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Abstract

We study continuous time oligopolies in which a small number of firms producing similar
goods compete with one another by setting prices or quantities. We study a deterministic
version of the problem using an asymptotic expansion of the relevant HJB partial differential
equations. We find in this setting that for firms with highly differentiated goods, the type of
competition matters little. For less differentiated goods, we find that the Cournot type market
produces a greater value to the firms than the Bertrand type market. We then study a stochastic
version of the two games using numerical techniques. This allows us to compare firms with a
greater degree of product differentiation. The value is still greater to firms in most scenarios in
a Cournot market, but in some situations the classical Bertrand-Cournot dichotomy is reversed.

1 Introduction

Oligopolistic competition has been studied extensively in the economic literature, beginning with
Cournot [1838]. In this original work, firms compete with one another in a static set-up by choosing
quantities to supply of a homogeneous good. This was later criticized in Bertrand [1883] as it was
said firms actually compete by setting prices. Models where firms set prices are now generally
referred to as being of Bertrand type and models where firms set quantities are termed as being of
Cournot type. Our intention is to study price-setting and quantity-setting oligopolies in continuous-
time and where the goods are differentiated from one another. However, much of the intuition
about what one expects in certain market types is still grounded in the original static models. For
example, the original Bertrand model results in perfect competition in all cases besides monopoly,
which is unrealistic in most settings, leading one to conclude that the correct set-up leads to the
wrong result. The Cournot model leads to more realistic outcomes, but as most firms seem to set
their prices, not their quantities, many economists have argued that the Cournot model gives the
right answer for the wrong reason.
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While Bertrand and Cournot considered homogeneous goods, we will consider differentiated goods,
in particular substitute goods. In other words, consumption of one good can be substituted for
another, but not perfectly. The original work in this area is Hotelling [1929], where consumers were
assumed to associate a cost of travel depending on the location of the firms, thereby differentiating
their otherwise identical goods based on the location of the firms relative to the location of the
consumer. For classical results on differentiated goods and other models of oligopoly, we refer to
the books by Friedman [1983] and Vives [1999]. We shall see that the fundamental ingredient to
our comparison is how similar the goods of the firms are to one another.

Our objective is to study the effect of product differentiation on the outcomes in these two oligopoly
models. This builds on an earlier analysis of nonzero-sum differential games of Bertrand type in
Ledvina and Sircar [2011] and Cournot type in Harris et al. [2010]. Moreover, this work is comple-
mentary to our comparison of Bertrand and Cournot oligopolies in a static setting in Ledvina and
Sircar [2010]. Here we compare Bertrand and Cournot oligopolies in a continuous-time framework.

2 Oligopoly Markets for Differentiated Goods

As our stated purpose is to concentrate on the role of product differentiation, we shall focus on
duopolies facing linear demand. This already is of sufficient complexity to present computational
and analytical challenges, and to reveal important effects of dynamic competition. In addition, we
shall consider both stochastic and non-stochastic demand depending on whether product differenti-
ation is “large” or “small”. The intention of this section is first to establish the demand framework
which allows us to meaningfully compare Bertrand and Cournot competition. In Section 3, we shall
describe the dynamics of the state variables of the firms and introduce the notation associated with
the game.

2.1 Systems of Demand

We focus on linear demand and therefore we could simply posit a linear demand function that
the firms face. However, in order to ensure consistency within the system of demand and between
demand and inverse demand, we assume that there exists a representative consumer with a concave
utility function U(q) : R

2
+ → R which represents his utility from consuming the quantities q =

(q1, q2) of goods from the firms. Our representative consumer solves the utility maximization
(minus cost) problem

max
q∈R2

+

U(q) −
2
∑

i=1

piqi, (1)

from which we can derive the inverse demand functions for the firms as

pi(q) =
∂U

∂qi
, i = 1, 2. (2)

This gives actual quantities provided pi > 0 for all i. In the case that the quantities result in any
of the prices not being positive, we must remove the individual firm with the highest quantity from
the system and then consider a market with only one firm. If the remaining firm has a price which
is still not positive, then neither firm receives any demand. We then define the direct demand of the
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firms by inverting this system of inverse demands. Therefore, we must assume the utility function
is strictly concave which will ensure that the system is invertible.

In order to derive a linear system of demand, we consider a quadratic utility function,

U(q) = α(q1 + q2) −
1

2
β
(

q2
1 + q2

2 + 2εq1q2

)

, α, β > 0. (3)

The parameter ε can be negative for complementary goods, or positive for substitute goods. We
shall take it to be positive as the case of substitute goods is a more natural setting in which to
discuss competition. We also require ε < 1 for the resulting system of inverse demands to be
invertible. This is not the most general quadratic utility function that leads to linear demand,
however the symmetries that are implicitly assumed in this utility function are not particularly
restrictive if one considers asymmetric costs, as will naturally arise in what follows.

Solving (1) results in the inverse demand system

pi(q) =
∂U

∂qi
= α − β (qi + εqj) , i = 1, 2; j 6= i. (4)

We can invert this system to obtain the duopoly demand

qi(p) =

(

α

β(1 + ε)

)

−

(

1

β(1 − ε2)

)

(pi − εpj) , i = 1, 2; i 6= j, (5)

The associated monopoly inverse demand is given by

pm(qi) = α − βqi, (6)

and the resulting direct demand is given by

qm(pi) =
1

β
(α − pi) . (7)

The degree of product differentiation is measured by the quantity ε ∈ [0, 1). If ε = 0 then
the individual firm inverse demand and direct demand functions are equal to their monopoly coun-
terparts, i.e. each firm has a monopoly in the market for their individual good which implies their
behavior is independent of the other firm. At the other end of the spectrum, i.e. the limit as ε → 1,
we obtain homogeneous goods. This means that the firms are identical to consumers and we obtain
the demand functions considered in the classical Cournot and Bertrand papers. We do not consider
this limit here, and we shall thus stay within ε < 1.

Other systems of demand are discussed in Vives [1999], in [Ledvina and Sircar, 2011, Section 2] for
differentiated Bertrand and [Harris et al., 2010, Section 2] for homogeneous Cournot.

2.2 Welfare and Consumer Surplus

There are several different ways in which one could compare different market types. For example,
all else equal, one could consider the average price charged to consumers or the total quantity
supplied to the market. Every performance metric has both positive and negative attributes and

3



therefore it can sometimes be difficult to decide which one is the most meaningful. We shall focus
on consumer surplus and economic welfare as our main points of comparison because these have
become standard in much of the economic literature, see for example [Mas-Colell et al., 1995,
Section 10.E]. However, we will also compare prices and quantities where suitable.

Definition 2.1. Consumer Surplus in the linear oligopoly model is defined as

CS =
1

2

N
∑

i=1

(α − pi) · qi. (8)

See for instance Cellini et al. [2004] and Mukherjee [2005]. If we are in a Bertrand market then pi is
controlled by Firm i and qi is determined through the demand function. Contrarily, in a Cournot
market, qi is controlled by Firm i and pi is determined through the inverse demand function.

Definition 2.2. Economic Welfare is the sum of consumer surplus and aggregate market profits
(up to a constant which is irrelevant when comparing differences between welfare in two game
types):

EW = CS +
N
∑

i=1

πi, (9)

where πi is the profit of Firm i.

There exist alternative definitions using the utility function of the consumers, but for our purposes
the above definitions are sufficient. In Section 5.2, we compare dynamic Cournot and Bertrand
games using these measures.

3 Dynamic Game Formulation

The dynamic games that we study are ones where the capacities of the firms are running out, and
when one has exhausted its resources, it no longer participates and the other firm has a monopoly
until it also has used up its capacity. In the Bertrand model in Ledvina and Sircar [2011], the
state variables were the capacities of two firms producing differentiated consumer goods used to
measure their relative size. In Harris et al. [2010], the state variables were the firms’ reserves of a
homogeneous exhaustible resource such as oil.

3.1 Dynamic Oligopolies

Denote the capacity of Firm i by Xi,b
t ,Xi,c

t for the Bertrand and Cournot games, respectively.
Throughout what follows a superscript b will indicate a variable related to the game of Bertrand
type and a superscript c for Cournot. We look for Markov Perfect equilibria, in other words firms
use Markovian strategies. In the Bertrand game, let the Markovian price strategy of Firm i at time
t be given by pi(X1,b

t ,X2,b
t ), i = 1, 2. Similarly, in the Cournot game, let the Markovian strategic

rate of supply of Firm i be given by qi(X1,c
t ,X2,c

t ). In a game of Bertrand type, as price, pi, is the
control variable (for which the firm number is superscripted), the rate of demand is given by the
direct demand function, qi, defined in (5) (for which the firm number is subscripted). In a game
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of Cournot type where the rate of supply, qi, is the control variable (for which the firm number is
superscripted), price is given by the inverse demand function, pi, defined in (4) (for which the firm
number is subscripted).

In the Bertrand game, the dynamics of the state processes are given by the controlled stochastic
differential equations

dXi,b
t = −qi(p

1(X1,b
t ,X2,b

t ), p2(X1,b
t ,X2,b

t ))dt + σidW i
t , (10)

for i = 1, 2 and where (W 1
t ) and (W 2

t ) are correlated Brownian motions with

E
{

dW 1
t · dW 2

t

}

= ρdt. (11)

These are the correct dynamics provided X1,b
t > 0,X2,b

t > 0. If either one is strictly positive and the
other is zero, then we replace the qi corresponding to the positive quantity with qm and the quantity
that hits zero remains at zero thereafter. In other words if there is some t such that Xi,b

t = 0 then

Xi,b
s = 0 for all s ≥ t. We further assume that Xi,b

0 are known fixed positive constants.

The dynamics for the Cournot state variables are defined in a similar fashion. Namely,

dXi,c
t = −qi(X1,c

t ,X2,c
t )dt + σidW i

t , (12)

where the Brownian motions are the same as those above. Again, these only hold for X1,c
t >

0,X2,c
t > 0, but here things are slightly more simple. If either state variable hits zero then the

corresponding qi is equal to zero. Therefore, we only need to stipulate that if there exists t such
that Xi,c

t = 0 then Xi,c
s = 0 for all s ≥ t. In other words, the diffusion cannot resurrect a firm once

it has run out of capacity.

The Brownian motions in (10) and (12) could represent uncertainty of actual demand or of remain-
ing reserves depending on the context of actual application.

3.2 Nash Equilibrium and the HJB PDEs

The objective of the firms is to maximize expected lifetime profit in an equilibrium sense to be
made precise below. To this end, we define the profit functionals of the firms

J i,b(p1(x1, x2), p
2(x1, x2)) , Ex1,x2

{

∫ τ i,b

0
e−rtpiqi(p

1, p2)dt

}

, (13)

J i,c(q1(x1, x2), q
2(x1, x2)) , Ex1,x2

{

∫ τ i,c

0
e−rtpi(q

1, q2)qidt

}

, (14)

where τ i,b = inf{t > 0 : Xi,b
t = 0}, and similarly for τ i,c. Further,

Ex1,x2 {·} = E

{

·|Xi,·
0 = x1,X

i,·
0 = x2

}

, (15)

with the appropriate state variables understood by context, and r > 0 is a discount rate.
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Definition 3.1. A vector p⋆ is a Markov Perfect Nash equilibrium of the dynamic Bertrand
game if for all positive and suitably regular (for example Lipschitz, see Başar and Olsder [1995])
Markov controls p1 we have

J1,b(p1,⋆, p2,⋆) ≥ J1,b(p1, p2,⋆), (16)

and for all such Markov controls p2 we have

J2,b(p1,⋆, p2,⋆) ≥ J2,b(p1,⋆, p2). (17)

The concept is defined analogously for the dynamic Cournot game.

As the players employ Markovian strategies, we define the value functions of the players as a
function of their capacities by

V i,b(x1, x2) = sup
pi

J i,b(p1(x1, x2), p
2(x1, x2)), (18)

V i,c(x1, x2) = sup
qi

J i,c(q1(x1, x2), q
2(x1, x2)). (19)

Assuming sufficient regularity of the value functions, a sufficient condition for equilibrium can be
found by solving the associated system of HJB partial differential equations, see [Dockner et al.,
2000, Section 8.2], [Başar and Olsder, 1995, Section 6.5.2]:

LV i,b + sup
pi≥0

{

−V i,b
x1

q1(p
1, p2) − V i,b

x2
q2(p

1, p2) + pi · qi(p
1, p2)

}

= rV i,b, (20)

LV i,c + sup
qi≥0

{

−V i,c
x1

q1 − V i,c
x2

q2 + pi(q
1, q2) · qi

}

= rV i,c, (21)

where

L =
1

2
(σ1)2

∂2

∂(x1)2
+ ρσ1σ2 ∂2

∂x1∂x2
+

1

2
(σ2)2

∂2

∂(x2)2
. (22)

In order to complete the description of the PDE problem associated with these games we also need
to specify boundary conditions. One of these conditions is quite straightforward, we must have
V 1,·(0, x2) = V 2,·(x1, 0) = 0 as there is no profit possible once a firm exhausts their capacity. The
other boundary is slightly more complicated. Let vb

m be the value function of a monopolist in a
Bertrand market, and vc

m be the corresponding value function in a Cournot market. We then have
the condition V 1,·(x1, 0) = v·m(x1) and V 2,·(0, x2) = v·m(x2).

We can solve the static Nash equilibrium problems within these equations in both the Bertrand
and Cournot case and therefore present the two expanded systems of PDEs. We shall first do this
for the Bertrand game and then for the Cournot game.

3.2.1 Bertrand PDEs

It is straightforward from (5) and (7) to show the relationship

qj(p1, p2) = qm(pj) − εqi(p1, p2), j 6= i. (23)
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Therefore, we can rewrite (20) as

LV i,b − qm(pj)V i,b
xj

+ sup
pi≥0

{

qi(p
1, p2)

[

pi −
(

V i,b
xi

− εV i,b
xj

)]}

= rV i,b, i = 1, 2; j 6= i. (24)

Defining the shadow costs

Sb
1 , V 1,b

x1
− εV 1,b

x2
and Sb

2 , V 2,b
x2

− εV 2,b
x1

, (25)

we see that the Nash equilibrium problem implicit in the two PDEs is exactly a static two-player
Bertrand type game with marginal costs given by Sb

1 and Sb
2. In other words, we need to solve for a

Nash equilibrium of a static game where Firm i sets price pi and obtains profit qi(p
1, p2) ·

(

pi − Sb
i

)

.

For linear demand functions, the equilibrium prices are simple to derive assuming that both players
are active in equilibrium. In other words, we assume that the asymmetry in cost between the two
players is such that both players have positive demand in equilibrium. For ε small, this will be
the case because each firm will be close to having an independent monopoly. We maintain this
assumption throughout what follows. The resulting prices, written as functions of the shadow costs,
are given by

pi,⋆(Sb
1, S

b
2) = α

(

1 − ε

2 − ε

)

+
1

4 − ε2

(

2Sb
i + εSb

j

)

, j 6= i. (26)

This results in the equilibrium demands, which we also write as a function of the shadow costs:

q⋆
i (S

b
1, S

b
2) =

α

β(2 − ε)(1 + ε)
−

(

1

β(1 − ε2)(4 − ε2)

)

(

(2 − ε2)Sb
i − εSb

j

)

, j 6= i. (27)

One can also readily show that the equilibrium profit in the static game is equal to

q⋆
i (S

b
1, S

b
2) ·
(

pi,⋆(Sb
1, S

b
2) − Sb

i

)

= β
(

1 − ε2
)

(

q⋆
i (S

b
1, S

b
2)
)2

.

We can therefore write (24) as

LV i,b − qm(pj,⋆(Sb
1, S

b
2))V

i,b
xj

+ β
(

1 − ε2
)

(

q⋆
i (S

b
1, S

b
2)
)2

= rV i,b, j 6= i, (28)

where explicitly

qm(pj,⋆(Sb
1, S

b
2)) =

α

β(2 − ε)
−

1

β(4 − ε2)

(

2Sb
j + εSb

i

)

. (29)

3.2.2 Cournot PDEs

The analysis of the Cournot system of PDEs is more straightforward as the internal Nash equilib-
rium problem can be written as a static Cournot game without any additional modification, i.e.
we can write (21) as

LV i,c − qjV i,c
xj

+ sup
qi≥0

{

qi
[

pi(q
1, q2) − V i,c

xi

]}

= rV i,c, i = 1, 2; j 6= i. (30)

Hence, defining the shadow costs

Sc
1 , V 1,c

x1
and Sc

2 , V 2,c
x2

, (31)
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we can see that the static Nash equilibrium problems is exactly a static two-player Cournot type
game with marginal costs given by Sc

1 and Sc
2. That is, we need to solve for a Nash equilibrium of

a game where Firm i sets qi and obtains profit qi ·
(

pi(q
1, q2) − Sc

i

)

.

This calculation is straightforward and results in the equilibrium quantity strategies

qi,⋆(Sc
1, S

c
2) =

α

β(2 + ε)
−

1

β(4 − ε2)

(

2Sc
i − εSc

j

)

and the equilibrium profit

qi,⋆(Sc
1, S

c
2) ·
(

pi(q
1,⋆, q2,⋆) − Sc

i

)

= β
(

qi,⋆(Sc
1, S

c
2)
)2

. (32)

Using these, we arrive at

LV i,c − qj,⋆(Sc
1, S

c
2)V

i,c
xj

+ β
(

qi,⋆(Sc
1, S

c
2)
)2

= rV i,c, i = 1, 2; j 6= i. (33)

3.2.3 Interpretation and Large Capacity Limits

We see that (28) and (33) can be seen as equations of the form

Value =
1

r
{Noise − Competition + Profit} . (34)

The operator L is related to the stochastic component of demand coming from the noise term. The
second term is denoted “Competition” because it involves a quantity associated with your opponent
and the infinitesimal effect on your value function of a change in your opponent’s capacity. If your
value were independent of your opponents capacity then V i,·

xj ≡ 0 and this competition term would
not be present. The third term is the equilibrium profit from a static game calculation where the
costs are in actuality given by the shadow costs S·

i.

Finally, we note that as (x1, x2) tends to infinity, we are in a dynamic game of inexhaustible
resources, and we expect the value functions to be flat. Hence, all the partial derivatives in (28)
and (33) will be zero, and we have

V i,c →
1

r
β
(

qi,⋆(0, 0)
)2

=
α2

rβ(2 + ε)2
V i,b →

1

r
β (q⋆

i (0, 0))
2 =

α2

rβ(2 − ε)2(1 + ε)2
. (35)

These are simply the zero cost static game profit functions discounted at rate r over all time.

4 Ordinary Differential Game with a Little Competition

We shall focus our attention on the setting σ1 = σ2 ≡ 0, i.e. L ≡ 0, and derive an asymptotic
approximation for the value functions V i,b and V i,c in powers of ε, the degree of product differenti-
ation. We will then explore the implications of this approximation for equilibrium prices, quantities
and economic welfare. Such results are valid for small degrees of product differentiation, that is as
a monopoly becomes a duopoly with a little competition: see Figure 1 for a timely example.
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Figure 1: From International Herald Tribune, 11 February 2011.

4.1 Asymptotic Analysis

The two PDE problems are

− qm(pj,⋆(Sb
1, S

b
2))V

i,b
xj

+ β
(

1 − ε2
)

(

q⋆
i (S

b
1, S

b
2)
)2

= rV i,b, (36)

− qj,⋆(Sc
1, S

c
2)V

i,c
xj

+ β
(

qi,⋆(Sc
1, S

c
2)
)2

= rV i,c, i = 1, 2; j 6= i. (37)

Note that as given above, the q functions in the above PDEs themselves depend on ε. The boundary
conditions are that Firm i has zero value when xi = 0, and Firm i has value function equal to the
value function of a monopolist when xi > 0 and xj = 0. Moreover as we have already stated, the
case ε = 0 corresponds to the firms having independent monopolies, so we construct an expansion
of the form:

V i,·(x1, x2) = v·m(xi) + εv
(1),·
i (x1, x2) + ε2v

(2),·
i (x1, x2) + · · · , (38)

where the · stands for b or c.

We first expand the functions that arise from the static Bertrand game in (27) and (29):

qm(pj,⋆(s1, s2))[ε] = q⋆
m(si) +

ε

2
q⋆
m(sj) +

ε2

4
q⋆
m(si) + · · · , (39)

q⋆
i (s1, s2)[ε] = q⋆

m(si) −
ε

2
q⋆
m(sj) +

3ε2

4
q⋆
m(si) + · · · , (40)

and that of the Cournot game in (32):

qi,⋆(s1, s2)[ε] = q⋆
m(si) −

ε

2
q⋆
m(sj) +

ε2

4
q⋆
m(si) + · · · , (41)

where

q⋆
m(s) =

1

2β
(α − s) . (42)
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Next, we recall the shadow costs for the Bertrand game

Sb
i = V i,b

xi
− εV i,b

xj
, (43)

and note that as the first term in the expansion (38) for Firm i depends only on the capacity of

Firm i, we will have that the first term for which the shadow cost is not equal to V i,b
xi will be of

order ε2. Hence, up to order ε we have that Si
b = V i,b

xi . For the second-order term however, we will
need to consider the additional effect of this cross-partial derivative within the shadow cost. This
is a straightforward, albeit lengthy, calculation which we omit.

Before deriving the PDE problems for the first and second-order terms in the approximation, we
can use (39)-(41) to understand what type of behavior we expect. Foremost, we notice that the
zero-order terms are identical across the three terms. Therefore, we expect that the monopoly value
functions will be the same. The next thing to notice is that the functions that enter into the profit
term, (41) in Cournot and (40) in Bertrand, are identical up to order ε. Moreover, based on the
expansion, V i,·

xj will be of order ε and therefore the only term entering into the competition term
from this quantity functions are the zero-order terms of (41) for Cournot and (39) for Bertrand. In
addition, the constant in the profit term is identical at order ε and, as we have said, the shadow
costs are also identical at order ε. Therefore, we expect the first-order approximation functions to
be the same across the two game types. This is a surprising fact which we shall return to. Finally,
at order ε2, we see several places where terms are not equal. Therefore, we have no reason to
suspect a priori that the second-order approximation functions would be the same.

4.1.1 Zero-order Expansion: Monopoly

Carrying out the asymptotic expansion, we find that the zeroth-order PDE problem for both games
and both players reduces to solving

1

4β

(

α − v′m
)2

− rvm = 0, (44)

with vm(0) = 0 and limx→∞ v′m(x) = 0. In other words, given the solution to this ODE we have

vc
m(xi) ≡ vb

m(xi) ≡ vm(xi).

Proposition 4.1.1 (Prop. 3.1 in [Ledvina and Sircar, 2011]). The solution to (44) is given by

vm(x) =
α2

4βr

[

W
(

−e−µx−1
)

+ 1
]2

, (45)

where µ = (2βr)/α and W is the Lambert W function defined by the relation Y = W(Y )eW(Y )

with domain Y ≥ −e−1.

Proof. It is straightforward to check that the Lambert W function satisfies W(z) < 0 for z ∈
[−e−1, 0), W

(

−e−1
)

= −1, W(0) = 0, and W′(z) = W(z)/ (z (1 + W(z))) for z > −e−1, and
therefore that Eqn. (45) indeed satisfies Eqn. (44) and the boundary condition vM (0) = 0. We
note that the restriction of the domain of W to [−e−1,∞) is sufficient as the argument to W in
Eqn. (45) is equal to −e−1 when x = 0 and increases to zero as x increases to infinity. �

We therefore have an explicit solution, up to a special function, of the monopoly problem. We plot
this function in Figure 2.
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Figure 2: Plot of Monopoly Value Function

4.1.2 First-order Expansion

We define

λ(x) , q⋆
m(v′m(x)) =

1

2β

(

α − v′m(x)
)

, (46)

and the differential operator

A , λ(x1)
∂

∂x1
+ λ(x2)

∂

∂x2
+ r. (47)

It turns out that the approximation of the system of PDEs at order ε for both Cournot and Bertrand
games are the same, and reduces to solving

Av
(1)
i = −βλ(x1)λ(x2), (48)

with v
(1)
i (0, x2) = v

(1)
i (x1, 0) = 0 for i = 1, 2. Before doing anything we see immediately by

the symmetry of the operator and the symmetry of the right-hand-side that the solution v
(1)
i is

symmetric in x1 and x2 and therefore v(1)(x1, x2) := v
(1)
1 (x1, x2) ≡ v

(1)
2 (x1, x2).

Proposition 4.1.2. The solution of (48) is given, for x1 > x2 by

v(1)(x1, x2) =
α2

4βr

(

e−rΛ(x2)(1 + rΛ(x2)) − e−rΛ(x1)(1 − rΛ(x2)) + e−r(Λ(x1)+Λ(x2)) − 1
)

, (49)

where

Λ(x) ,

∫ x

0

1

λ(u)
du = −

1

r
log
(

−W(−e−µx−1)
)

, (50)

and, for x2 ≥ x1, by reversing the roles of x1 and x2 in (49). Moreover, for i = 1, 2 we have

v
(1),b
i (x1, x2) ≡ v

(1),c
i (x1, x2) ≡ v(1)(x1, x2).

Proof. See the proof of Proposition 3.2 in [Ledvina and Sircar, 2011]. �
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Up to order ε we have found no difference between Cournot and Bertrand. Moreover, the approx-
imation to the value function is given analytically. We plot this function in Figure 3(a) and the
corresponding value function surface up to order ε with ε = 0.2 in Figure 3(b). The first order
correction is negative over the entire domain which matches intuition as this is the correction due
to a small amount of competition to the value of a monopolist. Moreover, this correction is larger
when the total capacity x1 + x2 is larger.

(a) v
(1): Surface (b) vm(x1) + εv

(1)(x1, x2): Surface

Figure 3: v(1) and vm(x1) + εv(1)(x1, x2). First-order correction function and full value function
approximation up to O(ε) for ε = 0.2.

4.1.3 Second-order Expansion

We now turn to the approximation at order ε2. Using the expansions in ε for the two PDEs, we
find the following PDE problems

Av
(2),b
i =

1

2
λ(xi)

∂v(1)

∂xj

+
1

2

(

λ(xi)
∂v(1)

∂xj

+ λ(xj)
∂v(1)

∂xi

)

+
1

4
λ(xj)

2 − λ(xi)
2 +

1

2

∂v(1)

∂xj

∂v(1)

∂xj
+

1

4

(

∂v(1)

∂xi

)2

, (51)

Av
(2),c
i =

1

2
λ(xi)

∂v(1)

∂xj

−
1

2

(

λ(xi)
∂v(1)

∂xj

+ λ(xj)
∂v(1)

∂xi

)

+
1

4
λ(xj)

2 +
1

2
λ(xi)

2 +
1

2

∂v(1)

∂xj

∂v(1)

∂xj
+

1

4

(

∂v(1)

∂xi

)2

, (52)

with v
(2),·
i (x1, 0) = v

(2),·
i (0, x2) = 0 for i = 1, 2 for both Bertrand and Cournot. The elements that

are boxed are the only differences between the two PDE problems.

Proposition 4.1.3. There exists an analytic solution to (51) which is presented in Appendix A.

Proposition 4.1.4. There exists an analytic solution to (52) which is presented in Appendix B.

We plot the solution that results from Proposition 4.1.3 in Figure 4 (a) and that from Proposition
4.1.4 in Figure 4 (b).
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(a) v
(2),b
1 : Surface (b) v

(2),c
1 : Surface

Figure 4: Second-order correction surfaces

(a) Bertrand (b) Cournot

Figure 5: Plots of vm(x1) + εv(1)(x1, x2) + ε2v
(2),·
1 (x1, x2) with ε = 0.2

Our first observation is that the second-order correction in the Bertrand game is everywhere nega-
tive. Therefore, an increased amount of competition, as measured by ε, is detrimental to the value
of a firm in a Bertrand game.

The second observation is that the Cournot second-order correction is everywhere positive. There-
fore, the value of a firm in a Cournot market is higher than in a Bertrand market when one takes
into account these second-order effects, or in other words, the correction of order ε2 has the opposite
effect on a firm in a Cournot market as compared to a firm in a Bertrand market. This leads to
the conclusion that the value of a firm is greater in a Cournot market than in a Bertrand market.

We see just this effect in Figure 5. In this figure where ε = 0.2, we see that the our approximation
to the value function in the Cournot game is greater than the value function in the Bertrand
game. The monopoly boundary is identical and the zero boundary is identical, and moreover in
both cases, the value of a firm decreases with respect to the capacity of one’s rival. However, in a
Bertrand game relative to a Cournot game, the decrease is at a faster rate. This leads to the lower
value in a Bertrand game when both firms have a high level of a capacity. As capacities increase
indefinitely, the game approaches something of a repeated static game as the changes in capacity
are small relative to the overall size of capacity and therefore do not affect the strategies of firms
to an appreciable amount. Therefore, the lower value in a Bertrand market when both firms have
a large capacity is similar to the fact that the static Bertrand game is more competitive than the
static Cournot game, and this becomes exact in the limit as x1, x2 → ∞, which can be seen in (35).

13



4.2 Prices, quantities

We have laid the groundwork for our comparison of Bertrand and Cournot competition in the limit
of small product differentiation. As the monopoly value functions are identical and the first-order
value functions are identical, we have that in markets with very little competition, the type of
market is immaterial up to order ε on any measure of consumer well-begin.

Given the value functions approximated up to order ε2, which are now different for Cournot and
Bertrand, these can be used to approximate price and demand, which in turn are used as inputs
to drive the system of ODEs describing the capacity dynamics with σi ≡ 0. The resulting capacity
trajectories for Firm 1 in the two game types are displayed in Figure 6. We observe that the game
ends sooner in the Bertrand market. This again aligns with previous intuition that a Bertrand
market is more competitive than a Cournot market. This increased level of competition leads to a
faster rate of capacity depletion, ceteris paribus.
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Figure 6: Deterministic Capacity Paths with ε = 0.2
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(b) Demand

Figure 7: Deterministic Price and Demand Paths with ε = 0.2

However, this intuition that comes from the static game breaks down when we observe the resulting
price paths in Figure 7 (a), and the corresponding paths of demand in Figure 7 (b). The static game
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intuition says that Bertrand should have lower prices and higher quantities. This is true at the
beginning of the game when both firms have a large capacity. However, as the firms deplete their
capacities, we see that the price in the Bertrand market increases until it finishes above that in the
Cournot market. Likewise, the quantity begins higher in the Bertrand market, but eventually drops
below the quantity in the Cournot market. The dynamic nature of the game and the dependency
on firms’ capacities leads to these counterintuitive results.

5 Stochastic Differential Game with Greater Competition

We now turn our focus to the stochastic differential game, i.e. where σ1 > 0 and σ2 > 0. This
will allow us to study larger degrees of product differentiation than for which the asymptotic
approximation is reasonable to use. However, we still cannot consider the limit as ε approaches
1, because ε = 1 corresponds to homogeneous goods, which results in the well-known Bertrand
paradox: only the firm with the lowest marginal cost receives any demand, and if all firms have
equal cost then equilibrium prices are equal to marginal cost and all firms earn zero profits. As
partial derivatives of the value function take the place of marginal costs, i.e. they represent shadow
costs due to scarcity, the implementation of the Bertrand differential game with homogeneous goods
is particularly unstable due to highly discontinuous behavior in the payoff functions. This can be
overcome in the static setting but is a difficult problem in the differential game.

5.1 Numerical Analysis

For the ordinary differential game, we do obtained in Section 4 an analytical approximation to these
functions which provide a great deal of insight into these games. On the other hand, numerical
solution of systems of nonlinear first-order PDEs using finite-difference methods is difficult without
an appropriate regularizing method, such as approaching it in the limit of stochastic games as the
randomness goes to zero.

Contrarily, the stochastic differential game is well suited to a solution using the method of finite-
differences. This is due to the smoothing effect that the second-order operator provides to the
solution. For example, one can prove somewhat general existence results for systems of PDEs
of this type provided the second-order term is uniformly elliptic and the domain is smooth and
bounded, see [Bensoussan and Frehse, 2002, Chapter 3]. In our case, the ellipticity requirement is
satisfied with σ1 > 0 and σ2 > 0. Our natural domain, however, is not smooth and hence such a
result cannot be applied directly.

Repeating the small ε expansion in the stochastic game does not yield an analytic solution even in
the zeroth-order monopoly term. Throughout what follows, unless otherwise noted, we fixed the
parameter values σ1 = 0.6, σ2 = 0.6, ρ = 0.1, α = 6, β = 1 and ε = 0.4. We present in Figure 8
the numerical approximations to the value functions in the Bertrand (a) and Cournot (b) games.

Although possibly difficult to see in these plots, the value in the Cournot game is greater than
the value in the Bertrand game when both firms have large levels of capacity. Moreover, the axis
values are identical for the two game types. However, unlike in the deterministic approximation,
the Bertrand value function is actually greater than the Cournot value function when one’s rival
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(a) Bertrand (b) Cournot

Figure 8: Value Function Surfaces in Stochastic Game with ε = 0.4

has very low levels of capacity. This is not readily observable from these figures but can be seen by
examining the surface one obtains from taking the difference between the Cournot and Bertrand
value functions. Therefore, for large enough values of ε there are effects in the stochastic game
which cannot be captured using the second-order approximation that is relevant to the deterministic
game.

5.2 Prices, quantities and welfare

In the deterministic game, we could use our computed price and quantity strategies to numerically
solve the ODEs for capacity and thereby obtain for any fixed initial capacities, the trajectories
of capacity, price and demand. However, in the stochastic game, we cannot simply solve for the
trajectories as each one depends on the realization of the path of our Brownian motions. We can
simulate the Brownian paths and thereby simulate these paths, but the results are then dependent
on the particular realization of the randomness. In order to compare across market types while
controlling for the randomness, we fix a realization of our two-dimensional Brownian motion and
then use this to simulate the desired values in the two markets. A prototypical example of the path
of capacity of Firm 1 in the two games is presented in Figure 9.

We see that the time of the Bertrand game is shorter than the Cournot game. This is exactly what
we would expect from the results of the deterministic approximation. Hence, one would expect the
prices and demands to have similar features to those in the deterministic game. Figure 10 (a) is
the corresponding price paths and Figure 10 (b) is the demand paths. Comparing these figures to
those in the deterministic game, we see exactly the same qualitative behavior. The prices in the
Bertrand market are initially lower, but as firms exhaust their capacities, these prices increase to a
level above those in the Cournot market. Similarly, the demands in the Bertrand market are higher
initially and lower by the end of the game. Hence, the deterministic approximation captures the
qualitative features of the paths of capacity, price and demand quite well.

For given levels of capacity x1 and x2, we define θ , tan−1 (x2/x1). This is the angle in (x1, x2)
space that corresponds to the given capacity levels. Therefore, if we fix the total market size x1+x2,
we can use θ ∈ [0, π/2] to measure the variation in price and demand as a function of market share.
We plot in Figure 11 the demand of Firm 1 in the two market types. In Figure 11 (a) we have
ε = 0.2 and in 11 (b) we double the size of ε to 0.4. Similarly, we plot the prices of Firm 1 in the
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Figure 9: Stochastic Capacity Path Realization with ε = 0.4
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Figure 10: Stochastic Price and Demand Paths with ε = 0.4

two market types as a function of market share in Figure 12, where again ε = 0.2 in (a) and ε = 0.4
in (b).

Our first observation is that the static game intuition that Bertrand has lower prices and higher
quantities does hold in these numeric solutions. This is not a contradiction with previous state-
ments. In the previous sections where we stated that prices and quantities did not obey this
relationship, we were describing these values on a path over time. The primary driving force for
the results there was the fact that the Bertrand game ended sooner and therefore prices were driven
up near the end of the game. In contrast, here we are looking at the equilibrium strategies only as
a function of (x1, x2) fixed, not varying in time.

Furthermore, the spread between the Bertrand and Cournot values, be it price or quantity, is
increasing with ε. Thus, in a market with highly substitutable goods, the differences between price
competition and quantity competition are magnified. This is a natural statement as the limiting
case, ε = 1 which corresponds to homogeneous goods, results in a very wide disparity between
Cournot and Bertrand competition.

The left-hand-side of these plots, where θ = 0, corresponds to Firm 1 having total market share.
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(a) ε = 0.2
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(b) ε = 0.4

Figure 11: Demand as a function of market share

Here we see that Firm 1 sets the lowest prices and the highest quantities. The right-hand-side is
the opposite situation, Firm 1 has no market share and thus sets the highest prices and lowest
quantities. There is a minimum in price near the equal market share level for ε large enough.
Otherwise, the lowest price can be obtained from the one firm with the highest market share.
However, note that the average price is lowest when both firms have equal market share, regardless
of the value of ε. Similarly, the highest average quantity is obtained when market share is equal
across the two firms. Therefore, this model predicts that consumers are better off when firms have
roughly equal levels of capacity, or in another sense, firms are roughly of the same size.
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(b) ε = 0.4

Figure 12: Price as a function of market share

The previous discussion is somewhat loose in that low average prices may or may not make con-
sumers better off. Economic welfare, as we have already defined, is one measure often used in
economics to quantify just this notion. That is, a market with higher economic welfare is better
for the economy in some sense.

We plot the difference EW c−EW b in Figure 13. Our first observation is that for almost all levels of
capacity, economic welfare is greater in a Bertrand market relative to a Cournot market. However,
when both firms have sufficiently exhausted their respective capacities, this relationship reverses
and we see that economic welfare is higher in the Cournot market. Hence, for large similarly sized
firms with a long time until exhaustion of capacity, the economy is better off if they compete by
setting prices. However, near the origin where both are near to exhaustion, the economy would be
better off if they were to compete in quantities.
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Figure 13: Welfare Difference between dynamic Cournot and Bertrand with ε = 0.4

A Second-Order Approximation: Bertrand

We give the solution of the PDEs Eqn. (51) for v
(2),b
i . Using the solution to v

(1),b
i found in Propo-

sition 4.1.2, and making the same change of variables as used in the proof of that Proposition,
namely (ξ, η) = (Λ(x1),Λ(x2)), and solving, leads to

v
(2),b
1 (x1, x2) =

α2

8β
e−rΛ(x2)

[

−
Λ(x2)

2

2

(

2rerΛ(x2)

erΛ(x2) − 1
+

rϕ1

1 − e−rΛ(x1)

)

−
Λ(x2)(1 − ϕ1)

1 − e−rΛ(x1)

+
3

2r

(

erΛ(x2) − 1
)

−
(1 − ϕ1)

2

2r
(

erΛ(x2)
(

1 − e−rΛ(x1)
)) +

1 − ϕ1

2r

−
3

r

(

erΛ(x2) − ϕ2
1e

−rΛ(x2) − 1 + ϕ2
1 − 2ϕ1rΛ(x2)

)

]

, (53)

for x1 > x2 where ϕ1 = exp {−r (Λ(x1) − Λ(x2))}. For x2 ≥ x1,

v
(2),b
1 (x1, x2) =

α2

8β
e−rΛ(x1)

[

−
Λ(x1)

2

2

(

rerΛ(x1)

erΛ(x1) − 1
+

2rϕ2

1 − e−rΛ(x2)

)

−
2Λ(x1)(1 − ϕ2)

1 − e−rΛ(x2)

+
3

2r

(

erΛ(x1) − 1
)

−
(1 − ϕ2)

2

rerΛ(x1)
(

1 − e−rΛ(x2)
) +

1 − ϕ2

r

−
3

r

(

erΛ(x1) − 2rΛ(x1) − e−rΛ(x1)
)

]

, (54)

where ϕ2 = exp {−r (Λ(x2) − Λ(x1))}. We omit the details of this lengthy calculation.
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B Second-Order Approximation: Cournot

We first define the functions v̄
(2)
i , v

(2),b
i − v

(2),c
i for i = 1, 2. Linearity of A and the two PDEs,

(51) and (52), imply

Av̄
(2)
i = λ(xi)

∂v(1)

∂xj
+ λ(xj)

∂v(1)

∂xi
−

3

2
βλ(xi)

2, (55)

with zero boundary conditions.

Proposition B.0.1. The solution of (55) is given, for i = 1 and x1 > x2 by

v̄
(2)
1 (x1, x2) = e−rΛ(x2) [G(Λ(x2), ϕ1)

−
3α2

8βr

{

erΛ(x2) − 1 − ϕ2
1

(

e−rΛ(x2) − 1
)

− 2rϕ1Λ(x2)
}

]

, (56)

and for x2 ≥ x1 by

v̄
(2)
1 (x1, x2) = e−rΛ(x1) [G(Λ(x1), ϕ2)

−
3α2

8βr

{

erΛ(x1) − e−rΛ(x1) − 2rΛ(x1)
}

]

, (57)

where ϕi = exp {−r (Λ(xi) − Λ(xj))}, i = 1, 2 and j 6= i, and where

G(y, k) =
1 + k2

r

(

e−ry − 1
)

+y

[

2 −
1

k
+ k

(

1 + log(1 − e−ry)
)

− log(1 − ery) − k log

(

1 −
ery

k

)

+ log(1 − ke−ry)

]

−

(

2

r
−

1

rk
−

k

r

)

(log(k − ery) − log(k − 1))

−
1

r

(

kLi2
(

e−ry
)

+ Li2 (ery) + kLi2

(

ery

k

)

+ Li2
(

ke−ry
)

)

+
1

r

(

(k + 1)Li2(1) + kLi2

(

1

k

)

+ Li2(k)

)

.

For i = 2, we find by symmetry that v̄
(2)
2 (x1, x2) = v̄

(2)
1 (x2, x1). The necessary details of the Li2

function are given in Remark B.1.

Remark B.1 (Polylogarithm). The polylogarithm function Lin is defined in general by the power
series

Lin(z) =
∞
∑

k=1

zk

kn
. (58)

This representation, however, is not of much use here. Instead, we require the alternative repre-
sentation, from which the function obtains its name, namely

Lin+1(z) =

∫ z

0

Lin(t)

t
dt,
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with the base case being given by the logarithm function, i.e. Li1(z) = − log(1 − z). Therefore,

Li2(z) = −

∫ z

0

log(1 − t)

t
dt. (59)

Proof of Prop B.0.1. The first step, again, is to make the change of variables

(ξ, η) = (Λ(x1),Λ(x2)) , and wi(ξ, η) = e
r
2
(ξ+η)v̄

(2)
i

(

Λ−1(ξ),Λ−1(η)
)

,

which results in the PDE problems

∂w1

∂ξ
+

∂w1

∂η
= e

r
2
(ξ+η)

(

−
3α2

8β

(

1 − e−rξ
)2

+ g(ξ, η)

)

, (60)

∂w2

∂ξ
+

∂w2

∂η
= e

r
2
(ξ+η)

(

−
3α2

8β

(

1 − e−rη
)2

+ g(ξ, η)

)

, (61)

with wi(ξ, 0) = wi(0, η) = 0 for all ξ, η ≥ 0 and where

g(ξ, η) =
α

2β

(

1 − e−rξ
) ∂v(1)

∂x2

(

Λ−1(ξ),Λ−1(η)
)

+
α

2β

(

1 − e−rη
) ∂v(1)

∂x1

(

Λ−1(ξ),Λ−1(η)
)

.

We demonstrate the procedure to calculate w1 and thereby obtain v̄
(2)
1 . The solution to (60) for

ξ > η is

w1(ξ, η) =

∫ η

0
e

r
2
(ξ−η)ers

(

−
3α2

8β

[

1 − e−r(s+ξ−η)
]2

+ g(s + ξ − η, s)

)

ds, (62)

and for η ≥ ξ the solution is

w1(ξ, η) =

∫ ξ

0
e

r
2
(η−ξ)ers

(

−
3α2

8β

[

1 − e−rs
]2

+ g(s, s + η − ξ)

)

ds. (63)

Therefore, we simply have to compute these integrals. Based on the derivatives of v(1), we define

G(y, k) ,

∫ y

0

α2

4β
ers

{

(

1 − ke−rs
) e−rs

1 − e−rs

(

−rs − ke−rs + k
)

+
(

1 − e−rs
) ke−rs

1 − ke−rs

(

1 − rs − e−rs
)

}

ds.

With the aid of this function, we have

∫ η

0
ersg(s + ξ − η, s)ds = G(η, ϕ1) and

∫ ξ

0
ersg(s, s + η − ξ)ds = G(ξ, ϕ2),

where ϕ1 = exp {−r (ξ − η)}, and ϕ2 = exp {−r (η − ξ)}. After computing the first half of the
integrals in (62) and (63) we arrive at

w1(ξ, η) =







e
r
2
(ξ−η)

[

−3α2

8β

(

1
r

(

erη − 1 − ϕ2
1 (e−rη − 1)

)

− 2ϕ1η
)

+ G(η, ϕ1)
]

for ξ > η,

e
r
2
(η−ξ)

[

−3α2

8β

(

1
r

(

erξ − e−rξ
)

− 2ξ
)

+ G(ξ, ϕ2)
]

for η ≥ ξ.
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We omit the details of the tedious integrals. The remainder of the proof is to then restore the
change of variables through

v̄
(2)
i (x1, x2) = e−

r
2
(Λ(x1)+Λ(x2))wi (Λ(x1),Λ(x2)) .

�

With the function v̄
(2)
i found above, and v

(2),b
i in Appendix A, we find v

(2),c
i = v

(2),b
i − v̄

(2)
i .
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