L∗NT(σ̄; δ0) is the adjoint operator to LNT:

L∗NT(σ̄; δ0)(w) =
1

2
σ̄2∂ζζ

(
ζ2w

)
− µ∂ζ(ζw)− (1− γ)δ0w.

We set w to satisfy
L∗NT(σ̄; δ0)(w) = 0, (3.22)

and, to cancel the boundary terms in (3.21), the boundary conditions

`0w
′(`0)− k−w(`0) = 0, u0w

′(u0)− k+w(u0) = 0, (3.23)

where we define the constants

k± := (1− γ)π± + (k − 2), and k :=
µ

1
2 σ̄

2
. (3.24)

Lemma 3.1. The solution w to the adjoint equation (3.22) with boundary conditions (3.23) is, up to a
multiplicative constant, given by

w(ζ) = ζk−2vλ,0(ζ), (3.25)

where k was defined in (3.24).

Proof. Making the substitution (3.25) into (3.22) leads to the equation (3.8) satisfied by vλ,0. Similarly
inserting (3.25) into the boundary conditions (3.23) leads to the boundary conditions (3.14) and (3.15)
satisfied by vλ,0. The conclusion follows.

Now the left hand side of (3.20) is zero, and so we find that δ1 is given by

δ1 =
V3

(1− γ)

∫ u0

`0
wD1D2v

λ,0dζ∫ u0

`0
wvλ,0dζ

. (3.26)

Note that δ1 is well defined, as the undetermined multiplicative constant of vλ,0 cancels in the ratio.

3.4 Summary of the Asymptotics

To summarize, we have sought the zeroth and first order terms in the expansions (3.1), (3.2) and (3.3) for
(vλ,ε, `ε, uε, δε). The principal terms are found from the eigenvalue problem described by ODE (3.8), with
boundary and free boundary conditions (3.14)-(3.15):

LNT(σ̄; δ0)vλ,0 = 0, `0 ≤ ζ ≤ u0,

Bvλ,0 |`0= 0, and B′vλ,0 |`0= 0 ; Svλ,0 |u0
= 0, and S ′vλ,0 |u0

= 0.

The next term in the asymptotic expansion of the boundaries of the NT region, and of the optimal
long-term growth rate `1, u1, and δ1 respectively, are given by (3.17), (3.19) and (3.26), and vλ,1 solves the
ODE (3.13), with boundary conditions (3.16) and (3.18):

LNT(σ̄; δ0)vλ,1 = −V3D1D2v
λ,0 + (1− γ)δ1v

λ,0, `0 < ζ < u0,

Bvλ,1 |`0= 0, and Svλ,1 |u0
= 0.

We describe the essentially-explicit solutions to these problems in the next section.
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4 Building the Solution

In the previous section we have established that (vλ,0, δ0) solve the constant volatility optimal growth rate
with transaction costs problem, which is described in Dumas and Luciano [1991], but using the averaged
volatility σ̄, where σ̄2 = 〈f2〉. In this section, we review how to find (vλ,0, δ0), and then use them to build
the stochastic volatility corrections (vλ,1, δ1).

4.1 Building vλ,0 and δ0

We denote by (V0(ζ;σ),∆0(σ), L0(σ), U0(σ)) the solution to the constant volatility problem with volatility
parameter σ and corresponding eigenvalue ∆0, and so

vλ,0(ζ) = V0(ζ; σ̄), δ0 = ∆0(σ̄), and (`0, u0) = (L0(σ̄), U0(σ̄)). (4.1)

Assumption 4.1. Without loss of generality assume that µ > 0. The case µ < 0 can be handled similarly
to the current case. The case µ = 0 is not interesting, as in this case one would not hold the risky stock at
all. We also assume that the optimal proportion of wealth invested into the risky stock in case of constant
volatility σ and zero transaction costs is less than 1:

πM = πM (σ) :=
µ

γσ2
< 1. (4.2)

We will refer to πM as the Merton proportion.

Remark 3. It turns out that under the assumption (4.2), we will have 0 < L0 < U0. The other two cases
when µ < 0 and when µ

γσ2 > 1 can be handled similarly. If µ < 0, we would have L0 < U0 < 0, with L0

being the buy boundary, and U0 the sell boundary. If we had πM > 1, then L0 < U0 < 0 and L0 is the sell
boundary, and U0 the buy boundary. For ε > 0 small enough, the same is true for `ε(z) and uε(z). The final
case when πM = 1 is not interesting either, since in this case, all wealth will be invested into stock, and no
trading will be necessary, except possibly at the initial time. The cases when πM = 0, 1 are singular cases, as
these cases do not require intermediate portfolio rebalancing. Indeed, an initial trade either liquidating the
stock or the cash position, corresponding to when πM = 0 or πM = 1 respectively is sufficient, and no other
trade would be necessary. Hence, these cases would not be considered.

Also, note that under these assumptions, we are assured that the NT region is non-degenerate, see for
example Shreve and Soner [1994]. The intuition is that if one were to write an SDE for the process Yt

Xt
, it

will have a non-zero diffusion coefficient, which is of finite second variation and so of infinite first variation,
thus it cannot be held on a curve by two processes of finite variation.

In preparation, we define the following quantities. Given ∆0, we define

θ± = θ±(∆0) as the roots of
1

2
σ2θ2 +

(
µ− 1

2
σ2

)
θ − (1− γ)∆0 = 0, (4.3)

and let

π± = π±(∆0) be the roots of
1

2
γσ2π2 − µπ + ∆0 = 0, (4.4)

where in both cases, we will suppress the dependency on ∆0. Additionally, let

L0 :=
π−

1− π−
, U0 :=

(
1

1− λ

)
π+

1− π+
, (4.5)

where we have again suppressed the dependency on ∆0, and we also define

k` :=
1 + L0

1− γ
and ku :=

1
1−λ + U0

1− γ
. (4.6)

Proposition 4.2. The function V0(ζ) is given by

V0(ζ) = c+v+(ζ) + c−v−(ζ), with c± := v∓(L0)− k`v′∓(L0),

where, given (µ, σ, λ, γ), there are two cases:

11



Real Case: The eigenvalue ∆0 is a real root of the algebraic equation(
θ+

π−
+
θ−
π+
− (1− 2γ)

)
L0

(θ+−θ−) −
(
θ+

π+
+
θ−
π−
− (1− 2γ)

)
U

(θ+−θ−)
0 = 0, (4.7)

and θ±(∆0) in (4.3) are real and distinct. Then v±(ζ) = ζθ± .

Complex Case: Otherwise, ∆0 is the real root of the transcendental equation

θi

(
k`
L0
− ku
U0

)
−
[(

k`
L0
θr − 1

)(
ku
U0
θr − 1

)
+
θ2
i kuk`
U0L0

]
tan

(
θi log

(
U0

L0

))
= 0, (4.8)

where θr(∆0), θi(∆0) the real and the imaginary parts of θ+(∆0). Then

v+(ζ) = ζθr cos(θi log ζ), v−(ζ) = ζθr sin(θi log ζ). (4.9)

Proof. We have that V0 solves the ODE LNT(σ; ∆0)V0 = 0 in the NT region:

1

2
σ2ζ2V ′′0 + µζV ′0 − (1− γ)∆0V0 = 0, 0 < L0 ≤ ζ ≤ U0, (4.10)

with boundary conditions

(1 + L0)V ′0(L0)− (1− γ)V0(L0) = 0, (4.11)

(1 + L0)V ′′0 (L0) + γV ′0(L0) = 0 (4.12)

at the lower boundary L0 and analogous conditions(
1

1− λ
+ U0

)
V ′0(U0)− (1− γ)V0(U0) = 0, (4.13)(

1

1− λ
+ U0

)
V ′′0 (U0) + γV ′0(U0) = 0 (4.14)

at the upper boundary U0. This is a free-boundary problem with two undetermined boundaries and two
conditions on each boundary. We note that V0 ≡ 0 is a solution of (4.10) and the boundary conditions
(4.11)–(4.14), but that the long-term growth rate ∆0 also has to be found. In fact it will be determined as
an eigenvalue that eliminates the trivial solution.

First, substituting from (4.11) and (4.12) into (4.10) at L0, we have

−1

2
σ2(1− γ)γ

L0
2

(1 + L0)2
V0 + µ(1− γ)

L0

1 + L0
V0 − (1− γ)∆0V0 = 0. (4.15)

Then for a non-trivial V0, equation (4.15) becomes the quadratic equation

1

2
γσ2π2

− − µπ− + ∆0 = 0, where π− :=
L0

1 + L0
. (4.16)

By substituting (4.13) and (4.14) into (4.10) at U0, we obtain the same equation

1

2
γσ2π2

+ − µπ+ + ∆0 = 0, where π+ :=
U0

1
1−λ + U0

. (4.17)

That is, π± are the two roots of the same quadratic (4.4).
Next, let v+(ζ) and v−(ζ) be the two independent solutions of the second-order ODE (4.10), so that the

general solution is
V0 = c+v+ + c−v−, (4.18)
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for some constants c±. Inserting this form into the boundary conditions (4.11) and (4.13), and using the
definitions in (4.6) gives the linear system

M

(
c+
c−

)
= 0, where M =

(
v+(L0)− k`v′+(L0) v−(L0)− k`v′−(L0)
v+(u)− kuv′+(u) v−(u)− kuv′−(u)

)
. (4.19)

Then, for a non-trivial solution, we require the determinant of M to be zero, which leads to(
v+(L0)− k`v′+(L0)

) (
v−(U0)− kuv′−(U0)

)
−
(
v−(L0)− k`v′−(L0)

) (
v+(U0)− kuv′+(U0)

)
= 0. (4.20)

Note that (4.20) is an algebraic equation for the optimal long-term growth rate constant ∆0, where each
term in the expression depends on ∆0 through (4.10), (4.16) and (4.17).

As V0 will only be determined up to a multiplicative constant, we can choose

c+ := v−(L0)− k`v′−(L0), c− := −
(
v+(L0)− k`v′+(L0)

)
. (4.21)

The solutions of (4.10) can be written as powers: v±(ζ) = ζθ± , with θ± defined in (4.3). If at the eigenvalue
∆0, the roots θ± are real and distinct, then the transcendental equation (4.20) can be written as (4.7).

If the roots are complex at the eigenvalue ∆0, then the real-valued solutions of (4.10) are those given in
(4.9), where θr,i are the real and imaginary parts of θ+. Then, after some algebra, (4.20) transforms to (4.8).
It cannot happen that the two roots are real and equal, θ+ = θ−, since this will contradict our conclusion in
Remark 3 that the NT region is non-degenerate.

In the zero transaction cost case λ = 0, the no-trade region collapses and L0 = U0, which implies from
(4.16) and (4.17) that π+ = π− = πM , the Merton ratio, and that

∆0 = δmax :=
µ2

2γσ2
.

For λ > 0 and small enough, we expect ∆0 to be close (and smaller than) δmax, and so π± in (4.4) are real.
Moreover, we can expect whether we are in the real or complex case to be determined by the discriminant
of the quadratic equation (4.3) for θ, namely

θdisc(∆0) = (k − 1)2 − 4k1∆0, k :=
µ

1
2σ

2
, k1 :=

−(1− γ)
1
2σ

2
.

This reveals the following cases, as described in [Guasoni and Muhle-Karbe, 2013, Lemma 3.1]:

Case I: If γ < 1, then k1 < 0 and θdisc(δmax) > 0, and we will be in the case of real θ± for λ small enough.

Case II: If γ > 1, then k1 > 0 and θdisc(δmax) = 1
γ k

2 − 2k + 1, and so we will be in the complex case if

k ∈ (γ −
√
γ(γ − 1), γ +

√
γ(γ − 1)), and in the real case if k is outside that interval.

Remark 4. Additionally, it is shown in Gerhold et al. [2014] that the gap function η defined by ∆0 = µ2−η2
2γσ2

has the following asymptotic approximation as λ ↓ 0:

η = γσ2

(
3

4γ

(
µ

γσ2

)2(
1− µ

γσ2

) 1
3

)
λ

1
3 +O(λ

2
3 ). (4.22)

However, even though the asymptotic approximation (4.22) is very accurate for small transaction costs λ,
we have used the numerical solution of (4.7) or (4.8) in both cases that the roots θ± are real and complex
respectively.

13



4.2 Finding vλ,1 and δ1

In the previous section, we detailed the solution to the constant volatility problem, from which (vλ,0, δ0, `0, u0)
are found by formulas (4.1) using the averaged volatility σ̄. In the next proposition we give expressions for
vλ,1 and δ1. In preparation, we define the following constants which will be used in the formulas for the
complex θ± case:

Θ :=

(
θr θi
−θi θr

)
, c :=

(
c+
c−

)
, q :=

(
q+

q−

)
:=
(
Θ3 −Θ2

)
c, (4.23)

ĉ :=

(
c+
−c−

)
, q̌ :=

(
q−
q+

)
, č :=

(
c−
c+

)
, q̃ :=

(
q̃+

q̃−

)
:= − V3

1
2 σ̄

2
q +

(1− γ)δ1
1
2 σ̄

2
c. (4.24)

Proposition 4.3. If θ±(δ0) are real then

δ1 =
V3

1− γ
L+c

2
+

(
u∆θ

0 − `∆θ0

)
− L−c2−

(
u−∆θ

0 − `−∆θ
0

)
+ c+c−∆θ(L+ + L−) log u0

`0

c2+
(
u∆θ

0 − `∆θ0

)
− c2−

(
u−∆θ

0 − `−∆θ
0

)
+ 2c+c−∆θ log u0

`0

, (4.25)

where ∆θ := θ+ − θ−, and L± := (θ± − 1)θ2
±.

Moreover, vλ,1 is determined up to an additive multiple of vλ,0 by

vλ,1 = C+ζ
θ+ − c̃+ζθ+ log ζ + c̃−ζ

θ− log ζ + ξ
(
c+ζ

θ+ + c−ζ
θ−
)
, (4.26)

for any ξ ∈ R, where C+ and c̃± are given by

c̃± := −c± ((1− γ)δ1 − V3L±)
1
2 σ̄

2∆θ
, (4.27)

C+ :=
c̃− (`0 log `0 − k`(1 + θ− log `0))

k`θ+`0
∆θ − `0∆θ+1

− c̃+ (`0 log `0 − k`(1 + θ+ log `0))

k`θ+ − `0
. (4.28)

Otherwise, if θ± are complex with real and imaginary parts (θr, θi), then

δ1 =
V3

1− γ

[ 1
2 (ĉTq) sin(2θiη) + (cTq)θiη − 1

2 (cT q̌) cos(2θiη)
]log u0

η=log `0[
1
2 (ĉT c) sin(2θiη) + (cT c)θiη − 1

2 (cT č) cos(2θiη)
]log u0

η=log `0

 , (4.29)

where we use the definitions in (4.23)-(4.24). In this case, vλ,1 is determined up to an additive multiple of
vλ,0

vλ,1 = A+(ζ)v+(ζ) +A−(ζ)v−(ζ) + C+v+(ζ) + ξvλ,0(ζ), (4.30)

for any ξ ∈ R, where v± are given by (4.9), and

C+ := − (1 + `0)(A+v+ +A−v−)′(`0)− (1− γ)(A+v+ +A−v−)(`0)

(1 + `0)v′+(`0)− (1− γ)v+(`0)
, (4.31)

A±(ζ) := ∓ q̃∓
2θi

log ζ +
q̃∓
4θ2
i

sin(2θi log ζ)± q̃±
4θ2
i

cos(2θi log ζ). (4.32)

The proof is given in Appendix B.
These expressions allow us to compute `1 and u1 from (3.17) and (3.19) respectively. Note that the

arbitrary multiple of vλ,0 has no influence in these expressions, because of the zero boundary conditions
(4.11) and (4.13).

Remark 5. We are not aware of a way to find a closed form expression for ∆0, since we cannot find a
closed form solution to the roots of (4.7) and of (4.8) in the real and complex case of θ±(∆0) respectively.

However, using the asymptotic expansion ∆0 = µ2

2γσ2 − γσ2

(
3

8γ

(
µ
γσ2

)2 (
1− µ

γσ2

) 1
3

)
λ

1
3 +O(λ

2
3 ) as follows
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from (4.22), then a lengthy, but straightforward calculation reveals that regardless of the roots θ±(∆0) being
real or imaginary, we have that

u1 =
V3πM (3πM (1 + γ)− 2− 2πM )

σ̄2
+O

(
λ

1
3

)
,

`1 = −V3πM (3πM (1 + γ)− 2− 2πM )

σ̄2
+O

(
λ

1
3

)
,

δ1 = V3π
2
Mγ(2− πM (1 + γ))

√
ε +O

(
λ

1
3

)
.

4.3 Accuracy Proof

In this subsection we will provide a convergence proof of the results of Remark 5 above when combined with
a small transaction cost expansion. That is, writing (3.2) and (3.3) as

`ε = `0 +
√
ε `1 + ε`2 + · · · =

∞∑
i,j=0

λ
i
3 ε

j
2 `i,j , uε = u0 +

√
ε u1 + εu2 + · · · =

∞∑
i,j=0

λ
i
3 ε

j
2ui,j ,

and the optimal long-term growth rate

δε = δ0 +
√
εδ1 + · · · =

∞∑
i,j=0

λ
i
3 ε

j
2 δi,j ,

we will calculate δ0,1, `0,1 and u0,1.
We start with the setting of an optimal investment with a finite time T > 0 horizon. As in the companion

paper Bichuch and Sircar [2015], we define the value function for that problem as

V̄ ν(t, x, y, z) := sup
(L,M)∈A(t,x,y)

Ex,y,zt

[
e−ν(T−t) U

(
XT + YT − λY +

T )
)]
, (t, x, y, z) ∈ [0, T ]× S × R.

Note, that the setting of Bichuch and Sircar [2015] has been slightly modified, in that there is no consumption
term, and that the transaction costs are only charged for stock sales, instead of for both sales and purchases.
Additionally, note that V̄ 0(t, x, y, z) = eν(T−t) V̄ ν(t, x, y, z).

We recall the setting, the assumptions and cite the results of Theorem 3 of Bichuch and Sircar [2015] for
the finite time case, but with a slight modification of no consumption, and then adapt them for our case.

This proof requires a new set of assumptions. As such, for the rest of this section we will drop the previous
assumptions, namely, Assumptions 2.1, 2.2, that have been assumed for convenience and in order to avoid
technicalities. More specifically, Assumption 2.1 is no longer needed, Assumption 2.2 will now follow from
the proof of the theorem (for the nearly-optimal strategy). We still carry Assumption 4.1, but it needs to
be strengthened, and for convenience, it is incorporated into point 3 below.

Assumption 4.4. 1. For simplicity we will assume that 0 < γ < 1, though the proof can be generalized
for the case γ > 1.

2. The constant ν > 0 is such that A := r − ν
1−γ + 1

2
µ2

γσ̄2 < 0, and moreover − γ
A(1−γ) ≤ 1, i.e. ν >

γ + (1− γ)
(
r + µ

2πM
)
, where πM = πM (σ̄) in (4.2).

3. V3 ≤ 0 where V3 is given by (3.12), and πM satisfies 0 < πM < 1, and πM < 4
3(1+γ) .

4. We assume that Z is ergodic and has a unique invariant distribution with density.

5. The process Z admits moments of any order uniformly bounded in t ≤ T , and also any moments scaled
by its volatility squared

sup
t≤T

E0 [|Zt|p] ≤ C, sup
t≤T

E0

[
|Zt|pβ2(Zt)

]
≤ C,

where the constant C is allowed to depend on the power p. Note, that CIR and OU processes fit this
and the previous assumption.
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6. The volatility function f ∈ C∞(R) is strictly positive. Moreover, we assume that the solution to Poisson
equation (3.10) and its derivative have at most polynomial growth.

Note that the constraint on the risk-aversion coefficient 0 < γ < 1 while being restrictive, is also fairly
common, see e.g. Dai et al. [2009]. Moreover, it is possible to relax this assumption and extend the proof
of Bichuch and Sircar [2015] also to the case γ > 1, as is noted there, but requires an addition of technical
extensions to an already long proof.

The next Theorem is a straight forward adaptation of Theorem 3 of Bichuch and Sircar [2015], whereas
the next Corollary provides a proof for the results of the asymptotic expansion given in Remark 5.

Theorem 4.5. Fix a compact K0 ⊂ S, where S is the solvency region defined in (2.1), and let (x, y) ∈ K0,
z ∈ R, t ∈ [0, T ). Then, for ε, λ > 0 small enough, and under Assumption 4.4, we have that

V̄ ν(t, x, y, z) = −(x+ y)1−γ e(1−γ)A(T−t)

1− γ
×(

1− (1− γ)

(
γσ̄2

2

(
3(1− πM )2π2

M

2γ

) 2
3

λ
2
3 −
√
ε V3π

2
Mγ(2− πM (1 + γ))

)
(T − t)

)
+O (λ) +O

(√
ελ

1
3

)
+O(ε).

Moreover, set

u1,0 = −`1,0 := 3

√
3

2γ
π2
M (πM − 1)2, u0,1 = −`0,1 =

V3πM (3πM (1 + γ)− 2− 2πM )

σ̄2
.

Then, there exists a nearly-optimal strategy that keeps a proportion of wealth invested in the risky stock Yt
Xt+Yt

within (approximately) the bounds πM + `1,0λ
1
3 + `0,1

√
ε and πM + u1,0λ

1
3 + u0,1

√
ε, that is, if followed, the

error would be of order O (λ) +O
(√

ελ
1
3

)
+O(ε).

Remark 6. It is also possible to strengthen the above error estimates by going carefully through the proof of
Bichuch and Sircar [2015] that all the order estimates above grow (at most) linearly in (T − t).

Corollary 4.6. Under Assumption 4.4 the long-term growth rate is given by

δε =
1

2

µ2

γσ̄2
− γσ̄2

2

(
3(1− πM )2π2

M

2γ

) 2
3

λ
2
3 + V3π

2
Mγ(2− πM (1 + γ))

√
ε +O (λ) +O

(√
ελ

1
3

)
+O(ε). (4.33)

Moreover, the nearly optimal strategy is given by

`ε = πM + `1,0λ
1
3 + `0,1

√
ε, uε = πM + u1,0λ

1
3 + u0,1

√
ε. (4.34)

Proof. The proof follows from Theorem 4.5, as

1

T

log V̄ 0(0, x, y, z)

1− γ
− r

=
1

2

µ2

γσ̄2
− γσ̄2

2

(
3(1− πM )2π2

M

2γ

) 2
3

λ
2
3 + V3π

2
Mγ(2− πM (1 + γ))

√
ε +O (λ) +O

(√
ελ

1
3

)
+O(ε),

where the order estimates are uniform in T . Taking the limit T → ∞ leads to (4.33). Moreover, since for
each fixed terminal time T the strategy that keeps the proportion of wealth invested int the risky stock
within the bounds (4.34) is nearly optimal, it follows that in the limit, the expansion (4.34) also holds.
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5 Slow-scale Asymptotics

We now consider another stochastic volatility approximation, but this time with slow-scale stochastic volatil-
ity:

dSt
St

= (µ+ r) dt+ f(Zt) dB
1
t

dZt = εα(Zt) dt+
√
εβ(Zt) dB

2
t ,

where the Brownian motions (B1, B2) have correlation structure d
〈
B1, B2

〉
t

= ρ dt. As described in Fouque
et al. [2011], there is empirical evidence for both a fast and slow scale in market volatility. Here we treat
the optimal investment with transaction costs problem separately under each scenario for simplicity of
exposition. The two approaches can be considered as different approximations for understanding the joint
effects of stochastic volatility and costs of trading.

Then the analog of the HJB equation (2.5) is

max
{

(M0 − (1− γ) δε·) +
√
εM1 + εM2, B, S

}
vλ,ε = 0,

where

M2 =
1

2
β(z)2∂2

zz + α(z)∂z, M1 = ρf(z)β(z)∂zD1, M0 =
1

2
f(z)2D2 + µD1,

and the operators Dk were defined in (3.4). The definitions of the buy and sell operators B,S stay the same
as in (2.7)-(2.8). Similarly, we will work with the free-boundary eigenvalue formulation in Section 2.3, so
that the analog of (2.9) in the no trade region is(

(M0 − (1− γ) δε·) +
√
εM1 + εM2

)
vλ,ε = 0, ζ ∈ (`ε(z), uε(z)), (5.1)

with boundary conditions (2.11)–(2.15).
We look for an expansion for the value function

vλ,ε = vλ,0 +
√
ε vλ,1 + εvλ,2 + · · · ,

as well as for the free boundaries

`ε = `0 +
√
ε `1 + ε`2 + · · · , uε = u0 +

√
ε u1 + εu2 + · · · ,

and the optimal excess growth rate δε = δ0 +
√
εδ1 + · · · , which are asymptotic as ε ↓ 0.

5.1 Power expansion inside the NT region

We proceed similarly to Section 3.1 and analyze (5.1) inside the NT region. The terms of order one in (5.1)
are

(M0 − (1− γ) δ0·) vλ,0 = 0.

The operators (B,S,B′,S ′) in the boundary conditions (2.11)–(2.15) do not depend on ε and so the expan-
sions in Section 3.2 are the same in the slow case as in the fast. Therefore, for the zeroth order problem,
we have (3.14) and (3.15). This is the constant volatility problem with volatility σ = f(z), that is frozen at
today’s level. Therefore we have

vλ,0(ζ, z) = V0(ζ; f(z)), δ0 = ∆0(f(z)), and (`0(z), u0(z)) = (L0(f(z)), U0(f(z))),

where (V0,∆0, L0, U0) are the solution described in Section 4.1. To simplify notation, we will typically cease
to write the argument f(z), and simply write (V0,∆0, L0, U0).

The O(
√
ε) terms give

M0v
λ,1 − (1− γ)δ0v

λ,1 +M1v
λ,0 − (1− γ)δ1v

λ,0 = 0,
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where as before δ1 remains to be found. Therefore, we get that the equation for vλ,1 is

LNT(f(z); δ0)vλ,1 = −M1v
λ,0 + (1− γ)δ1v

λ,0. (5.2)

where LNT was defined in (3.6). As the boundary condition expansions from Section 3.2 are the same for
the slow-scale volatility case, we have the boundary conditions (3.16) and (3.18) for vλ,1.

5.2 Computation of δ1

As in Section 4.2, we set w to be the solution of the adjoint equation (3.22) with boundary conditions (3.23),
but with σ̄ replaced by f(z). As before, Lemma 3.1 carries through with the new notation and we recall
w(ζ, z) = ζk(z)−2vλ,0(ζ, z), with k(z) := µ

1
2 f(z)2

similar to (3.24). Multiplying both sides of (5.2) by w and

integrating from `0 to u0 we get

δ1(z) =

∫ u0

`0
wM1v

λ,0dζ

(1− γ)
∫ u0

`0
wvλ,0dζ

=
V1(z)

∫ U0

L0
wD1∂σV0 dζ

(1− γ)
∫ U0

L0
wV0 dζ

,

where V0(ζ; f(z)), L0(f(z)), and U0(f(z)) are the constant volatility solution, and we define

V1(z) := ρf(z)f ′(z)β(z).

We observe that we need to compute V := ∂σV0, which depends on the eigenvalue ∆0, and so we will need
the derivative ∆0,σ := ∂σ∆0. Computing the “Vega” of the constant volatility “value function” is difficult
to perform analytically because σ appears in numerous places in the solution constructed in Section 4.1: the
transcendental equation (4.7) or (4.8) for ∆0, the quadratic equations (4.3) and (4.16) for θ± and π± and
consequently in L0 and U0. Numerically, computing a finite difference approximation is simple, but we will
need to do so at many values of ζ for use in certain integrals in the asymptotic correction in the next section.
Therefore it is of interest to relate it to derivatives (or Greeks) of vλ,0 in the ζ variable, in particular the
Gamma V ′′0 = ∂2

ζζV0, which we have found to be amenable to computation in the fast asymptotics.
First we give an expression for ∆0,σ which avoids numerical differentiation of the eigenvalue problem.

Lemma 5.1. The derivative ∆0,σ is given by the following ratio of integrals:

∆0,σ =
σ
∫ U0

L0
wD2V0 dζ

(1− γ)
∫ U0

L0
wV0 dζ

. (5.3)

Proof. In the NT region and at the boundaries, we have

1

2
σ2ζ2V ′′0 + µζV0

′ − (1− γ)∆0V0 = 0 (5.4)

(1 + L0)V ′0(L0)− (1− γ)V0(L0) = 0, (5.5)

(1 + L0)V ′′0 (L0) + γV ′0(L0) = 0, (5.6)(
1

1− λ
+ U0

)
V ′0(U0)− (1− γ)V0(U0) = 0, (5.7)(

1

1− λ
+ U0

)
V ′′0 (U0) + γV ′0(U0) = 0, (5.8)

where ′ = d
dζ . Differentiating the ODE (5.4) with respect to σ, we find that in the NT region, V = ∂σV0

satisfies
1

2
σ2ζ2V ′′ + µζV ′ − (1− γ)∆0V = −σD2V0 + (1− γ)∆0,σV0. (5.9)

We also have by differentiating (5.5) with respect to σ and using the C2 smooth pasting condition (5.6) for
V0 that V satisfies the usual homogeneous Neumann boundary condition at L0:

(1 + L0)V ′(L0)− (1− γ)V(L0) = 0.

18



Similarly, differentiating (5.7) with respect to σ and using (5.8) gives:(
1

1− λ
+ U0

)
V ′(U0)− (1− γ)V(U0) = 0.

We note that since V0 is well-defined, so is V by differentiation: we are just using equations it must
satisfy to try and shortcut its computation. Then a Fredholm solvability condition for (5.9) determines
∆0,σ. Multiplying equation (5.9) by the adjoint function w = ζk(z)−2V0, integrating by parts and using the
boundary conditions satisfied by the vega V yields (5.3).

The expression for the Vega ∂σV0 is given in Appendix C in the case of real θ±. The formula in the complex
case is very long and we omit it in this presentation. Writing the Vega in terms of spatial derivatives is
related to the classical Vega-Gamma relationship for European option prices (see, for instance the discussion
in [Fouque et al., 2011, Section 1.3.5]), which can be used to show that portfolios that are long Gamma
(convex) and long volatility (positive Vega). In the context of the classical Merton portfolio optimization
problem with no transaction costs, an analogous relationship between the derivative of the value function with
respect to the Sharpe ratio and the negative of the second derivative with respect to the wealth variable is
found in [Fouque et al., 2013, Lemma 3.1]. For infinite horizon problems, as here, it is not so direct because
there is no time derivative that allows for a simple explicit solution of equation (5.9) and its boundary
conditions that would give V in terms of D2V0, but nonetheless, a useful expression (C.1) can be found.

5.3 Computation of vλ,1

We proceed, as in Section 4.2 to use the variation of parameters (B.2) to solve the inhomogeneous equation
(5.2) with boundary conditions (3.16) and (3.18). We recall that the principal solution V0 is given by formulas
(4.18) and (4.21), where v± are the independent solutions of the the ODE (in ζ) (4.10) with the volatility
σ = f(z). Then we have vλ,1(z, ζ) = A+(z, ζ)v+(ζ) + A−(z, ζ)v−(ζ), where A± solve the same system of
equations (B.3) and (B.4),

A′+v+ +A′−v− = 0, (5.10)

A′+v
′
+ +A′−v

′
− = F (z, ζ), (5.11)

and ′ denotes the derivative with respect to ζ. The only change is that in this case,

F (z, ζ) :=
−V1(z)D1∂σV0 + (1− γ)δ1V0

1
2f(z)2ζ2

.

The solution of the system (5.10)–(5.11) is given by

A±(z, ζ) = ∓
∫

v∓
v′−v+ − v′+v−

F (z, ζ)dζ + C±.

This determines vλ,1. In the Proposition 5.2 that follows, we show how these can be explicitly computed in
the case of real θ±.

We also note, that the calculations in Section 3.2 are applicable also to the slow-scale case, and we
conclude that the corrections to the boundaries `1(z) and u1(z) can be determined using (3.17) and (3.19).

5.4 Explicit Computations of (vλ,1, δ1) in the real θ± case

For the rest this section we will show the computations of vλ,1, and δ1, in the case when the roots θ±(δ0) of
quadratic (4.3) (with σ = f(z)) are real. The complex case can also be calculated analytically, but we did
not find the formulas to be enlightening, so we choose to omit the presentation of this calculation.
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Proposition 5.2. Recall that ∆θ := θ+−θ−, and that vλ,0(ζ) = c+v+(ζ)+c−v−(ζ). Let ċ± := ∂σc±, θ̇± :=
∂σθ±. If θ± are real then,

δ1(z) =
V1(z)

(1− γ)D

{
c+Q+R+ − c−Q−R− + (c−Q+ + c+Q−) ∆θ log

u0

`0

+

(
c2+θ+θ̇+R+ log

u0

`0
− c2−θ−θ̇−R−

)(
log

u0

`0
− 1

∆θ

)
+c−c+

(
θ+θ̇+ + θ−θ̇−

)
∆θ log2 u0

`0

}
,

where Q± :=
(
θ±ċ± + c±θ̇±

)
, R± :=

(
u±∆θ

0 − `±∆θ
0

)
, and D := c2+R+ − c2−R− + 2c+c−∆θ log u0

`0
. The

constants ċ± and θ̇± are calculated explicitly in terms of ∆0,σ in Appendix C. Then vλ,1 is determined up to
a multiple of vλ,0 :

vλ,1 = C+ζ
θ+ −

(
c̃+ −

d̃+

∆θ

)
ζθ+ log ζ +

(
c̃− +

d̃−
∆θ

)
ζθ− log ζ (5.12)

− d̃+

2
ζθ+ log2 ζ +

d̃−
2
ζθ− log2 ζ + ξ

(
c+ζ

θ+ + c−ζ
θ−
)
,

for any ξ ∈ R, where

c̃±(z) :=
2

f2(z)

(
Q±V1(z) + (1− γ)δ1c±

∆θ

)
, d̃±(z) :=

2V1(z)

f2(z)

θ̇±c±θ±
(∆θ)

, (5.13)

C+ :=
b1

k`θ+`0
θ+−1 − `0θ+

, (5.14)

and b1 is given below in (D.2).

The proof is given in Appendix D.

Remark 7. It is possible to rigorously prove these results, similar to the proofs of Section 4.3, however
these proofs will be long, complicated and follow the same method as Bichuch and Sircar [2015], so they are
omitted.

6 Analysis of the results

Though most of the previous analysis has been done using the boundaries `ε and uε, it is more illustrative
to plot the graphs using the proportion of wealth invested in the stock, and the optimal boundaries of the
NT region πε,± which are defined similar to (4.5) as

πε,− :=
`ε

1 + `ε
, πε,+ :=

uε

1
1−λ + uε

.

In turn, similar to (3.2), their expansions in ε are defined as

πε,± = π±0 +
√
ε π±1 + επ±2 + · · · .

The following are the graphs of the buy and the sell boundaries π±0 , the first order approximation to the buy
and the sell boundaries with stochastic volatility π±0 +

√
επ±1 , the long-term growth rate δ0 with constant

volatility, and the first order approximation to the long-term growth rate with stochastic volatility δ0 +
√
εδ1.

We have four separate cases: slow-scale and fast-scale stochastic volatility, and in each cases, two different
sets of graphs that illustrate two additional cases: when the roots θ± of equation (4.3) are real, and when
they are complex.

The values used to obtain these graphs are V3 = −1, µ = 7%, σ̄ = f(z) = f ′(z) = 0.2, γ = 2 for the case
θ± are real, and µ = 5%, σ̄ = f(z) = f ′(z) = 0.2, γ = 2 for the imaginary roots θ±. Additionally, we have
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used ε = 10−3 in case of fast-scale real roots, ε = 10−4 in case of fast-scale complex, ε = 10−6 in case of
slow-scale real roots, and ε = 10−3 in case of the complex roots. The reason for such vastly different ε in all
the cases, is the desire to have the O(

√
ε) approximation to be close to the original boundaries.

The first observation we make is that in case of fast-scale stochastic volatility, the shifts to the boundaries√
επ±1 do not depend on Zt the current level of stochastic volatility factor, see Figure 1 or alternatively (3.17),

(3.19) and note that vλ,0, vλ,1 both are independent of z. The intuitive explanation of this observation is
the following: recall that we study only an approximation to the true boundary. As such, even if the current
position is O(ε) away from the boundary, then in the time it takes the wealth ratio ζt to reach the boundary,
the volatility factor will have changed by O(1). Hence, even at such close proximity to the boundary, the
current volatility factor level is not important. What is important is the average of the variance σ̄2. Hence,
in case of fast-scale stochastic volatility, only the average level σ̄ plays a role. The situation is, of course,
not analogous in the slow-scale case, where the current level of z is extremely important. See Figures 3 and
4. The intuition here is that we can use the same level of volatility factor, for a significant amount of time,
with insignificant measurement error.

Our second observation is that stochastic volatility should reduce (or at least not increase) the long-term
growth rate δε, as compared with constant volatility, see Figure 1 right column. The intuition comes from
Jensen’s inequality. Indeed,

Ex,y,z0

[
U
(
XT + YT − λY +

T

)]
= Ex,y,z0

[
E
[
U
(
XT + YT − λY +

T

) ∣∣FB2
]]

≤ Ex,y,z0

[
U
(
E
[
XT + YT − λY +

T

∣∣FB2
])]

.

The right hand side, for ρ = 0, is approximately the total wealth using the average volatility σ̄, in case of fast-
scale volatility, and the the total wealth using the initial volatility level z in the slow-scale volatility. Hence,
we expect δε ≤ δ0 in those cases. This may seem a little counterintuitive, as not only does stochastic volatility
add additional randomness to the payoff, but it also creates a mean reverting Sharpe ratio. However, in case
of fast mean reverting stochastic volatility, this gain will disappear too fast for the long-term investor to
trade and benefit from it, because of the transaction costs. This also can be seen from the first observation
that our strategy does not depend on the current level of the volatility factor z, but rather on the squared-
averaged volatility σ̄. The situation is again very different in the case of slow-scale mean revering volatility,
when the mean-reversion is too slow, and the current Shrape ratio instead becomes the center of the NT
region, and the average volatility plays no role.

Another observation is that the first order effect in case ρ = 0 is zero. This is clear from the calculations,
specifically (3.12), (3.26), (B.1), (B.5), that δ1 = 0, and vλ,1 = 0 and thus so are `1 and u1 from (3.17) and
(3.19), and π±1 since all the terms are proportional to ρ. This effect has been observed by Fouque et al.
[2013].

A key observation is that the effect of a fast-scale mean reversion stochastic volatility is to tighten the NT
region, and to move its boundaries higher when comparing with the case of constant volatility, see Figure 1.
The intuition here being as follows. In all cases, the average volatility is assumed to remain unchanged, thus
so is the Merton proportion. It is also customary to assume that ρ < 0, as is typically observed in the equity
markets, and we follow this assumption too. In turn, it follows that if the stock price goes up, the current,
instantaneous volatility should be lower (as correlation is negative), and vice versa, lower stock prices causes
a rise in the current, instanteneous volatility. This causes the buy boundary to increase as the stock becomes
more volatile, and in turn the risk aversion requires closer adherence to the the Merton proportion. On the
other hand the sell boundary also increases as the stock becomes less volatile, which allows more deviation
from the Merton proportion. This account for the upward shirt in the NT region. Moreover, as ε > 0
decreases, these deviations in instantaneous volatility as compared with the average volatility become less
and less relevant as the speed of mean reversion increases, and so the width of the NT region increases with
decrease in ε. In other words, the NT region tighten in case of fast-scale mean reverting stochastic volatility,
as compared with constant volatility. Similar conclusion regarding the upward shift of the NT region with
the same intuition also holds in the case of slow-scale mean stochastic volatility, see Figures 3 and 4.

Also observe that in all the cases the approximation does not differ much, from the original boundaries, as
long as we are sufficiently away from the case when Merton’s proportion πM = 1. In this case, as mentioned
in Remark 3, it is known that the NT region degenerates, as it is optimal to trade only once, and invest
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all the wealth into the risky stock. Hence in our case, when the Merton’s proportion πM approaches one,
the boundaries π±0 approach each other, and the approximations π±0 +

√
ε π±1 may intersect. This is another

reason why we have used different ε between the cases in the fast-scale and the slow-scale stochastic volatility.
As the behaviors of the graphs is very different in the slow- and fast-scale cases and in the real and imaginary
θ±, as the Merton’s proportion approaches one.

Figure 1: Three graphs of boundaries π±0 and π±0 +
√
ε π±1 (left column) and of long-term growth rate δ0

and δ0 +
√
εδ1 (right column) in the fast-scale stochastic volatility and in case θ± are real as a function of:

Top row σ̄, middle row: γ, bottom row: λ. The last row also contain an asymptotic approximation to the
boundaries π±0 and long-term growth rate δ0 using the asymptotic expansion (4.22).

7 Conclusion

We have analyzed the Merton problem of optimal investment in the presence of transaction costs and
stochastic volatility. This is tractable, when the problem is to maximize the long-term growth rate. This
leads us to a perturbation analysis of an eigenvalue problem, and shows that the asymptotic method can be
used to capture the principal effect of trading fees and volatility uncertainty. In particular we identify that
the appropriate averaging, when volatility is fast mean reverting, is given by the root-mean-square ergodic
average σ̄. These techniques can also be adapted to the finite time horizon Merton problem, indifference
pricing of options and other utility functions, on a case by case basis.
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Figure 2: Three graphs of boundaries π±0 and π±0 +
√
ε π±1 (left column) and of long-term growth rate δ0 and

δ0 +
√
εδ1 (right column) in the fast-scale stochastic volatility and in case θ± are complex as a function of:

Top row σ̄, middle row right: γ, bottom row: λ. The last row also contain an asymptotic approximation to
the boundaries π±0 and long-term growth rate δ0 using the asymptotic expansion (4.22).

A Comparison Theorem

In this appendix, we will give the proof of the comparison theorem specifically adapted for our case, that
shows that 1

CV ≤ V̂ ≤ CV . We continue to assume Assumptions 2.1 and 2.2. We note, that a standard
comparison theorem for viscosity solutions can be easily adapted for the case 0 < γ < 1 such as the one in
Bichuch and Shreve [2013]. However, as far as we are aware, this proof is limited to the case 0 < γ < 1 as it
requires the finite values on the boundary of the solvency region S from (2.1). To circumvent these problems
and provide a proof for all cases, we adapt the proof from Janecek and Shreve [2004].

We remind the reader that in Assumption 2.2 we assumed that V̂ , V are both smooth functions, namely,
V̂ , V ∈ C1,1,2,2 ([0, T )× S × R) . From the same assumption it also follows that there exists an optimal

strategy
(
ζ̂l, ζ̂r

)
for V̂ , so that we have

((1− λ) ∂x − ∂y) V̂ (t, x, y, z) = 0
(
t,
y

x
, z
)
∈ [0, T )× [ζ̂r(z),∞)× R,

(∂t +Dε)V̂ = 0,
(
t,
y

x
, z
)
∈ [0, T )× [ζ̂l(z), ζ̂r(z)]× R,

(∂y − ∂x)V̂ = 0,
(
t,
y

x
, z
)
∈ [0, T )× (−∞, ζ̂l(z)]× R.

In other words the no-trade region N̂T for V̂ is when the ratio of wealths Yt
Xt

is within [ζ̂l(Zt), ζ̂r(Zt)]. Similar

equations hold for V by setting [ζl(Zt), ζ
r(Zt)] to be the boundaries of its no-trade region.
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Figure 3: Three graphs of boundaries π±0 and π±0 +
√
ε π±1 (left column) and of long-term growth rate δ0

and δ0 +
√
εδ1 (right column) in the slow-scale stochastic volatility and in case θ± are real as a function of:

Top row z, middle row: γ, bottom row: λ. The last row also contain an asymptotic approximation to the
boundaries π±0 and long-term growth rate δ0 using the asymptotic expansion (4.22).

Proof of Proposition 2.3: We want to show that 1
CV (t0, x, y, z) ≤ V̂ (t0, x, y, z) ≤ CV (t0, x, y, z), for some

fixed point (t0, x, y, z) ∈ [0, T ] × S̄ × R. We assume that t0 < T , as the case t0 = T follows by continuity.
Moreover, the case when (x, y) ∈ ∂S it can be shown by adapting the proof in Shreve and Soner [1994]
that the optimal strategy is to liquidate the stock position, resulting in zero total wealth, in which case,
V̂ (t0, x, y, z) = U(0) = V (t0, x, y, z).

Hence, we proceed with the assumption that t0 ∈ [0, T ), and (x, y) ∈ S and consider the strategy

X̂t, Ŷt, Ẑt starting from (x, y, z) at time t− that keeps, Ŷt
X̂t

inside N̂T. For which we have that L̂t =∫ t
0
I{ Ŷs

X̂s
=ζ̂r

}dL̂s, M̂t =
∫ t

0
I{ Ŷs

X̂s
=ζ̂l

}dM̂s. It follows that

V̂ (t0, x, y, z) = V̂ (T, X̂T , ŶT , ẐT )−
∫ T

t0

(∂t +Dε)V̂ (t, X̂t, Ŷt, Ẑt)dt (A.1)

−
∫ T

t0

f(Ẑt)∂yV̂ (t, X̂t, Ŷt, Ẑt)dB
1
t −

∫ T

t0

1√
ε
β
(
Ẑt

)
∂zV̂ (t, X̂t, Ŷt, Ẑt)dB

2
t

−
∫ T

t0

(∂y − ∂x)V̂ (t, X̂t, Ŷt, Ẑt)dL̂t −
∫ T

t0

(∂y − ∂x)V̂ (t, X̂t, Ŷt, Ẑt)dM̂t.

Using the fact that the dt, dL̂t, dM̂t terms in (A.1) are zero by the optimality of the strategy we conclude
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Figure 4: Three graphs of boundaries π±0 and π±0 +
√
ε π±1 (left column) and of long-term growth rate δ0 and

δ0 +
√
εδ1 (right column) in the slow-scale stochastic volatility and in case θ± are complex as a function of:

Top row z, middle row: γ, bottom row: λ. The last row also contain an asymptotic approximation to the
boundaries π±0 and long-term growth rate δ0 using the asymptotic expansion (4.22).

that

V̂ (t0, x, y, z) = V̂ (T, X̂T , ŶT , ẐT )−
∫ T

t0

f(Ẑt)∂yV̂ (t, X̂t, Ŷt, Ẑt)dB
1
t

−
∫ T

t0

1√
ε
β
(
Ẑt

)
∂zV̂ (t, X̂t, Ŷt, Ẑt)dB

2
t ,

It is possible to show using standard localization techniques that both local martingales, are true martingales.
Thus taking the expectation, we conclude that

V̂ (t0, x, y, z) = Ex,y,zt0

[
V̂ (T, X̂T , ŶT , ẐT )

]
.

Writing an equation for V similar to (A.1), and using the same strategy X̂t, Ŷt, Ẑt, we conclude that

V (t0, x, y, z) ≥ V (T, X̂T , ŶT , ẐT )−
∫ T

t0

f(Ẑt)∂yV (t, X̂t, Ŷt, Ẑt)dB
1
t

−
∫ T

t0

1√
ε
β
(
Ẑt

)
∂zV (t, X̂t, Ŷt, Ẑt)dB

2
t ,

where we have used the fact that V also solves the HJB equation (2.3). From Assumption 2.2 inside the NT

region the ratio ŶT
X̂T

is bounded, moreover for λ, ε > 0 small enough, V and thus also vλ,ε are bounded there
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It follows that there exists C > 0 such that

V (t0, x, y, z) ≥ Ex,y,zt0

[
V (T, X̂T , ŶT , ẐT )

]
= Ex,y,zt0

[
X̂1−γ
T vλ,ε

(
ŶT

X̂T

, ẐT

)
e(1−γ)(r+δε)(T−t)

]

≥ 1

C
Ex,y,zt0

X̂1−γ
T U

1 +
ŶT

X̂T

− λ

(
ŶT

X̂T

)+


=
1

C
Ex,y,zt0

[
U
(
X̂T + ŶT − λŶ +

T

)]
=

1

C
Ex,y,zt0

[
V̂ (T, X̂T , ŶT , ẐT )

]
=

1

C
V̂ (t0, x, y, z).

The other inequality can be proved similarly, by reversing the roles of V and V̂ .

B Proof of Proposition 4.3

To find vλ,1, we use the method of variation of parameters to solve the inhomogeneous equation (3.11),
whose source (right-hand side) term after dividing by the coefficient of the second derivative is

F (ζ) :=
−V3D1D2v

λ,0 + (1− γ)δ1v
λ,0

1
2 σ̄

2ζ2
. (B.1)

Specifically, we write

vλ,1(ζ) = A+(ζ)v+(ζ) +A−(ζ)v−(ζ). (B.2)

Then we need that A± solve the system of equations

A′+v+ +A′−v− = 0, (B.3)

A′+v
′
+ +A′−v

′
− = F (ζ). (B.4)

Indeed, using (B.3), (B.4), and the fact that LNTv±(ζ) = 0, we see that

LNT (A+v+ +A−v−) =
1

2
σ̄2ζ2

(
A′+v

′
+ +A′−v

′
−
)

= −V3D1D2v
λ,0 + (1− γ)δ1v

λ,0.

The solution of the system (B.3)-(B.4) is

A±(ζ) = ∓
∫

v∓
v′−v+ − v′+v−

F (ζ)dζ + C±, (B.5)

where the constants C± will be determined by the boundary conditions (3.16) and (3.18).
We divide the proof into two cases: the case when θ± the roots of equation (4.3) are real, and the case

when they are complex. These are presented in Sections B.1 and B.2 respectively.

B.1 Real θ±

When the roots θ± of the quadratic in (4.3) with volatility σ = σ̄ and at the eigenvalue δ0 are real, we have
that

w(ζ) = c+ζ
θ++k−2 + c−ζ

θ−+k−2,

where c± were given in (4.21). We compute D1D2v
λ,0 = L+c+ζ

θ+ + L−c−ζ
θ− , where L± were defined in

Proposition 4.3, and so the calculations for δ1 from the formula (3.26) leading to (4.25) are straightforward.
Next, we compute that

v∓
v′−v+ − v′+v−

= −ζ
1−θ±

∆θ
,
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and so v∓
v′−v+−v′+v−

F = c̃±ζ
−1 + c̃∓ζ

∓∆θ−1, where c̃± are given in (4.27). Then, from (B.5), we have

A± = ∓c̃± log ζ +
c̃∓
∆θ

ζ∓∆θ + C±,

and, from (B.2), we have

vλ,1 = C+ζ
θ+ + C−ζ

θ− − c̃+ζθ+ log ζ + c̃−ζ
θ− log ζ, (B.6)

where we have absorbed some constants into C± and retained the same label as they have yet to be deter-
mined.

Inserting (B.6) into the boundary conditions (3.16) and (3.18) and dividing by 1− γ, we obtain:

M

(
C+

C−

)
= b, (B.7)

where the matrix M from (4.19) evaluates in this case to

M =

(
k`θ+`0

θ+−1 − `0θ+ k`θ−`0
θ−−1 − `0θ−

kuθ+u0
θ+−1 − u0

θ+ kuθ−u0
θ−−1 − u0

θ−

)
, (B.8)

and the vector b is

b =

(
c̃−`0

θ−−1 (`0 log `0 − k`(1 + θ− log `0))
c̃−u0

θ−−1 (u0 log u0 − ku(1 + θ− log u0))

)
−
(

c̃+`0
θ+−1 (`0 log `0 − k`(1 + θ+ log `0))

c̃+u0
θ+−1 (u0 log u0 − ku(1 + θ+ log u0))

)
and (k`, ku) were defined in (4.6) and we insert the replacements (L0, U0) = (`0, u0).

We recall that M is a singular matrix, as we have required that its determinant is zero by choice of δ0
in (4.20). The Fredholm alternative solvability condition for b is satisfied by choice of δ1 in (3.26). Thus,
we get a particular solution by taking C− = 0 and C+ as given by (4.28). This determines vλ,1 as given in
(4.26) up to the addition of a multiple of vλ,0.

B.2 Complex θ±

When the roots θ± of the quadratic in (4.3) at the eigenvalue δ0 are complex, we have

vλ,0 = c+v+(ζ) + c−v−(ζ) = ζθr (c+ cos(θi log ζ) + c− sin(θi log ζ)),

where θr = − 1
2 (k − 1) using the notation for k = µ

1
2 σ̄

2 defined in (3.24), and c± were chosen in (4.21).

We first compute δ1. From (3.26), we have δ1 = V3

1−γ (I1/I2), where I1,2 are the integrals in the numerator
and denominator respectively to be computed. Using the change of variable η = log ζ, we have

I1 =

∫ u0

`0

wD1D2v
λ,0dζ =

∫ log u0

log `0

e((k−2)+θr+1)ηcTT(η)

(
∂3

∂η3
− ∂2

∂η2

)
eθrηcTT(η) dη,

where we define T(η) :=

(
cos(θiη)
sin(θiη)

)
, and c =

(
c+
c−

)
as was defined in (4.23). Differentiating the formula in

(4.9) amounts to multiplying the coefficients of the cos and sin terms by the matrix Θ. Then I1 reduces to

I1 =

∫ log u0

log `0

cTT(η) qTT(η) dη

=
1

2θi

[
1

2
(ĉTq) sin(2θiη) + (cTq)θiη −

1

2
(cT q̌) cos(2θiη)

]log u0

log `0

,
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where ĉ, q̌ were given in (4.24). Similarly, we have

I2 =

∫ u0

`0

wvλ,0dζ =
1

2θi

[
1

2
(ĉT c) sin(2θiη) + (cT c)θiη −

1

2
(cT č) cos(2θiη)

]log u0

log `0

,

where č was also given in (4.24). These lead to the expression (4.29) for δ1.
Next, we compute A± in (B.5) where F was defined in (B.1). Again in the variable η = log ζ, we have

Ã±(η) = ∓
∫

ṽ∓(η)

e−ηW̃ (η)
F̃ (η)eη dη + C±,

where ṽ± denotes v± in η co-ordinates, and the Wronskian simplifies to W̃ (η) = θie
2θrη. We find that

F̃ (η) = e−2η+θrηq̃TT(η), with q̃ was defined in (4.24). Then we obtain

Ã+(η) = − q̃−
2θi

η +
q̃−
4θ2
i

sin(2θiη) +
q̃+

4θ2
i

cos(2θiη) + C+

Ã−(η) = +
q̃+

2θi
η +

q̃+

4θ2
i

sin(2θiη)− q̃−
4θ2
i

cos(2θiη) + C−.

The constants C± are determined by the boundary conditions (3.16) and (3.18). As before, we can take
C− = 0. Therefore, from (B.2), we have vλ,1 is given by (4.30) using definitions of C+ and A± in (4.31)–
(4.32).

C Explicit Calculation of the Vega in the Real Case

We will use (4.21) to calculate ċ± from equation (D.1). First, using (4.16) and (4.17), we find that

∂σπ± =
∆0,σ + γσπ2

±
µ− γσ2π±

,

where ∆0,σ := ∂σ∆0 is computed in Lemma 5.1. Furthermore, from the same equations we also have

∂σL0 = (1 + L0)2∂σπ− = (1 + L0)2 ∆0,σ + γσπ2
−

µ− γσ2π−
,

∂σU0 =

(
1

1− λ
+ U0

)2

∂σπ+ =

(
1

1− λ
+ U0

)2 ∆0,σ + γσπ2
+

µ− γσ2π+
.

From (4.6) we obtain that

∂σku =
∂σU0

1− γ
, ∂σk` =

∂σL0

1− γ
,

and from (4.3) we have

θ̇± =
σθ±(1− θ±) + (1− γ)∆0,σ

σ2θ± +
(
µ− σ2

2

) ,

It follows from (4.21) that

ċ± = ±v′∓(L0)∂σL0 ± v∓(L0)θ̇∓ logL0 ∓
∂σL0

1− γ
v′∓(L0)

∓k`
(
θ̇∓
v∓(L0)

L0
+ v′′∓(L0)∂σL0 + v′∓(L0)θ̇∓ logL0

)
.

These are used to compute

∂σV0 = ċ+v+(ζ) + θ̇+c+v+(ζ) log ζ + ċ−v−(ζ) + θ̇−c−v−(ζ) log ζ. (C.1)

28



D Proof of Proposition 5.2

In the case when the roots θ± are real, we have

∂σV0 = ċ+ζ
θ+ + c+θ̇+ζ

θ+ log ζ + ċ−ζ
θ− + c−θ̇−ζ

θ− log ζ. (D.1)

It follows that

D1∂σV0 = Q+ζ
θ+ + c+θ+θ̇+ζ

θ+ log ζ +Q−ζ
θ− + c−θ−θ̇−ζ

θ− log ζ,

F (z, ζ) = ∆θ
(
c̃+(z)ζθ+−2 + d̃+(z)ζθ+−2 log ζ + c̃−(z)ζθ−−2 + d̃−(z)ζθ−−2 log ζ

)
,

v∓F

v′−v+ − v′+v−
=
c̃±(z) + d̃±(z) log ζ + c̃∓(z)ζθ∓−θ± + d̃∓(z)ζθ∓−θ± log ζ

ζ
,

where we have used that v∓
v′−v+−v′+v−

= ζ1−θ±

∆θ , together with the definitions of c̃± and d̃± in (5.13). A

calculation shows that

A± = ∓

(
c̃± log ζ +

d̃±
2

log2 ζ ∓ c̃∓
∆θ

ζ∓∆θ ∓ d̃∓
∆θ

(
log ζ ± 1

∆θ

)
ζ∓∆θ

)
+ C±.

Therefore, from (B.2), we have

vλ,1 = −

(
c̃+ −

d̃+

∆θ

)
ζθ+ log ζ +

(
c̃− +

d̃−
∆θ

)
ζθ− log ζ − d̃+

2
ζθ+ log2 ζ

+
d̃−
2
ζθ− log2 ζ + C+ζ

θ+ + C−ζ
θ− ,

where we have absorbed some constants into C± and retained the same label as they have yet to be deter-
mined.

As before, we obtain a system of equation similar to (B.7) for C±, with the same matrix M defined as

before in (B.8), but with different right hand side vector b =

(
b1
b2

)
, given by

b1 =

(
log `0 −

k`
`0

(1 + θ− log `0)

)[(
c̃− +

d̃−
∆θ

)
`0
θ− −

(
c̃+ −

d̃+

∆θ

)
`0
θ+

]
− (h+(`0)− h−(`0)) log `0, (D.2)

where h±(`0) = d̃±
2 `0

θ±
(

log `0 − k`
`0

(2 + θ± log `0)
)

. The second component b2 is given by the same formula

with `0 replaced by u0. We recall that M is a singular matrix, as we have required that its determinant is
zero by choice of δ0 in (4.20). The Fredholm alternative solvability condition for b is satisfied by choice of
δ1 in (3.26). Thus, we get that a particular solution by taking C− = 0 and C+ as defined in (5.14) This
determines vλ,1 up to an addition of a multiple of vλ,0 as in (5.12) for any ξ ∈ R.

References

M. Bichuch. Asymptotic analysis for optimal investment in finite time with transaction costs. SIAM J. Financial
Math., 3:433–458, 2012.

M. Bichuch and S. Shreve. Utility maximization trading two futures with transaction costs. SIAM J. Financial
Math., 4(1):26–85, 2013.

M. Bichuch and R. Sircar. Optimal investment with transaction costs and stochastic volatility part II: Finite horizon.
Preprint, 2015.

29



R. E. Caflisch, G. Gambino, M. Sammartino, and C. Sgarra. European option pricing with transaction costs and
stochastic volatility: an asymptotic analysis. 2012. Preprint.

J. Choi, M. Sirbu, and G. Zitkovic. Shadow prices and well-posedness in the problem of optimal investment and
consumption with transaction costs. SIAM J. Control Optim., 51(6):4414–4449, 2013.

M. Dai, L. Jiang, P. Li, and F. Yi. Finite horizon optimal investment and consumption with transaction costs. SIAM
J. Control Optim., 48(2):1134–1154, 2009.

M. Davis and A. Norman. Portfolio selection with transaction costs. Math. Oper. Res., 15(4):676–713, 1990.

M. Davis, V. Panas, and T. Zariphopoulou. European option pricing with transaction costs. SIAM J. Control Optim.,
31(2):470–493, 1993.

B. Dumas and E. Luciano. An exact solution to a dynamic portfolio choice problem under transaction costs. J.
Finance, XLVI(2):577–595, 1991.

J.-P. Fouque, G. Papanicolaou, and R. Sircar. From the implied volatility skew to a robust correction to Black-Scholes
American option prices. International Journal of Theoretical & Applied Finance, 4(4):651–675, 2001.

J.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Sølna. Multiscale Stochastic Volatility for Equity, Interest-Rate and
Credit Derivatives. Cambridge University Press, 2011.

J.-P. Fouque, R. Sircar, and T. Zariphopoulou. Portfolio optimization & stochastic volatility asymptotics. Mathe-
matical Finance, 2013. To appear.

S. Gerhold, P. Guasoni, J. Muhle-Karbe, and W. Schachermayer. Transaction costs, trading volume, and the liquidity
premium. Finance and Stochastics, 18(1):1–37, 2014.

J. Goodman and D. Ostrov. Balancing small transaction costs with loss of optimal allocation in dynamic stock
trading strategies. SIAM Journal on Applied Mathematics, 70(6):1977–1998, 2010.

P. Guasoni and J. Muhle-Karbe. Portfolio choice with transaction costs: a user’s guide. In V. Henderson and R. Sircar,
editors, Paris-Princeton Lectures on Mathematical Finance 2013. Springer, 2013.

K. Janecek and S. Shreve. Asymptotic analysis for optimal investment and consumption with transaction costs.
Finance Stoch., 8(2):181–206, 2004.

M. Jonsson and R. Sircar. Partial hedging in a stochastic volatility environment. Mathematical Finance, 12(4):
375–409, October 2002.

J. Kallsen and J. Muhle-Karbe. The general structure of optimal investment and consumption with small transaction
costs. 2013a. URL http://arxiv.org/abs/1303.3148.

J. Kallsen and J. Muhle-Karbe. Option pricing and hedging with small transaction costs. Mathematical Finance,
2013b.

M. Magill and G. Constantinides. Portfolio selection with transactions costs. J. Econom. Theory, 13(2):245–263,
1976.

T. McQuade. Stochastic volatility and asset pricing puzzles. Technical report, Harvard University, 2013.

R. C. Merton. Lifetime portfolio selection under uncertainty: the continous-time case. Rev. Econom. Statist., 51:
247–257, 1969.

S. Shreve and H.M. Soner. Optimal investment and consumption with transaction costs. Ann. Appl. Prob., 4:609–692,
1994.

H.M. Soner and N. Touzi. Homogenization and asymptotics for small transaction costs. SIAM Journal on Control
and Optimization, 51(4):2893–2921, 2013.

S. Ting, C.-O. Ewald, and W.-K. Wang. On the investment-uncertainty relationship in a real option model with
stochastic volatility. Mathematical Social Sciences, 2013. In press.

E. Whalley and P. Wilmott. An asymptotic analysis of an optimal hedging model for option pricing with transaction
costs. Mathematical Finance, 7(3):307–324, 1997.

30

http://arxiv.org/abs/1303.3148

	Introduction
	A Class of Stochastic Volatility Models with Transaction Costs
	Investment Problem
	HJB Equation
	Free Boundary Formulation & Eigenvalue Problem

	Fast-scale Asymptotic Analysis
	Power expansion inside the NT region
	Boundary Conditions
	Determination of 1
	Summary of the Asymptotics

	Building the Solution
	Building v,0 and 0
	Finding v,1 and 1
	Accuracy Proof

	Slow-scale Asymptotics
	Power expansion inside the NT region
	Computation of 1
	Computation of v,1
	Explicit Computations of (v,1,1) in the real  case

	Analysis of the results
	Conclusion
	Comparison Theorem
	Proof of Proposition 4.3
	Real 
	Complex 

	Explicit Calculation of the Vega in the Real Case
	Proof of Proposition 5.2

