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Abstract

We study simple models of short rates such as the Vasicek or CIR models, and
compute corrections that come from the presence of fast mean-reverting stochastic
volatility. We show how these small corrections can affect the shape of the term
structure of interest rates giving a simple and efficient calibration tool. This is used
to price other derivatives such as bond options. The analysis extends the asymptotic
method developed for equity derivatives in (Fouque, Papanicolaou and Sircar 2000b).
The assumptions and effectiveness of the theory are tested on yield curve data.
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1 Introduction

In this article we model and exploit the bursty nature of interest-rate volatility to try to understand,
in a relatively robust manner, the effect of uncertain and changing volatility on rate-sensitive
derivative instruments. A key goal is to move away from the affine family of models and capture a
wider range of observed yield curve shapes, while staying within a parsimonious class of stochastic
volatility models.

Our empirical evidence, described in Section 5, suggests that interest rates and interest rate
volatility vary on different time scales, the latter exhibiting a characteristic mean-reversion time on
the order of two weeks. We are able to capture stochastic volatility effects with minimal calibration
overhead. The ability to fit unusual yield curves during the bond crisis of 1998 is striking.

We begin with a review of the motivation for stochastic volatility models for the short-rate, and
describe the observation of volatility persistence in terms of rates of mean-reversion. This sets up



the analysis by which contingent claims prices are approximated by an asymptotic series of terms
of decreasing magnitude. Truncation of the series at a judicious point reduces the dependence
of the approximation on the details of the underlying model. In this sense, the approximation is
robust, being valid for a large class of models. Introducing more terms in the series would increase
the dependence on a specific model, while a fewer number of terms misses important features, like
humps in the yield curve, seen in the data. This approach was introduced to study the effects of
implied volatility skews on equity derivatives in (Fouque et al. 2000b).

The analysis identifies the important groupings of the base model parameters that summarize,
to the maintained level of accuracy, the market’s view of volatility risk. We find from empirical
analysis of short rate data a “bursty” volatility with a natural time scale on the order of a couple
of weeks.

The short rate itself may be considered observable if we allow the one-month rate to serve as a
proxy, for example. The present volatility level is unobservable, but to the level of approximation
we shall use, it does not enter the prices. The analysis reduces dependence on the hidden factors
while maintaining a reasonably rich dynamic for the short rate. The approach described here lends
itself to robust estimation techniques which are less computationally intensive than likelihood or
moment methods, facilitating studies of parameter stability, model risk, hedging and risk analysis.

2 Background

We proceed here in the tradition of modeling at the level of the short-rate process (r;);>o from
which the yield curve and derivatives prices will be determined by the principle of no arbitrage.
One-factor models, in which () is an It6 process driven by a single Brownian motion date back at
least to (Vasicek 1977). However, these models imply perfect correlation between returns on bonds
of all maturities, which is contrary to empirical observation and, as a result, there has been much
work on multifactor models. We refer to surveys of the literature in (Hull 1999, Chapter 21) or
(Duffie 2001, Chapter 7).

2.1 Motivation for Stochastic Volatility Models

Stochastic volatility models, in which a second random process drives the diffusion term of the
short-rate, are popular examples of two-factor models. The second factor may not actually be the
instantaneous standard deviation of short-rate rate changes, but we will loosely refer to it as the
volatility-driving process. As explained in (Longstaff and Schwartz 1992), there is much empirical
evidence of randomly changing volatility, and, as with equities, volatility is an important variable
in determining derivative prices. In fact, stochastic volatility models have been successfully used to
explain the observed implied volatility surface or skew in equity markets. See (Frey 1996, Fouque
et al. 2000b) for example. Models of interest rate stochastic volatility are often motivated by their
a posteriori impact on explaining term-structure shapes and movements (Longstaff and Schwartz
1992).

For an overview of issues of model selection, we refer to (Rogers 1995) and references therein.

2.2 Calibration & Separation of Scales

The computational cost of introducing a second factor is high in practical situations and this makes
it preferable to choose models for which vanilla (liquid) instruments have closed-form formulas.
Parameters are then calibrated or “backed-out” from, say, the observed yield curve. A popular



model, which includes stochastic volatility effects, is the generalized two-factor CIR, studied in
(Longstaff and Schwartz 1992) and (Duffie and Kan 1996), which we write

dry = ki1(p1 —ro)dt + Venry + eV AW, (1)
dVi = ko(pe — Vi)dt + v/ ca1ry + oV dZ}. (2)

Here (W}, Zf) are Brownian motions under the pricing measure, and in fact the drift terms can be
linear in both processes (r;) and (V;) in the most general form of the model.

The advantages of this model are that (V});>0 can be interpreted as a volatility-driving process
that is mean-reverting, the solution (r;) stays positive (with suitably restricted parameter values)
and there is an affine formula for the yield curve, in which the time-dependent coefficients are
solutions of ODEs, simplifying the inverse problem of calibration.

A different way to introduce volatility randomness, mean-reversion and clustering, is to take the
volatility to be some positive function f(Y;) of a mean-reverting factor process (Y;);>0. A generic
example of such a process is the Ornstein-Uhlenbeck (OU) process, satisfying the SDE

dY, = a(m — Y,)dt + BdZ,,

with (Z;) a Brownian motion. In this family of models, (¥;) is an autonomous diffusion. What is
important for the asymptotic results we present is that (Y;) is an ergodic process with a unique
invariant distribution, modeling volatility mean-reversion. In the OU case the invariant distribution
is normal NV'(m, v?), where we define v? = 5%/2a.

The generality of the class of models is in not having to specify a function f: the features
of this function that are needed for the theory are captured by group parameters derived in the
asymptotics and easily calibrated from data.

The asymptotic approximations we present are in the limit o« — oo with v? fixed, which we
refer to as fast mean-reversion. This method has been used to robustly incorporate stochastic
volatility effects into equity derivative prices to explain the implied volatility skew (Fouque et al.
2000b), and from the skew price other contracts such as barriers (Fouque, Papanicolaou and Sircar
1999) or American options (Fouque, Papanicolaou and Sircar 2001). The group market parameters
identified by the analysis have been found to be relatively stable over time when estimated from
market data (Fouque, Papanicolaou and Sircar 2000a).

3 Vasicek Model: Notation & Brief Review

In this section, we describe the simple one-factor Vasicek model (Vasicek 1977) and review how
bonds and bond options are priced under it. Details can be found in (Jamshidian 1989). Stochastic
volatility is introduced into this model in the next section. The choice of this “background” model
is motivated by simplicity to illustrate the method. The analogous calculation built around a CIR
model is given in Appendix A.

3.1 Model

In the Vasicek model, the short-rate is modeled as a mean-reverting Gaussian stochastic process
(T¢+)¢>0 on a probability space (€2, F, IP) equipped with a filtration (F;);>o. Under the real-world
probability measure IP, it satisfies the linear stochastic differential equation (SDE)

d’Ft = a(Foo - Ft)dt + 5th, (3)



where (Wt)tz[] is a standard Brownian motion. Here & is a constant volatility, assumed positive,
and a is the rate of mean-reversion, also assumed positive.

We use the overbar notation to highlight the one-factor world, to which we shall make reference
in the next section as well as when we give the asymptotic approximations for the two-factor model
there.

Under an equivalent martingale (pricing) measure IP*, it also follows a linear SDE

dry = a(r* — 7)dt + GdW;, (4)

where (Wy) is a standard IP*-Brownian motion, if we assume the market price of interest rate risk,
denoted by A, to be constant. Tt is included in r* = 7o, — /\T& In other words, in the risk-neutral
world IP*, the short rate (7;) is an Ornstein-Uhlenbeck process fluctuating around its mean level
r* with a rate of mean-reversion a, assumed positive. It has the undesirable feature that it can
become negative, but it is the simplest model in a larger family of models known as affine for which

the computation of bond prices and derivatives is relatively easy.

3.2 Bond Prices

The no-arbitrage price at time ¢ of a zero-coupon bond maturing at time 7', denoted by L(t,T), is
given by

L, T) = B {e_ S} s | ]—“t} — P(t,7:T), (5)

where the bond pricing function P(t,z;T) satisfies the partial differential equation (PDE)

oP 1 ,0°P N oP _
D T - —r)— — P =
BT + 50 572 +a(r* — ) o 0, (6)
with the terminal condition P(¢,z;T) = 1.
The solution is
P(t,2;T) = A(T — t)e BTz (7)

where A and B satisfy the system of ordinary differential equations

B +aB—1 = 0 (8)
A1
- 56232 —ar*B = 0, (9)

with A(0) =1 and B(0) = 0. This gives explicitly

1 _ e*ﬂ;T

B(r) = ——— !
(r) : (10)
1—e 97 52 a2
A(T) = exp{ — |RsoT — Rso 103 (1—e777) , (11)
where we have set L \o _
x_ O _ o A0 0
Roo =1 22 ®° 4 242

The yield curve, defined by R(t,7) = —% log (L(t,t + 7)), as a function of 7, is

Figure 1 shows a typical bond pricing function (of maturity) and the corresponding yield curve
obtained under a Vasicek model. The yield curve (bottom) is a classical increasing curve obtained
with this model when the current short rate is lower than the long term rate.
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Figure 1: Bond prices (top) and Yield curve (bottom) in the Vasicek model with a = 1, r* = 0.1
and & = 0.1. Maturity runs from 0 to 30 years. Rso = 0.095 and the initial rate is x = 0.07.

3.3 Bond Option Prices

We continue to denote the maturity of the bond by T and the maturity of a European option
written on that bond is denoted by Ty with ¢ < Ty < T. The payoff of the option at time T} is a
function h(L(Ty,T')) of the bond price at the expiration time of the option.

The no-arbitrage price of this option is given by Q(t,z; T, Ty), solution of the partial differential
equation (6) with the terminal condition Q(Ty, z; T, Ty) = h(z) = h (P(Ty, z;T)) where P(Tp, z;T)
is given by (7) at ¢t = Tp.

In particular, the price C(t,z) of a call option with strike price K, is given by

C(t,z) = P(t,z;T)N(hy) — KP(t,z;Ty) N (hs), (12)

where N is the A(0,1) cumulative distribution function. The quantities hy o are given explicitly
by

log M —log K + 10
hiy = (P(t,I,To)) 2 : (13)

,02 — 5-_ (1 - 672a(T07t)) (1 - efa.(Tft))2 ) (14)

4 Stochastic Volatility Vasicek Models

In this section, we model stochastic volatility in the short-rate and present the asymptotic analysis
for bond and bond option prices that corrects the Vasicek formulas of the previous section to



account for uncertain volatility. The key assumption is that volatility is fast mean-reverting, as
defined in Section 2.2.

4.1 Model

We extend model (4) by introducing stochastic volatility oy given by a positive function f(Y7)
of an ergodic Markov diffusion process (Y;) with a unique invariant distribution, for example an
Ornstein-Uhlenbeck process. The Gaussian distribution of this last choice is not important for the
asymptotic results as we shall calibrate them, but we write a specific driving process to fix ideas.
Assumption The volatility function f is smooth and bounded above and below:

0<c <f<e <0 (15)

for some constants ¢; and co, and f has bounded derivatives.
Under the real world measure IP the processes (1, Y;) satisfy

dri = a(reo —re)dt + f(Y) dWy
dY; = a(m =Yy dt+ B (pdW; + p' dZ;), (16)

where (W;) and (Z;) are independent standard Brownian motions, and p/ = /1 — p?. The pa-
rameter p with |p| < 1 allows a correlation between the Brownian motion (W;) driving the short
rate and its volatility. Typically, we would expect p > 0 as rising volatility tends to push bond
prices down and yields up. This is confirmed from empirical evidence. Observe that the invariant
distribution of (Y;) is the normal distribution A (m, 82 /2a).

In the risk-neutral world P**?) the model for the short rate (r;) becomes

dry = (a(reo —re) — AV f(YVy)) dt + f(Y7) AW} (17)
dY, = (a(m—Y) = B[pA(Y2) + p'v(V})]) dt + B (pdW} + p' dZ}) (18)

where (W}) and (Z7) are two independent standard P**Y)-Brownian motions.

The market price of risk A(Y;) may depend on Y; but we assume that it does not depend on the
short rate ;. Similarly the market price of volatility risk v(Y;) associated with the second source
of randomness (Z;) may depend on Y; or simply be a constant. The effect is to preserve under the
pricing measure the Markovian structure of the model and the autonomy of the volatility-driving
process (Y;), so that (17-18) remains a genuine stochastic volatility model. The assumption is that
the market does not price term-structure derivatives as though the volatility is significantly affected
by the level of the short-rate, or non-Markovian phenomena.

Assumption The risk premium processes A(Y;) and v(Y;) are bounded:

<Ay <y <o (19)

for some constants ¢} and ¢, and A and v have bounded derivatives.

For general functions f these models do not belong to the affine family in that yields will not
be affine in the second factor Y;. In fact they do remain affine in the short-rate r;, which we
shall exploit in the following sections. However explicit formulas for bond prices through ordinary
differential equations are not available.



4.2 Correction for Bond Prices

The no-arbitrage price L(t,T) of a zero-coupon bond maturing at time 7' is now given by
P(t,o,y;T) = B* { oy, = 0y, = y} (20)

where the expectation IE**) is taken with respect to the distribution of (rt,Y:) solution of (17-
18) starting at time ¢ from (z,y). Note that in these models, (r;) is not bounded below so the
expectation in (20) is not trivially finite. In the next section, we prove that in fact it is finite and
that P is a classical solution of the Feynman-Kac partial differential equation

2
O SIS L 4 (alrse — ) ~ A ) S — 2P
2 2
+6pf()a P alm -y = A G = 0, 1)

with the terminal condition P(T, z,y;T) = 1 for every x and y, where we define

Aly) = pA(y) + v (),

the combined market price of risk.

4.2.1 Properties of the Bond Pricing Function
First, we define
Mityy) = B{eh ¥ =y},
where Y is an It process defined by
dY; = (a(m — Y;) = Bb(t, V1)) dt + B W,

on some probability space where W is a standard Brownian motion and we define

b(t,y) = Aly) +pf(y)B(T —1) (22)

clhy) = )P BI—1) = BT~ f){ars ~ A»)f(y)). (23)

Under our assumptions (15) and (19) on f(y), A(y) and ~y(y), and the form of B given by (10), the
coefficients of ¥ are smooth with bounded derivatives. The potential ¢(t,y) is bounded in y and
t < T, and therefore M(t,y) is also bounded. Moreover, M is the unique classical solution of the
Feynman-Kac partial differential equation:

oM 15282]\/[
ot 27 oy?

T (a(m —y) — Bb(t,1)) 88—]‘; Fe(ty)M = 0, (24)

M(T,y) = 1 (25)

This follows from (Krylov 1980, Theorem 2.9.10). See also (Duffie 2001, Appendix E). In these
references, it is assumed that ¢ < 0, but in our case, ¢ is bounded above by some ¢y < 00, so we
apply the theorem to e=¢(T=t) M which satisfies the same PDE with ¢ replaced by ¢ — ¢g, which
fulfills the required condition on the potential term.
Then we define Py; by
Puy(t,,y; T) = M(t,y)e” P07, (26)

where B is given by (10). It follows from direct calculation that Py, is a classical solution of (21)
with terminal condition 1. The following proposition shows that Py; = P.



Proposition 1 The bond price (20) is given by formula (26). It is exponential-affine in the z-
variable:

T
E*()‘/Y) {e‘ft Tsds | ry = ant = y} = M(t,y)eiB(T?t)m- (27)

Proof. From (17), and the boundedness assumptions on A and f, (r;) satisfies an equation of the
form
dry = —ary dt + gy dt + ky AW},

where |g| < C1, and |k| < Oy are bounded (F;-adapted) processes. Then, for any 7' > 0, we have
that supg<,<r |r¢| is stochastically dominated by

: (28)

Cy ~
ro| + o + ‘W(CgBZaT/a)

where W is a standard Brownian motion. Therefore ry and f(f rs ds have exponential moments
(uniform in € > 0), and the finiteness of the bond price given by the expected value (20) follows.
Using the form (26) of the solution of the Feynman-Kac PDE (21) we deduce that

t t
e Jors B Pyt Yy T) = M(t,Yy)e BT =Dree™ Jorsds

is a martingale. Integrability is given by the exponential moments above. It6’s formula and the
PDE (24) satisfied by M(t,y) give the conclusion. When applying Ité’s formula, e=B*
bounded in z but it is justified by the exponential moments. The martingale property between ¢
and T and the Markov property of the pair (r,Y;) give the formula (27). Hence Py = P.

Observe that in the class of stochastic volatility models we consider, the yield is affine in the
short rate r; but is general in the other factor Y;.

1S not

4.2.2 Scales in Stochastic Volatility

In the context of fast mean-reverting stochastic volatility, the rate of mean-reversion a in the OU
process (Y;) driving the volatility is large and we are interested in approximations in the limit
a — oo with v = 8/v/2a remaining constant.

We use the notation and the method we have developed in the context of equity markets in
(Fouque et al. 2000b). The asymptotic analysis will be carried out as 1/« becomes small and we
set:

e = 1/a,
V2
ﬁ = T =
NG
P(t,z,y;T) = M (T —t,y)e BT 0", (29)

(30)

where we have re-labeled M as M* to stress the dependence on the small parameter. Note that the
exponential-affine term e 5% does not depend on e. Therefore we will proceed with an asymptotic
expansion for M® in powers of e, with the other part appearing as a factor.

To this end, we re-write the equation (24) for M*¢ as A°M*® = 0, where

e_l, 1
A° = 6£0+\/E.A1+A2, (31)



and the operators Ly, A1, Az are defined as follows:

ok 0
— Lo=1°7— —y)=—.
Note that aLy is the infinitesimal generator of the mean-reverting OU process (Y;) given by (16)
under the real-world measure IP.

0
> Al = —\/il/b(t,y)—,
dy
contains the two market prices of risk and a term due to the correlation p.
0
— A2:&+C(t,y)l,

is the operator associated with the ordinary differential equation which leads to the formula (11)
for A in the constant volatility Vasicek problem. Here, it has volatility f(y) and long run mean

(oo — %) which depend on y.

4.2.3 Asymptotic Expansion and Main Result

The theorem of this section describes the approximation of bond prices we obtain from an asymp-
totic expansion for M, solution of (24). We introduce the expressions

ot = (f%),
™ = reo—(\f)/a (32)
Vi = 22l (33)

V2
- —”—ff(M)—up@(w')
Vi = vV2e(AY),

where (-) denotes the averaging with respect to the density ®(y) of the Gaussian distribution
N (m,v?), and ¢ and 1) are specific solutions of the Poisson equations

Lo = f>—(f?) and Loy = Af — (Af). (34)
Indeed, writing Ly = 'ga%(@a%), we see that, under the boundedness assumptions on f and A, we

can (and do) choose ¢ and 1) such that their first derivatives given by

Y0 = gy [ (FEP =) 8@ w0) = g [ @) - () Bla)d

are bounded and ¢ and ¢ themselves are at most linearly growing in |y|.

The V’s are complicated functions of the model parameters, including market prices of risk,
and the volatility function f. Notice that no skew (p = 0) implies V3 = 0 and a market price of
risk such that Af is constant implies V; = 0.

Further, let
D) = 2 (T ~ B(r) - JaB(r)’ - %aZB(T)?’)
- % (T _B(r) - —aB(T)2> + 2 (r = B(r) (35)
Py(t,z;T) = P(t,z;T) = A(T —t)e BT (36)
Pi(t,z;T) = D(T —t)A(T —t)e” BTz (37)

10



where A and B were defined in (11) and (10). Notice that Py is exactly the Vasicek one-factor
bond pricing function P with the “averaged” parameters (a,r*, ) related to the stochastic volatility
model parameters in (17-18) by (32). The corrected bond price is given by

P(t,2,y;T) = Pylt,0:T) + Py(t,a5T) = AT =) [1+ D(T =] e BT (38)

where D is a small factor of order 1//a. The error in the approximation (38) is of order 1/c. This
is the main result of this paper stated in the next theorem.

Theorem 1 Suppose Py is given by (36) and Py, by (37). Then for any fired t <T, z,y € R,
|P(t2,4:T) = (Po(t, 5 T) + Pu(t, 3 7) ) | = Ofe),
where P(t,z,y; T) is the model’s bond price given by (20).
Proof. From (26), it is enough to show that
|A(T — t)[1 + D(T —t)] — M°(T — t,y)| = O(e).
Notice that A(T —t), as a function of ¢, is the solution of the equation

(As)A = %A(T _ )+ (AT —1) =0, (39)

with the terminal condition A(0) =1 at ¢ =T, and where
1
&(t) = (c(t,-)) = 5&2B(T —t)2 —ar*B(T —t), (40)

is the average of c¢(t,y) given by (23). The function AsA being centered (by (39)) and bounded,
the Poisson equation in My
LoMy + .AQA(T — t) =0, (41)

admits a solution with bounded first y-derivative. It is given, in terms of the functions ¢ and
defined in (34), by

Mat,y) = ~A(T 1) (30w BT — 0 + () BT 1))

where we have arbitrarily set the integration constant to zero.
The correction D(T — t) defined by (35) has been chosen such that it is the solution of the
equation

(A2)AD + \/e(A M>) =0,

with the terminal condition D(0) =0 at ¢t =T.
Similarly, define M3(¢,y) as a solution of the Poisson equation

D(T —t
LoMs3 + AQA(T — t)¥ + A1 My = 0, (42)
Ve
which can also be written in terms of solutions of Poisson equations similar to (34):
D(T -t 1
Malt,) = =AT =1) [$10) 2=+ 0VE (00 BT ~ 07 + ()BT =) .

11



where ¢1, o and ¢3 are respectively solutions to:
Lop1 = c—¢,
£0¢2 = b¢l - <b¢,>7
£0¢3 = b@bl - (bd)l>7
and b, ¢, (¢, 1)), ¢ are respectively defined in (22,23,34,40).

Because of the boundedness assumptions on f(y), A(y) and y(y), it follows that the solutions
of these Poisson equations can be chosen with bounded first derivatives, and are at most linearly
growing in |y|. Consequently, My and M3 are at most linearly growing in |y|, and the linear growth
rate is uniformly bounded in ¢ since A, B and D are.

Let the error function Z¢ be defined by

7% = A(1 4+ D) 4 My + /> M3 — M®. (43)
At the terminal time T we have
Z5(T,y) =0, (44)
because of the terminal conditions M*(T,y) = A(0) =1, D(0) =0 and Ms(T,y) = M3(T,y) = 0.

The next step is to compute A°Z° using the definition (31) of A%, and the properties of
(M#, A, D, My, M3), keeping in mind that D is proportional to \/e:

A°Z° = A°(A(1+ D) +eMsy +e/eMs — M®)
1 1 D
= (—ﬁo + 7/(1 + A2> <A + ﬁA% +eMy + 6\/5M3> — A*M*

- £0A+ (LoA - 1 A, 2)

\f \f

D
+(LoMs + AlAﬁ + A2A) + /e <£0M3 + Ay My + A2A$>

+e (.A1M3 + Ay My + \/E.AQM?,)
= e (AIMs + As M) + €32 A3 M3, (45)
because M*® solves the original equation A*M¢ = 0 and A, D, My and M3 have been chosen to
cancel the first four terms (the first two terms cancel because A and D do not depend on y, and
the third and fourth terms cancel because of (41) and (42)).
Putting together A°*Z¢ = O(e) and Z°(T,y) = 0 from (44), we obtain
Z°=0(e). (46)
To see this, we denote A°Z° = e F* where
Fg(ta y) = A1M3(t7 y) + A2M2(t7 y) + \/EAZMS(ta y)7 (47)
and we write the probabilistic representation of Z°:
A r rud
ZE(t,m,y) = X)L — / ST R (s Y ds | =2, Y, =y (48)
t

Again, because of our smoothness and boundedness assumptions, F¢ is at most linearly growing in
ly|. The result (46) follows by using the exponential moments of [’ r,, du obtained as a consequence
of (28) in the proof of Proposition 1, which are uniformly bounded in £ and ¢, and the bound on
the variance of Y; given in Appendix B.

Finally, using (43), the conclusion of the proof is given by:

|M® — A(1 + D)| = |eMy + €32 M3 — Z°| < | Z°| + €| My + /e Ms| = O(e).
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4.2.4 Consequences

In Figure 2, we show the effect of the small correction P; on the bond prices (top) and on the

1
n 0.8F \\\ i
5] ~
(] ~
o061 T~ ]
£ o. ~
< S~
S04 -~ |
S) -
an) .
0.2} T~ .
O | | | | |
0 5 10 15 20 25 30
Maturity
T
0065 | | | | |
5 10 15 20 25 30

Maturity

Figure 2: Top: bond prices and corrected bond prices (dotted curve). Bottom: yield curve and cor-
rected yield curve (dotted curve) in the simulated Vasicek model (constant and stochastic volatility)
with: o =1, v = 0.1 and & = 0.1 as in Figure 1. Concerning the correction we have used test
parameter values V3 = 1/\/a which assumes a nonzero skew (and in particular would imply from
(33) that pv(f¢') = v2), « = 103 and X = v = 0 implying Vi = 0 and Vo = 0. Maturity runs from
0 to 30 years and the initial rate s = 0.07.

In the case p = 0, the effect of the correction is very easy to understand. Using the fact that
D’ and D are small of order /¢, the following simple calculation

MO+DW::<£ D’>

AL+ D)] At

_ ( D) +0()

1
= (56232 —ar*B - VoB* + VlB> + O(e)

A,
= — 40

shows that .
A1+ D)=A+O(e)

13



where A is exactly as in the Vasicek formula (11) with the same terminal condition as A(1 + D),
and with the effective parameters

52 = 52—2VQ
Sk ok E
a

In other words, V5 shifts the level of the long-run average volatility and V; contributes an extra
risk premium in the drift of the short-rate. These two effects are the result of uncertainty in the
volatility.

When p # 0, the part associated to V3 incorporates more complex effects due to the skew.

4.3 Corrections for Bond Option Prices

We consider now the bond option pricing problem in the context of the stochastic volatility Vasicek
model introduced in Section 4.1. The short rate process (r;) and the OU process (Y;) driving the
volatility are given by equations (17) and (18). The option on the zero-coupon bond is as in Section
3.3, with payoff function h(L(Ty,T)). Its price at time ¢ is denoted by Q(¢,z,y; T, Tp). It is now a
function of the current rate r, = z and the current volatility level Y; = y, given by

To

Qltya,ys T, Ty) = B {eﬁ nds g (L(Ty, T)) | vy = 2, Y; = y} , (49)

where the bond price L(Tp,T) is a function of r7, and Y7, given by formulas (20) and (27) with ¢
replaced by Tp:

T
L(T(),T) = .ZE*(/\”Y) {6 fTO rads | Ty YTO} - P(T()a Ty YTo; T) = M(T07 YTg)eiB(TiTO)rTO -

We assume that the payoff function h is at most linearly growing at infinity, and we consider first
the case where it is a smooth function with bounded derivatives. The nonsmooth case, with the
important application to call options on bonds, will be discussed in Section 4.3.3. The exponential
moments of 77, and ftTO rsds obtained in Proposition 1 enable us to use the Feynman-Kac formula:
the premium function Q(t,x,y; Ty, T) is again solution of the partial differential equation (21) but
the terminal condition at time Ty becomes

Q(To, 2,y T, To) = h(P(Ty, 2,y;T)) = h (M(Ty,y)e” PT=T0)r) | (50)

Notice that in (21), the potential ”z” is unbounded below. In order to handle this equation,
following the forward measure idea of Jamshidian, one can make the substitution

Q(t7$ay;Ta TO) = P(t,I,y;TU)U(t,y,Z),

1 (P(t,x,y;T)>
z=log | ——""=~
8 P(taxayaTﬂ) ,

and easily deduce that u(t,y, z) solves an autonomous linear PDE with time-dependent coefficients
and no potential term. This trick gives the regularity properties of v needed to prove that ) solves
(21). Tt turns out that this is not practical for computation and does not simplify the asymptotic
analysis presented in this section. This is because the coefficients of the PDE satisfied by u(t,y, 2)
involve %—A;/M, where M is given in (24).

where

14



Observe that the terminal condition depends also on the volatility variable y. Fortunately, in
the fast mean-reverting case (« large) we have already obtained, in Section 4.2.3, an expansion
of the bond price P(Ty,z,y;T) and we have seen that, up to order O(1/\/«), this expansion is
independent of y. Using the expansion (38) and Theorem 1 we have:

P(Ty,z,y;T) = Py(To,2;T) + P (T, z;T) + O(e)
= Ay(1+ Dy)e Po" + O(e), (51)

where Ay, By, Dy denote respectively A(T — Ty), B(T — Ty), D(T — Tp).
Using the assumed smoothness of the function A, the terminal condition (50) can then be expanded
as:

Q(Tﬂaxay;Ta TO) = h(PO(TOax;T)) + pl(Tg,(L‘;T)hl(Po(To,ZE;T)) + 0(6)
= h (AgeiBOm) + A()D()eiBOmh, (AgeiBoz) + 0(8) (52)

The PDE (21) satisfied by the bond option price function Q(¢, z,y; T, Ty), denoted here by Q (¢, =, y),
can be rewritten

£ENE 1 L e __
Q= <8£0+\/g£1+£2>Q 0, (53)

where L is the OU infinitesimal generator as in (31), and

0,1

_ 0 L@ 0
ot " 2

Lo FW) 53 +(alree —2) = AW)f(y)) 5 — =1,

is the Vasicek operator with volatility f(y) and long run mean (ro, — AW/ W) ), and

0? 0
Ly = ﬂ”ﬂf@)m - \/ﬁuA(y)a—y :
4.3.1 Formal Expansion
Expanding Q¢ as
Qa(t7$7y) = QO(taxay) + \/ng(t7$7y) + 8Q2(t7$7y) +eeey (54)

where maturities are not shown to simplify the notation, we now carry out the formal derivation
of Qo and )1 while the proof of the accuracy of the approximation will be given in Section 4.3.2.
Zero-order term

Expanding the equation £°Q° = 0, the term of order 1/e, L£oQy, cancels if Qo(t,z,y) does not
depend on y:
QO(ta xz, y) = QO(ta ,’L‘) :
The terms of order 1/1/e, LoQ1 + L1Qo = LoQ1, again cancels if Q1 (¢, z,y) does not depend on y:
Ql(taxay) = Ql(t,fL‘) :
The O(1) terms lead to the Poisson equation L2Qo + LoQ2 = 0 for Q2 whose solvability condition,

ensuring the existence of solutions in a reasonable space, is (L2Qg) = 0 where (-) denotes again
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the averaging with respect to the invariant distribution of the OU process (Y;). Since Qo(¢, ) is
independent of y, we have

(£2Q0) = (£2)Q0 = 290 1 152 0 1 (o —2) — (af)) 2D

1
ot T 27 oa e Q=0 (55)

with the terminal condition Qy(Ty,x) = h (Py(To,z;T)) = h (Age*BO"”) at time T which corre-
sponds to the leading order term in the terminal condition (52). This is exactly the problem solved
in the previous Section 3.3 in the case of a constant volatility ¢ and r* = roo — (Af)/a, as defined
in (32). It is the Vasicek one-factor option price which can be written

Ty
0

Qo(t,z) = IE* {eft sdsp, (AoefBOFTO) | 7 = x} , (56)
where (7) is the one-factor process defined by the SDE (4) under the risk-neutral measure IP*.

First-order correction

The O(y/€) terms give a Poisson equation in Q3 whose solvability condition reduces to

(L2)Q1 = —(£1Q2).

Using the same argument as in the proof of Theorem 1, one can write Q2 = —Lo (Lo — (£2))Qo.
We set Q1(t, ) = /eQ1(t, z) and deduce

(L)1 = Ve(Lily'(La—(L2))) Qo
2
= Ve <clcal (%(f(y)Z () g~ W) - <Af>>3) > Qo

2
- Ve <£1 (%gb(y)% - ww(%) > Q

9? o?

0
= <V1— + Vs + V3$> Qo = AQo, (57)

Ox or?
where the small constants V1, V, and V3 proportional to /e are defined in (33). In other words,
Q1(t, z) satisfies the Vasicek PDE with a small source term given by AQq(t, ), and, using (52),
with the terminal condition at time 7j given by

Ql (TU, 33) = Pl (TU, Z; T)h,l (P[)(TU, Z; T)) = AgDoe_BOmh, (AUG_BOZ.) .

Using the probabilistic representation of the problems (55) and (57) with their respective terminal
conditions, one can write

Q(tamay;Ta TO) ~ Qg(t,iﬂ) + Ql(tax)
To _ _ _ _
- JE* {eft 07, ds |:h (AoefBngO) + AODOefBorTO hl (AoefBorTO)] | P = ,’L‘}

—E* {/To eI "2 45 AQo(u, 7y ) du | 7 = x} . (58)
t
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4.3.2 Accuracy of the Bond Option Price Approximation

In this section we prove the following result:

Theorem 2 Assume the payoff function h is smooth and has bounded derivatives, and suppose
Qo and Q1 are the classical solutions of the problems (55) and (57) with their respective terminal
conditions. Then for any fizred t < Ty, z,y € R,

Q2,5 T,T) = (Qolt2) + Qu(t,2)) | = O(e),
where Q(t,z,y; T, Ty) is the model’s bond option price given by (49).

Proof. The proof follows the lines of the proof of Theorem 1. Tt consists again in using the functions
Q2(t, z,y) and Qs(t, z,y), solutions of the Poisson equations

LoQ2 + L2Qo =0,

LoQsz + L1Q2+ L2Q1 =0,

where Qo (t,z) is the Vasicek option price (56), satisfying (L2Qo) = (L2)Qo = 0, and Q1 (¢, z) has
been chosen such that the centering condition (£1Q2 + L2Q1) = 0 is satisfied. The main difference
with the proof of Theorem 1 is that the variables z and y do not separate and therefore we have
to control the successive z-derivatives of Qo9 and @)1 involved in Q2 and ()3. This will be done
in Lemma 1, at the end of this section, where we will show that these derivatives are at most
exponential in  which, combined with the exponential moments of r; and its time-integrals, will
give the conclusion.
As in (43), we introduce the error function

75 = Qo+ VeQ1 +eQy + 32Q5 — QF, (59)

with the terminal condition

ZE(Tvy) =€ (Q2(Tvxvy) + \/&_‘Qg(T,ZE,y)) + 0(6) = géa(x,y)’ (60)

where we define G¢(z,y) = Qa2(T, z,y) + VeQs(T, z,y) + O(1), where the O(1) term is uniformly
bounded by the assumptions of smoothness of the payoff h, and boundedness of its derivatives.
Our choice of (Qo, @1, Q2,Q3) and a computation similar to (45) gives

LE7F = e (L1Q3 + L2Q2) + €32 L9Q3 = eF° (61)

where we define Fe(¢,z,vy) = £1Qs3(t, z,y) + L2Qa(t, z,y) + VEeL2Qs(t, z, y).

The error Z¢ is solution of the problem (61) with the terminal condition (60). The functions Qy

and Q3 are linear combinations of the derivatives 85;:; ?no, for m < 3, and %, for n < 2, with

coefficients which are functions of y, at most linearly growing at infinity. For instance we have

0 1NN
Qolts,9) = (o) S — 2p(y) 22,

with ¢ and 4 introduced in (34). The Poisson equation defining Q3 leads to a similar formula
involving up to the third derivative of )y, up to the second derivative of )1, and additional
functions of y with the same properties as ¢ and 1. The form of ()2 and @3 is inherited by the
functions F© and G¢ for m < 5 and n < 4. We omit this lengthy computation here.

17



Consequently, by Lemma 1 below, there exist positive constants ¢; and ¢y which depend on T
such that
[Fe], |G < e (1 + [yl)e =7,

uniform in ¢, for 0 <¢ < Tj. The exponential moments of r; and its time-integrals, obtained in the
proof of Proposition 1, enable us to write the probabilistic representation of Z*¢

T ~
Za(taxay) = g]E*()\”Y) {e_ft 7.SdsG'g('rTaYTT)
T s du =
- [ e iR s Yy ds [ = Vi =y (62)
t

From the uniformity in € of these exponential moments and of the variance of Y given in Appendix
B, we deduce that |Z%| = O(e). The conclusion of the proof follows from (59).

Lemma 1 Let Qo(t,z) and Q1(t,z) be the functions introduced in the previous sections:
To . _
Qo(t,z) = E* {e_ft radsp, (Age_BO’"TO) | 7 = x} ,

T T ~ = —
Qi(t,z) = IE* {eft ’ Tsds Ao Doe BomTo ! (AoefBOTTO) | 7y = x}
TO u _ ds
— E* {/ e_ﬁ Ts SAQU(ua fu)du | ft = l‘} ,
t

where the quantity Dy = Dy /\/e and the operator A= A/+\/e do not depend on €.
Then Qo and Q1 have x-derivatives of all orders, and for m and n fized integers, there exist positive
constants ¢1 and co such that 5 5
m n
Qo Q1| < e,

|3$m |’|8x” -
forallm <m,n<n and 0 <t <Ty.

Proof. From (4) we know that the pair (7, [, 7sds) is, conditionally on {7, = z}, normally
distributed with mean

_ e—a(u—t)
(T* ¥ (@ — e (=) 4 (- ) ) ,
a

and covariance

a a

tu e—a(u—s) 1—e—a(u=s) ds ftu (l—e_a(“_s)) ds
We will denote the corresponding Gaussian density by g(;,.) (z,1) where z stands for 7, and [ stands

for [, 7sds. We also denote by 9(t,u)(2,1) the same density when the z-terms are removed from the
means. One can then write

Qo(t,z) = //e_lh (Aoe_BOZ)g(t7TO)(z,l)dzdl

1_e—a(Tp—1)

_ //e— (l+x7a )h (Aoe*Bo(z+me*a(Toft))) Geot (2,1) dz di.

Taking successive derivatives with respect to = by the smoothness of A and the boundedness of
its derivatives and dominated convergence due to exponential moments of g; 7;) gives the part of
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Lemma 1 concerning Q.
Similarly one can write

Ql t 33)
1—e—*(Tp—t) —a(Ty—t)

z _ (T —a(Ty—
// +z a )AODOe—Bo(z-i-:ve (To=0)) 11 (Aoe—Bo(z-I—xe (To t))) Jom) (2, 0)dz dl

/To <// z+ 1—e a(u t))(AQo)(u,z+xea(ut))g(t’u)(z,l)dzdl> du .

The conclusion is as for g, except for the second term, where we use the result for )y and the
uniformity with respect to u, between ¢ and T, of the exponential moments of g; ).

4.3.3 Non-smooth payoffs: Call Options on Bonds

The case of non-smooth payoff functions can be treated by a nontrivial regularization argument
which is presented in detail in a separate work in the context of equity call options in (Fouque,
Papanicolaou, Sircar and Solna 2003).

The argument consists of regularizing the payoff h. Denoting by h? this regularized payoff,
with § > 0 a small parameter such that |h — k°| = O(6), we introduce the corresponding quantities
Q9 Qg and Q‘f analogous to Q°, Qg and Q1 with h replacing h?. We have

1Q° — (Qo+ Q1) <1Q° — Q| +1Q%° — (Q) + Q)| + Q) — Qo] + Q] — Qul.

The first term |Q° — Q| is of order O(§) and we choose § = €. The second term can be shown
to be of order O(g) by going through the proof of Theorem 2 with smooth payoff A’ and § = «.
The last two terms are of order § = ¢ by straightforward computations. In all these estimates, the
existence of exponential moments is crucial. Note also that the situation here is much simpler than
in the case of equity options presented in (Fouque et al. 2003). This is because taking z-derivatives
of h®(Age™Po%) does not introduce any singularity at ¢ = Tp, in contrast to derivatives (with respect
to the stock price) of e ~d1/2 in the Black-Scholes case with the usual notation.

For instance, in the case of a European call bond option, the first term Qq(t,z) is equal to
C(t,x) obtained explicitly in the constant volatility case (12-13-14) and the correction is

- Ty _ _
Ql(ta ZE) = IE* {6 ft ’ TSdsAOD()eiBorTO I{AoefBOFTO>K}|'Ft = (L‘}

Ty u _ d _
- [E* {/ e Ji T *AC (u, 7y )du|ry = x} .
t
Using the first term in formula (12) for C(t,z), the corrected call bond price becomes
_ _ To u _
C(t, ) + DoP(t,2;T)N(hy) — / B {e—ﬁ ads 4G, 7|7 = g;} du,
t
where the bond price P(t,z;T) is given by (7), Dy = D(T — Tp) is given by (35), and the operator
A is given by (57).

4.4 Implications

The main implication of the asymptotic calculation is reduction of the parametric dependence of
the pricing formulas on a specific model. In the table below, the left column lists the original model
parameters, including the risk premium functions and the right column the group parameters that
need to be estimated from the yield curve using formula (38).
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H Model Parameters H Correction Parameters H

Rate of mean-reversion of short-rate a a
Long-run mean under P, ro r*

Specific volatility function f(-) Effective volatility &
Rate of mean-reversion of volatility « Group parameter V
Mean-level of (Y;) m Group parameter V3
“V-vol” g Group parameter V3
Correlation p

Interest-rate risk premium A(-)

Volatility risk premium y(-)

In particular, the sensitivities to the correlation p and the rate of mean-reversion « of the
hidden process (Y;) are absorbed in the group parameters V;, Vo and V3. There is also the added
benefit that the function f(-), A(-) and y(-) do not have to be specified, and that to this level of
approximation, the present level y of the unobserved volatility-driving process does not need to be
estimated.

The stability of the group parameters over time estimated from data is studied in (Cotton
2001).

The stochastic volatility-corrected prices of bond options also depend on these same parameters
in the right column to this order. That is, although the group parameters do not give us enough
to recover the law of the processes (r;,Y;), they do give us enough to price other interest-rate
derivatives under fast mean-reverting stochastic volatility. We refer to the previous work on equity
derivatives described at the end of Section 2.2 for details about barrier, Asian and American
contracts.

5 Illustration from Data

The short rate model with stochastic volatility correction can be tested in a variety of real world
(measure) or risk neutral settings. We find examples from each of these two domains (respectively,
the modelling of short rate dynamics and contemporaneous yield curve fitting) where a separation
of time scales is suggested by our preliminary data analysis.

5.1 Analysis of Interest Rate Dynamics

In this section we examine the dynamics of empirical short term yields. Using a test described in
the following section we present evidence for rapid oscillations in short rate volatility on a time
scale much shorter than the typical length of bond and bond option contracts. The latter is on the
order of years, the former on the order of weeks.

5.1.1 The Method of Variogram Analysis

Variogram analysis can be used in the analysis of any time series. The “ExpOU” stochastic volatil-
ity short rate model, obtained by using the exponential function f(y) = ¥ in equation (17), is
convenient because it gives an explicit function for the variogram for illustration purposes. We
model the normalized short rate fluctuations

Tri —Ti-1
= J
D; =

VAL
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Empirical short rate variogram
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Figure 3: Variogram using the logarithm of the absolute value of the normalized differenced US
short rate, illustrating evidence for a fast mean reverting component in short rate volatility. The
z-azis represents the lag or window length j (in days). The y-azis represents the structure function
as defined in the text. The dotted line represents the numerical results for V; as defined in the text.
The solid line is a least squares fitted theoretical prediction based on the ExpOU SV model and given
by equation (63). The fitted curve implies a decorrelation length of around fifteen and a half days.
The standard deviation of decorrelation time estimates in bootstrapped samples is around four days.

as
L — Y.
Dj = eYe;

where ¢; are independent Gaussian random variables with mean zero and variance one. Here z;
is the short rate proxy for the j’'th trading day and At is one day. We denote the value of the
volatility driving process Y; on the j’th trading day by y;. This description is consistent with the
ExpOU stochastic volatility model up to a short rate drift term which is small when At is small.
We discard this term for simplicity as it makes negligible difference to the results which follow. We
also ignore for purposes of data analysis the cutoff at 0 and oo that would have to be applied to
the exponential function to satisfy the hypotheses of Girsanov’s theorem.

We examine the empirical structure function or variogram of the log absolute value of the
normalized fluctuations. That is, we examine

where



According to our model,
Xj=yj +loglejl.

To avoid the singularities from the noise log |e;| we pass the X; through a median filter. The graph
of V; as a function of j is fitted (by least squares) to the theoretical curve

2
V=202 12l (e, 21, (63)
which is derived by direct calculation from the OU model for (Y;). The constants )2, % and [
are the variance of the noise log |¢;|, the variance of the volatility process y;, and the decorrelation
length of the volatility process y; respectively. We are most interested in the latter, since it gives
a via | = 1/(aAt). We have also assumed here p = 0. Extensive simulations (in the case of a
Black-Scholes model with stochastic volatility) in (Fouque, Papanicolaou, Sircar and Solna 2002)
show that the variogram properties are quite insensitive to p.
We remark that a similar methodology could be applied to other stochastic volatility models
in the class described in this paper (that is, different choices of f), for which the variogram will
exhibit similar exponential decay.

5.1.2 Variograms for US Interest Rates

Figure 3 shows the empirical structure function for a time series proxying the US short rate,
reflecting the short end of the yield curve and cash deposit rates'.

The fitted curve implies a decorrelation length of around fifteen and a half days. Short rate
simulation was used to test the effect of the median filter and bootstrap errors in the decorrelation
time. The standard deviation of decorrelation time estimates in bootstrapped samples was around
four days. Figure 4 shows a fitted variogram using one path of simulated data, treated in identical
fashion to the real data.

The rough sampling error estimate, arrived at by fitting several hundred structure functions
for different simulated data paths, demonstrates the difficulty of measuring a precise time scale of
mean reversion in the unobserved volatility driving process. However, this is unimportant. The
observation that volatility mean reverts (on the order of one and a half to two and a half weeks)
rather than years is sufficient justification for our asymptotic approach.

Further discussion on the variogram technique for validating the existence of a rapidly mean
reverting component of short rate volatility is described in detail in (Cotton 2001) and has also been
applied to S& P500 index data in (Fouque et al. 2002). In the latter, we demonstrate by simulation
the insensitivity of the order estimate to the zero correlation assumption and the median filtering.

5.2 Contemporaneous Yield Curve Fitting

It is desired in many applications to have a model that is flexible enough to fit a wide variety of
yield curves, is consistent with a dynamic for the short rate, and yet remains parsimonious. We
contend that the Vasicek model with stochastic volatility corrections is a step in this direction.
We examine daily zero coupon yield curves constructed from a variety of bills and USD/Libor
swap rates sampled at sixty maturities ranging from one month to thirty years. We compare fitting
the yield curve day-by-day to two models: our two-term asymptotic approximation and the CIR
model with Poisson down jumps. In both cases, we fixed the level of the short rate r, to that

'We are grateful to Dmitri Kachin, formerly of Morgan Stanley, for assistance in this regard.
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Simulated Variogram
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Figure 4: Variogram for simulations from an ExpOU SV Vasicek model. The parameters used in
this simulation were 7o = 0.06, « = 26, m = =5, =2, p = 0.6 and A = v = 0. Numerical
results are dotted. The solid line is a least squares fit for the theoretical prediction as explained
in the text. The agreement with the data (compare figure 3) is excellent, insofar as the qualitative
shape of the curve is concerned. Note that the level of the curve is unimportant for estimating a,
and rather reflects the noise driving the short rate process and not the volatility fluctuations - see
equation (63). A flat curve, as observed in the variograms of data simulated using multifactor CIR
or Vasicek processes, would indicate a small a. Here the qualitative upward curving trend in the
data points suggests fast mean reversion.

proxied from the short end of the curve. This was done for every day in a three year period (ending
in 1999).

From the asymptotic theory, there are six parameters (a,r*,a, Vi, Vs, V3) to fit, the last three
representing effects from changing volatility. To make a fair comparison, we fixed two of these, &
and a, and fitted the remaining four so that this calibration had less than the five degrees of freedom
of the CIR with jumps model. (These two were chosen after experimenting with other choices so
that the reduced calibration gave generally good fits of the data and was not overly handicapped by
the imposed restriction). Comparison with other models, for example two-factor CIR is a subject
for future investigation, so the present results allow us to compare, informally, the alternatives of
modifying a simple one-factor model with an asymptotic approximation for stochastic volatility
against modifying a one-factor model with jumps.

It was found that excellent fits could be obtained for all days in the sample with only four free
parameters. The flexibility of the stochastic volatility model was clearly superior to competing
single factor models with four or five free parameters during periods of unusual yield curve shapes.

A snapshot comparison of the yield curve fits obtained with the corrected Vasicek model and
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a CIR model with jumps respectively, is shown in Figure 5. Note that the CIR model with jumps,
fitted in the same manner as the approximated stochastic volatility model (i.e., fitted contempora-
neously, with the short rate determined by the short end of the yield curve), had five free parameters
but performed significantly worse, across the thousand or so days on which contemporaneous fits
were carried out.

Vasicek with stochastic volatility correction
0.062 T T T T

0.06

bond yield
o
o
(92}
®©

0.056

0054 | | | | | |
0 5 10 15 20 25 30 35
years to maturity
CIR with jumps
0.062 T T \
A
++++++++
0.06 4+t :

bond yield
o
o
(92}
©
T
1

0.056 |- 1

0.054 4+t I I I
0 5 10 15 20 25 30 35
years to maturity

Figure 5: Snapshot of the yield curve fit with the stochastic volatility corrected Vasicek model (top)
and with the single factor CIR model and down jumps (bottom) for September 6, 1998.

We suggest that the scale separation implicit in the yield formulas (with corrections) greatly
assists the fitting of unusual yield curves (as in the crisis of the summer of 1998) without sacrificing
parsimony. With the exception of three days in the sample of over one thousand, the root mean
square (across maturities) yield curve fitting errors for the corrected Vasicek model were less than
six basis points, with the average around two basis points. In contrast, single factor Vasicek and
CIR models typically misfit the short to medium yields during the crisis period by twenty or more
basis points (as in Figure 5). The relative bond pricing error, which is approximately the yield
error multiplied by the maturity, is on the order of 0.6% for the 30-year zero coupon bond, using
the corrected Vasicek model.

A Asymptotics around CIR model

We give a heuristic derivation of the fast mean-reverting stochastic volatility asymptotic calculation
for a model built around the popular CIR model to illustrate the flexibility of the method under
changes to the background short-rate model. Because we would like a closed-form correction for
bond prices, we mimic the form of the two-factor CIR model (1-2) in which the independent
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Brownian motions have the same square-root-of-affine coeflicients in front of them. This means
that the derivative pricing PDE has linear coefficients which admits an affine yield curve solution.
We shall look at the model

dry = a(r* —ry)dt + f(Yy)/ri AW,
dYy = arym —Y)dt + Bri (pdW} + p' dZ}) ,

where we are already under the pricing measure. We will not look at the link between the real
measure and the risk-neutral measure for this model. Notice that the second process (Y;) driving
the volatility is no longer autonomous in that it depends on (r;). We make this change to admit
yield curves that are affine in the short-rate level x = 74, but not of course in y = Y;. This
allows a closed-form (up to solution of ODEs) for the stochastic volatility correction. We assume
f(y)? < 2ar* for all y, which guarantees existence of a strong solution for (r;).

The setup for bond pricing is similar to the formal calculation presented in Section 4.2 with the
new differential operators

0? 0
— 2 —y)—
Ly = =z (I/ ay? + (m y)8y>

82
91, ., P N

Notice that £y is merely z times the generator of the OU process (Y;) scaled by 1/«, and that Lo
is the CIR operator with volatility f(y).

Then the arguments of Section 4.2 go through analogously, with the extra z-factor in Ly not
affecting the conclusions following from the Poisson equations in y. Bond prices P¢(¢,x,y) are
approximated by

Pe(t,z,y) = Po(t,z) + Pi(t, ),

where the first-term solves

ot 2 "0z
Py(T,z) = 1,
and is given by the one-factor affine CIR formula
Py(t,z) = A(T —t)e BTz
(0+a)7/2 2ar* /52
Alr) = ((0 ¥ 2)0(6697 —1)+ 20) (64)
IO p— )

(0 +a)(e!” —1)+20
0 = Va®+252
The correction can be shown to satisfy

P,

(Lo)Py = V?)QUW,

P1(T,£E) = 0,



where V3 is some group parameter related to the original parameters that will be estimated from
the yield curve. This can be solved to give

Pi(t,z) = (D{(T — t)z + Do(T — t)) A(T — t)e—B(T—t)x,
where A and B are given by (64-65) and Dy and Ds satisfy the ODEs

D} = WB?—(6°B +a)D;
Dy = ar*Dy,

with zero initial conditions.

B Estimate on Moments of Y

In this appendix we derive the estimate on the second moment of Y, needed at the end of the
proof of Theorem 1, and Theorem 2 as well. In fact we do more and derive exponential moments
estimates. Recall that the process Y is the solution of the stochastic differential equation
1 vV/2 W2 -
dYy = — (m —Y,)ds — —=A(Yy)ds + —=dZ} 66
s 6(m 3)3 \/g_‘ (s)3+\/&t 5 ( )

where Z* = pW* + p' Z* is a standard IP**").Brownian motion, A = pX + p'v is bounded, and
t < s <T with Y; = y as in the probabilistic representation of Z¢ in (48).
We start by exponential moments estimates under the real world probability measure IP for

which Y
1 V2
dY, = — —-Y)d —dZs, 67
- (m =Y,y ds + 77 (67

where Z = pW + p' Z is a standard IP-Brownian motion, and ¢+ < s < T with Y; = y. In the
following, we use the shorthand IF,{-} for IE{- |Y; = y}.

Lemma 2 There exists a constant c(v,y) such that for any t < s <T and ¢ > 0 we have
Eyy{e™} < c(v,y). (68)

Proof. Under IP, the process Y is an OU process converging exponentially fast to its invariant
distribution. Indeed Y; is Gaussian with mean m + (y —m)e~(*=9/¢ and variance v%(1 — e~ 2(5-1)/¢).
Consequently

2,2
Et,y{evys} = exp {U (m + (y — m)e_(s_t)/f) + %

(1= e=206-07%) } (69)

and the proof follows by choosing c(v,y) = exp (|v|(|m| + |y — m|) + v?1?/2).
We now come back to Y under the risk-neutral probability P*M) denoted by IP* for simplicity.

Proposition 2 There exists a constant C(t,T,v,y) such that for any t < s < T and € > 0 we
have

E*yy{e"} < C(t, T, v,y). (70)
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Proof. By Girsanov’s theorem, we have
E*t,y{evys} = IElt,y{evyS Ms(A)} (71)

where M) defined by )
MW = ¢ J; ATdZ g [T AV (72)

is a (IP, (F;))-martingale, and Z is a IP-standard Brownian motion. We rewrite (71) as
B A MV} = B, {763 J A0 0[] (73)

and, using the Cauchy-Schwarz inequality, we deduce that

E* {e’V} < \/ E,, {62”Ys Ji A<Yu>2du} : (74)

(20)

since M is a martingale with expected value equal to one. Therefore

By {e™) < exleIN, [, (o2} o
- e%(s—t)\\Allio\/m, "

where ¢(v,y) is the constant obtained in Lemma 2. We conclude by setting
Ot T,v,y) = €20 fo(20, ). (77)
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