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1. Introduction. It is well-known that optimal mean-variance portfolio weights are quite
different from the weights used in real-life investment. As pointed out in [BL92], unconstrained
optimization often results in large short positions among many asset classes, and constrained opti-
mization results in zero weight in many assets and unreasonably large weights in assets with small
capitalization. The model of Black and Litterman [BL91] is a practical solution to this problem,
wherein investors’ views on upcoming performance are incorporated into the optimization along
with any degree of uncertainty that the investor may have in these views.

In continuous time or multi-period settings, a natural extension of the Black and Litterman
model is to include a separate stochastic process for the level of expected returns. Due to the
large amount of data required for accurate estimation of this new process, much of the existing
literature considers it to be unobserved, hence making this an investment problem with only partial
information. Several papers consider expected returns to be an unobserved Markov process and
then use filtering methods (i.e. Kalman filter or Wonham filter) to track the hidden state. Indeed,
investment with partial information is studied in [Bre98, Bre06, ESB10, BR05, FPS14, Pap13,
Pha09, SH04]. The effect of this added stochasticity is that optimal investment strategies will
change from those suggested by the standard Merton problem [Mer69], with the effects of risk-
aversion characteristics and the investment horizon playing a role in the solution [Bre98, Wac02].

The analysis in [FGW12] combines filtering with so-called expert opinions, a concept which is
similar to the Black-Litterman model’s consideration of investors’ views. The idea is the following:
in a dynamic investment problem, the nature of the expert opinions is that they are available
sporadically over time, and are useful because they can reduce the variance of the estimator of the
returns. During the time intervals between the announcement of expert opinions, the investors use
a filter to estimate the posterior distribution of the expected returns. In the model of [FGW12],

∗Department of Statistics & Applied Probability, University of California, Santa Barbara, CA 93106-3110,
fouque@pstat.ucsb.edu. Work supported by NSF grant DMS-1107468.

†School of Mathematics & Statistics, The University of Sydney, NSW 2006, Australia alpapani@maths.usyd.edu.au.
‡Department of ORFE, Princeton University, E-Quad, Princeton NJ 08544; sircar@princeton.edu. Work partially

supported by NSF grant DMS-1211906.

1



expert opinions arrive with the jumps of a Poisson process, and it allows for a varying degree of
investor confidence by including some randomness in the information provided at each arrival time.

1.1. History & Motivation. One of the earliest papers in modern portfolio theory is that of
Markowitz [Mar52], which used the basic statistics of mean and covariance to quantify risk and to
find diversified portfolios. In the seminal work of Merton [Mer69], the dynamic investment problem
was formulated in continuous time using stochastic control theory, and has since been referred to
as the Merton problem. In its original formulation, the Merton problem seeks to optimize utility
of consumption and terminal wealth at some finite time, when asset prices evolve according to
geometric Brownian motion, and the investor’s utility is typically of HARA or CARA type (i.e. the
power or exponential utilities, respectively). In Merton’s approach, the problem is solved using the
Hamilton-Jacobi-Bellman (HJB) equation of dynamic programming.

In the years since [Mer69], there has been a long line of research that relaxes some of the
original assumptions in order to make the model more realistic, for instance by making the expected
returns stochastic, making volatility stochastic, allowing for transaction costs, or incorporating the
unobservability of the parameters. In particular, stochasticity of expected returns has been used
in a number of papers: as a possible way to explain greater long-term allocations in stocks than
in bonds [CV99, Wac02]; to study the risk-aversion of investors under greater uncertainty than a
standard CAPM [BEW88]; to say something more about the equity premium puzzle [Bre98].

1.2. Literature Review. For general surveys on the optimal investment problem we refer
the reader to [Pha09, Sch03] and [Rog13]. The Black-Litterman model was first presented in
[BL91, BL92]. The model is compared to the Bayesian approach to traditional portfolio theory in
[SWZ10]. Models where stochastic volatility is driven by multiscale observable factors are analyzed
in [FPSS11, JS02b, JS02a, FSZ13]. The full information portfolio problem with a mean-reverting
stochastic drift has been studied by [Wac02] for the complete market (perfectly correlated) case.
The relationship of partial information to the preference for higher allocation ratio given long-
time horizons, the effects of risk aversion levels and the equity premium puzzle are studied in
[Bre98, CV99].

Portfolio optimization with partial information has been studied in [SH04], with Markov chain
switching in [BR05, Pap13], and with the effects of discrete trading in [BUV12]. The effects of
model parameters such as time-dependent risk aversion and correlation were studied in [FPS14,
KO96, SD14]. In [Car09, Pap13], filtering is applied in the management of commodities portfolios
with partial information due to the unobservability of convenience yields. Asymptotics analysis for
control problems with Markov processes is described in [YZ13], and limit theorems for (nonlinear)
filtering have been addressed in [PRS11] and in [PS14]. The effects on filtering with intermittent
insertion of expert opinions is studied in [FGW12].

1.3. Results in this Paper. In this paper, we analyze the Merton problem when the growth
rate is an unobserved Gaussian process whose level is estimated by filtering from observations of
the stock price. We use the Kalman filter to track the hidden state(s) of expected returns given the
history of asset prices, and then use this filter as input to a Merton-type portfolio problem with an
objective to maximize expected terminal utility of wealth. Our results apply for general concave
utility functions.

We incorporate time-scale separation in the factors driving the returns process, and perform
singular and regular perturbation analysis on the associated partial information HJB equation,
which leads to an intuitive interpretation of the additional risk caused by uncertainty in expected
returns. In particular, a fast mean-reverting factor in the expected returns process captures the
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effects of intraday trading, and a slow mean-reverting factor in expected returns captures a slight
lack of confidence in the expert opinions.

Our perturbation analysis is carried out in the dual formulation obtained by a Fenchel-Legendre
transform, and is then mapped back to the primal formulation. This is a good approach to the
problem because the dual PDE to the nonlinear HJB equation is linear. In the later sections
we carry out numerical experiments to illustrate the effects of partial information and time-scale
perturbations. The chief contribution of this paper is an intuitive set of results relating the model’s
parameters to the role of partial information in optimal investment.

The rest of the paper is organized as follows: Section 2 introduces the model; Section 2.1 ex-
plains the filter and Section 2.2 presents the small-ε and small-δ asymptotics of the Kalman filter in
the regime of small time scale parameters ε and δ. Section 2.3 explains how expert opinions affect
uncertainty; Section 3 presents the partial information HJB equation, with Section 3.2 deriving
the linearized PDE for the dual function. Section 4 presents the small-ε (fast factor) asymptotics.
Section 5 presents the small-δ (slow factor) expansions; and Section 6 shows how the partial in-
formation value functions compare to those from full information case, and that an information
premium is seen qualitatively. Finally, the Appendices contain various proofs, including a novel
application of the Hörmander theorem to show existence of smooth solutions to the dual PDE.

2. Model for Stochastic Returns & Filtering Equations. We consider a market with
two investment options: a risk-free bank account and a risky asset whose price is the observed
process in the following system:

dSt

St
= (θ + Yt + Zt) dt+ σ dWt (observed price) ,

dYt = −1

ε
Yt dt+

β√
ε
dB1

t (hidden) , (2.1)

dZt = −δZt dt+
√
δη dB2

t (hidden) ,

where W , B1 and B2 are Brownian motions with

E{dWt dB
i
t} = ρi dt for i = 1, 2, and E{dB1

t dB
2
t } = ρ12 dt.

The correlation coefficients are |ρ1| < 1, |ρ2| < 1 and |ρ12| < 1, satisfying 1 + 2ρ1ρ2ρ12 − ρ21 − ρ22 −
ρ212 > 0. The parameters σ, ε, δ, β and η, the ρi’s, and the long-term mean θ, are all considered to
be known. In most settings, Yt and Zt should not be considered observed because they must be
estimated from market data, and hence they are filtered, making the investment problem one of
partial information. In (2.1) Y and Z are both Ornstein-Uhlenbeck processes, hence the drift is
Gaussian.

The expert opinions will give investors full information on Zt at time t = 0. For instance, we
can take St to be the price of a managed fund whose performance is compared to a benchmark
return of θ, and excess returns on S are given by Yt +Zt. We will consider an investment period of
finite time T , and work in the regime 1

ε ≫ T and 1
δ ≫ T , which is interpreted below. Then returns

from Y are quickly averaged because ε is small, and returns from Z change very little for small δ.
Hence, the expert opinions are a prediction of Zt and will be more accurate for smaller δ.

The information available to the investor at time t ≥ 0 is contained in the filtration

Ft , σ{Su : 0 ≤ u ≤ t} , (2.2)
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(i.e. the σ-algebra generated by the process S up to time t). At time t = 0, the expert opinions
reveal the true value of Z0 so that E

{
Z0

∣∣F0

}
= Z0 and var

{
Z0

∣∣F0

}
= 0. We could generalize the

framework to have expert opinions arriving at multiple stochastic times, as done in [FGW12], but
this paper will consider the basic case where expert opinions come at time t = 0 only.

Given the role and effects of expert opinions, we are ready to provide an interpretation of the
multiple time scales in (Yt, Zt):

i). Y is a fast mean-reverting component in excess returns (e.g. intraday effects whose presence
has been observed in the data [Pap13]). Experts do not give a value for Yt because the
process changes far too fast for them to deliberate and announce their consensus.

ii). Z is a slow mean-reverting component in excess returns. The slowness in the time scale
allows the experts to carefully deliberate and deliver an accurate estimate of Z0. The
interpretation is that changes in Z happen slowly, are not very large, and occur because of
market events that the experts could not predict.

2.1. The Kalman Filter. For any square-integrable function g : R × R → R, the posterior
expectation is ĝt , E{g(Yt, Zt)|Ft} ∀t ≤ T , and in particular we denote Ŷt , E

{
Yt

∣∣Ft

}
and

Ẑt , E
{
Zt

∣∣Ft

}
. Furthermore, we define the innovations process as

νt ,

∫ t

0

(
dSu

Su
− (θ + Ŷu + Ẑu) du

)
, (2.3)

which is an Ft-adapted Brownian motion if divided by the volatility σ. In (2.1), the drift of
S is Gaussian, which means that the Kalman-Bucy filter applies. In particular, the conditional
distribution (Yt, Zt) | Ft is normal with covariance matrix

Σε,δ(t) , E

(
Yt − Ŷt

Zt − Ẑt

)(
Yt − Ŷt

Zt − Ẑt

)T

.

The definition of Σε,δ has dropped the conditioning on Ft because (Ŷt, Ẑt) is a Gaussian projection

onto the observations (Su)u≤t, and hence the residual difference (Yt − Ŷt, Zt − Ẑt) is independent
of the observations.

It follows that (Ŷt, Ẑt) and Σε,δ(t) are solutions of the following equations (see [BC09, Bre06]
or [Kal80, Chapter10]):

d

(
Ŷt

Ẑt

)
= −

(
1
ε 0
0 δ

)(
Ŷt

Ẑt

)
dt+

1

σ2
M ε,δ(t) dνt , (2.4)

d

dt
Σε,δ(t) = −2

(
1
ε 0
0 δ

)
Σε,δ(t) +




β2

ε ρ12βη
√

δ
ε

ρ12βη
√

δ
ε η2δ


− 1

σ2
M ε,δ(t)M ε,δ(t)T, (2.5)

where M ε,δ(t) =

(
Σε,δ(t)

(
1
1

)
+ σ

(
ρ1β√

ε

ρ2η
√
δ

))
. Equations (2.4) and (2.5) are the Kalman-Bucy

filter. We have that (Y0, Z0) | F0 is initially Gaussian distributed with moments Ŷ0 = E{Y0|F0},

Ẑ0 = E{Z0|F0} and Σε,δ(0) = E

(
Y0 − Ŷ0

Z0 − Ẑ0

)(
Y0 − Ŷ0

Z0 − Ẑ0

)T

. With the inclusion of expert opinions

at time t = 0, we have Ẑ0 = Z0 and Σε,δ(0) =

(
E(Y0 − Ŷ0)

2 0
0 0

)
.
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2.2. Small-ε Filter Asymptotics. In this section, we compute the limit of the posterior
distribution on (Yt, Zt) as ε → 0. We derive an expansion of covariance matrix Σε,δ(t) in powers of√
ε, which will be used in Sections 4 and 5 to expand the investor’s optimal value function.
Proposition 2.1. The covariance matrix Σε,δ(t) that solves (2.5) has a limit

Σε,δ(t) → Σ(0),δ(t) ,

(
β2(1−ρ2

1)
2 0

0 Σ
(0),δ
22 (t)

)

as ε → 0, where Σ
(0),δ
22 (t) satisfies the Riccati equation

d

dt
Σ

(0),δ
22 (t) = −2δ

(
Σ

(0),δ
22 (t)− η2(1− ρ22)

2

)
− 2ηρ2

√
δ

σ
Σ

(0),δ
22 (t)− 1

σ2

(
Σ

(0),δ
22 (t)

)2
, (2.6)

with initial condition Σ
(0),δ
22 (0) = E

(
Z0 − Ẑ0

)2
, and with Σ

(0)
22 = 0 when there are expert opinions.

The proof is given in Appendix A. The covariance matrix Σε,δ(t) can also be expanded in
powers of

√
ε:

Proposition 2.2. Given the limit Σ(0),δ(t) from Proposition 2.1, the solution Σε,δ(t) to equa-
tion (2.5) can be expanded as

Σε,δ(t) = Σ(0),δ(t) +
√
ε Σ(1),δ(t) + . . . (2.7)

for t > 0, where

Σ(1),δ(t) ,
ρ1β

σ

(
β2(1−ρ2

1)
2 Σ

(0),δ
22 (t) + ρ2η

√
δ

Σ
(0),δ
22 (t) + ρ2η

√
δ 0

)
.

The proof is given in Appendix A.

2.3. Small-δ Asymptotics for Σ
(0),δ
22 with Expert Opinions. The expert opinions give

the investor full information on Z0 at time t = 0, that is

Ẑ0 = Z0 with Σε,δ
22 (0) = 0 .

Hence, there is an explicit solution to equation (2.6), namely

Σ
(0),δ
22 (t) =

(
1− e−dt

1− α+

α−

e−dt

)
α+

where α± are the roots to the right-hand side in equation (2.6)

α± = −
(
δσ2 + ηρ2

√
δσ
)
±
√(

δσ2 + ηρ2
√
δσ
)2

+ δη2σ2(1 − ρ22),

and d = (α+ − α−)/σ
2.

Then for δ small we expand in powers of
√
δ,

Σ
(0),δ
22 (t) = Σ

(0)
22 (t) +

√
δΣ

(0,1)
22 (t) + δΣ

(0,2)
22 + . . . , (2.8)

where it is important to notice expert opinions at time t = 0 cause the first two terms to be zero,

namely, Σ
(0)
22 (t) = 0 = Σ

(0,1)
22 (t) for all t ≥ 0. Hence, Σ

(0),δ
22 (t) = o(

√
δ).
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3. The Portfolio Problem with Partial Information. In the Merton problem, an investor
allocates her capital dynamically over time between a risky stock and a riskless bank account to
maximize expected utility of wealth at a fixed time horizon T < ∞. The investor has a self-financing
wealth process Xt satisfying

dXt = πt
dSt

St
+ r(Xt − πt) dt ,

where r ≥ 0 is the rate of return on wealth held in the risk-free bank account, and the process (πt)
is the investor’s control process adapted to Ft (defined in(2.2)), and satisfying the admissibility

condition E

{∫ T

0
π2
t dt
∣∣∣F0

}
< ∞. Without loss of generality we take r = 0 for the rest of the paper.

The investor’s goal is to maximize terminal utility at time T ,

sup
π

E

{
U(XT )

∣∣∣Ft ∨ {Xt = x}
}

for 0 ≤ t ≤ T < ∞ , (P)

where U(x) is a smooth, increasing and strictly concave utility function on R
+ satisfying the Inada

conditions limx→∞ U ′(x) = 0 and limxց0 U
′(x) = ∞ (see, for instance, [KS98, KS99]). The

difficulty in solving (P) is the potentially non-Markovian nature of the problem. However, the

Kalman filter (Ŷt, Ẑt) encapsulates the information required from Ft, and it is sufficient to write
the value function for (P) as the optimum of a Markov control problem:

V ε,δ(t, x, y, z) = sup
π

E

{
U(XT )

∣∣∣Xt = x, Ŷt = y, Ẑt = z
}

. (P ′)

We will consider investment problem (P ′) for general utility functions. The reason for considering
general utility functions is to allow for more realistic dependence of risk aversion on the level of
investor wealth. For example, non-constant dependence on wealth is illustrated in [FSZ13] for the
mixture of power utility functions.

From the definition of νt given in equation (2.3), we have a complete-markets description of the
asset price

dSt

St
= (θ + Ŷt + Ẑt) dt+ dνt (observed price) ,

which allows us to rewrite the wealth process for Xt and the filtering equations in (2.4) as

dXt = πt(θ + Ŷt + Ẑt) dt+ πt dνt

dŶt = −1

ε
Ŷt dt+

aε,δ(t)

σ
dνt (3.1)

dẐt = −δẐt dt+
bε,δ(t)

σ
dνt ,

where

aε,δ(t) ,
1

σ

(
Σε,δ

11 (t) + Σε,δ
12 (t) +

σβρ1√
ε

)
(3.2)

bε,δ(t) ,
1

σ

(
Σε,δ

21 (t) + Σε,δ
22 (t) +

√
δσηρ2

)
. (3.3)
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The representation of St in (3.1) is an SDE with Ft-measurable coefficients and exactly one source
of randomness (namely νt), which means that the market is complete. Market completeness is
important because in Section 3.2 it will lead to a linear PDE for the value function’s convex dual.
Of more immediate consequence from (3.1) is how these SDEs can be used to formulate a PDE to
describe the value function in (P ′).

3.1. The HJB Equation. From the SDEs in (3.1), the optimal value function for (P ′)
V ε,δ(t, x, y, z) is associated with an HJB equation,

V ε,δ
t − y

ε
V ε,δ
y − δzV ε,δ

z +
1

2

(
aε,δ(t)

)2
V ε,δ
yy +

1

2

(
bε,δ(t)

)2
V ε,δ
zz + aε,δ(t)bε,δ(t)V ε,δ

yz

+max
π

{
1

2
σ2π2V ε,δ

xx + π
(
(θ + y + z)V ε,δ

x + σ
(
aε,δ(t)V ε,δ

xy + bε,δ(t)V ε,δ
xz

))}
= 0, (3.4)

for all t < T , and with terminal condition V ε,δ(T, x, y) = U(x) (see for instance [Pha09, Chapter3]).
In general, regularity results for this type of fully-nonlinear HJB PDE problem are not available.
However, we will show that small ε is sufficient for smoothness of solutions. In addition, for
some specific terminal conditions U(x) such as power utility, explicit solutions are available (see
[Bre06, KO96]).

From (3.4) we see that the optimal strategy is given in feedback form by

π∗ = −
(θ + y + z)V ε,δ

x + σ
(
aε,δ(t)V ε,δ

xy + bε,δ(t)V ε,δ
xz

)

σ2V ε,δ
xx

. (3.5)

From this expression for optimal π∗ we see a decomposition of π∗ into a myopic strategy plus a
correction for stochastic drift. Specifically, we have

myopic strategy = − (θ + y + z)V ε,δ
x

σ2V ε,δ
xx

, (3.6)

and it is well known that the myopic strategy is optimal for logarithmic utility U(x) = log(x), but
is sub-optimal for other utilities (see [BR05, SH04]). Indeed, plugging π∗ into (3.4) we have the
following nonlinear PDE:

V ε,δ
t +

1

2

(
aε,δ(t)

)2
V ε,δ
yy + aε,δ(t)bε,δ(t)V ε,δ

yz +
1

2

(
bε,δ(t)

)2
V ε,δ
zz −

(y
ε
V ε,δ
y + δzV ε,δ

z

)
(3.7)

−
(
1
σ (θ + y + z)V ε,δ

x + aε,δ(t)V ε,δ
xy + bε,δ(t)V ε,δ

xz

)2

2V ε,δ
xx

= 0 ,

with terminal condition V ε,δ(T, x, y, z) = U(x). The myopic strategy in (3.6) is optimal for loga-
rithmic utility, because there is an additive separation of variables and cross terms V ε,δ

xy and V ε,δ
xz

in (3.5) are zero (see [BR05]). However there is a non-myopic component for utilities such as
HARA and CARA. Equation (3.7) for exponential and power utilities is central to the results in
[Bre06, Car09]), and also for the case when the hidden process is a Markov chain in [BR05]. In this
paper, for general concave utility functions we will use perturbation theory to find the terms in the
formal expansion of the solution to (3.7),

V ε,δ = V (0) +
√
εV (1,0) +

√
δV (0,1) + . . . , (3.8)

however we will obtain these leading terms using convex duality.
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3.2. A Linear PDE for the Convex Dual. The nonlinearity in equation (3.7) does not
carry over to the PDE for the Legendre transform of V ε,δ. The Legendre transform in the x-variable
is

V̂ ε,δ(t, p, y, z) , sup
x∈R+

(
V ε,δ(t, x, y, z)− xp

)
,

for all p > 0, for all t ∈ [0, T ], and for all z, y ∈ R. For strictly concave V ε,δ (with Vx

∣∣
x=∞ = 0

and Vx

∣∣
x=0

= ∞ due to the Inada conditions as shown in [KS99]) there is a 1-1 and onto mapping
x∗ : R+ → R

+, such that for each p the maximizer is the unique critical point x∗ = x∗(p) such that

V̂ ε,δ(t, p, y, z) = V ε,δ(t, x∗(p), y, z)− px∗(p) .

As described in [JS02b], the partial derivatives of V ε,δ evaluated at x∗(p) have the following rela-
tionships with those of V̂ ε,δ:

V ε,δ
x

∣∣∣
x=x∗

= p V ε,δ
xx

∣∣∣
x=x∗

= − 1

V̂ ε,δ
pp

V ε,δ
yy

∣∣∣
x=x∗

=
V̂ ε,δ
pp V̂ ε,δ

yy − (V̂ ε,δ
py )2

V̂ ε,δ
pp

V ε,δ
t

∣∣∣
x=x∗

= V̂ ε,δ
t V ε,δ

xy

∣∣∣
x=x∗

= −
V̂ ε,δ
py

V̂ ε,δ
pp

V ε,δ
zz

∣∣∣
x=x∗

=
V̂ ε,δ
pp V̂ ε,δ

zz − (V̂ ε,δ
pz )2

V̂ ε,δ
pp

V ε,δ
y

∣∣∣
x=x∗

= V̂ ε,δ
y V ε,δ

xz

∣∣∣
x=x∗

= −
V̂ ε,δ
pz

V̂ ε,δ
pp

V ε,δ
zy

∣∣∣
x=x∗

=
V̂ ε,δ
pp V̂ ε,δ

zy − V̂ ε,δ
py V̂ ε,δ

pz

V̂ ε,δ
pp

V ε,δ
z

∣∣∣
x=x∗

= V̂ ε,δ
z . (3.9)

When these partial derivatives are applied to equation (3.7), the effect is a PDE for the dual problem
that is linear because the market is complete after filtering:

V̂ ε,δ
t +

1

2

(
aε,δ(t)

)2
V̂ ε,δ
yy + aε,δ(t)bε,δ(t)V̂ ε,δ

yz +
1

2

(
bε,δ(t)

)2
V̂ ε,δ
zz −

(y
ε
V̂ ε,δ
y + δzV̂ ε,δ

z

)
(3.10)

+

(
p2(θ + y + z)2

2σ2
V̂ ε,δ
pp − p(θ + y + z)

σ

(
aε,δ(t)V̂ ε,δ

py + bε,δ(t)V̂ ε,δ
pz

))
= 0

V̂ ε,δ(T, p, y, z) = Û(p) .

Here, Û is the Legendre transform of the utility function U .
Equation (3.10) is degenerate, but existence of classical solutions is shown in Appendix B.1.

In particular, it is shown that there exists ε0 > 0 such that the Hörmander condition is satisfied
for all ε ≤ ε0 (i.e. we prove regularity of solutions to the dual PDE under sufficiently fast speed
of mean reversion in Y ; small ε has a regularizing effect). Moreover, this existence proof can be
re-worked to show existence of solutions in the case when there is only a fast time scale, a result
which pertains to [FPS14].

3.2.1. Obtaining a Solution to (3.7). Appendix B.1 has shown as that there exists smooth
solutions to (3.10) for ε small. In this brief subsection we explain how these solutions can be
uniquely identified with the Feynman-Kac formula, and can be mapped back to the x-domain via
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convexity arguments. The arguments in this subsection will assume that ε is sufficiently small so
that we can be certain that smooth solutions exist.

The Feynman-Kac representation of the solution to (3.10) is

V̂ ε,δ(t, p, y, z) = E

{
Û(pT )

∣∣∣pt = p, Ŷt = y, Ẑt = z
}

(3.11)

where pt = p0 exp
{
− 1

2

∫ t

0
(θ+Ŷu+Ẑu)

2

σ2 du−
∫ t

0
θ+Ŷu+Ẑu

σ2 dνu

}
, with νt being the same innovation

Brownian process driving the SDEs in (3.1).
The inverse Legendre transform of V̂ ε,δ gives the value function:

ˆ̂
V ε,δ(t, x, y, z) , inf

p>0

(
V̂ ε,δ(t, p, y, z) + xp

)
= V ε,δ(t, x, y, z), ∀x ∈ R

+ .

4. Small-ε Asymptotics. We define the operators

Dk , pk
∂k

∂pk

for which we have commutativity (i.e. for any non-negative integers k and k’ we have DkDk′ =
Dk′Dk as follows easily from a change of variable to log p).

Next we expand for aε,δ and bε,δ given by (3.2) and (3.3), respectively, in powers of
√
ε using

the expansion from Proposition 2.2. Then we use these expansions to rewrite equation (3.10) as

1

ε
L0V̂

ε,δ +
1√
ε
Lδ
1V̂

ε,δ + Lδ
2V̂

ε,δ +
√
εLδ

3V̂
ε,δ = o(

√
ε), (4.1)

where o(
√
ε) is the collection of higher-order terms coming from o(

√
ε) terms in the expansions of

aε,δ and bε,δ, and where the differential operators are defined as

L0 ,
β2ρ21
2

∂2

∂y2
− y

∂

∂y

Lδ
1 , βρ1

(
1

σ
Σ

(0),δ
11

∂2

∂y2
+ bδ(t)

∂2

∂y∂z
− θ + y + z

σ

∂

∂y
D1

)

Lδ
2 ,

∂

∂t
− δz

∂

∂z
+

1

2

(
bδ(t)

)2 ∂2

∂z2
+

(
ρ1β

σ

(
Σ

(1),δ
12 (t) + Σ

(1),δ
11

)
+

1

2σ2
(Σ

(0),δ
11 )2

)
∂2

∂y2

+
(θ + y + z)2

2σ2
D2 −

(θ + y + z)

σ

(
bδ(t)

∂

∂z
+

1

σ
Σ

(0),δ
11

∂

∂y

)
D1

Lδ
3 ,

(
ρ1β

σ

(
Σ

(2),δ
12 (t) + Σ

(2),δ
11

)
+

1

σ2
Σ

(0),δ
11

(
Σ

(1),δ
12 (t) + Σ

(1),δ
11

)) ∂2

∂y2

+

(
Σ

(1),δ
12 (t) + Σ

(1),δ
11

)
bδ(t) + σβρ1b

(2),δ(t)

σ

∂2

∂y∂z
−

(θ + y + z)
(
Σ

(1),δ
12 (t) + Σ

(1),δ
11

)

σ2

∂

∂y
D1,

with bδ(t) , 1
σ

(
Σ

(0),δ
22 (t) +

√
δσηρ2

)
, Σ

(0),δ
11 =

β2(1−ρ2
1)

2 (as given by Proposition 2.1), Σ
(1),δ
12 (t)

and Σ
(1),δ
11 given by Proposition 2.2, and where b(2),δ = 1

σ

(
Σ

(2),δ
21 (t) + Σ

(2),δ
22 (t) +

√
δσηρ2

)
with

Σ
(2),δ
12 (t), Σ

(2),δ
11 and Σ

(2),δ
22 being the order-ε terms that would come next in (2.7).
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We construct a formal expansion of the solution to equation (3.10) as

V̂ ε,δ = V̂ (0),δ +
√
εV̂ (1),δ + εV̂ (2),δ + ε3/2V̂ (3),δ + . . . (4.2)

for ε small. A useful notation for finding the terms in equation (4.2) is the bracket for L0’s invariant
average:

〈f〉 ,
∫

f(y)µ(y)dy,

for any square-integrable function f(y), where µ(y) is the normal density function with mean zero
and variance 1

2ρ
2
1β

2.

4.1. The Order-Zero Term. Following the procedure of [FPSS11], we place the formal
expansion (4.2) into equation (4.1) and collect terms of order ε−1 to find L0V̂

(0),δ = 0 , which
indicates V̂ (0),δ is in the null space of L0 and therefore is constant in y. Then collecting terms of
order ε−1/2 we obtain L0V̂

(1),δ = 0 , and hence V̂ (1),δ is also constant in y. Then comparing terms
of order ε0 we arrive at the equation

L0V̂
(2),δ + Lδ

2V̂
(0),δ = 0 . (4.3)

From the Fredholm alternative, we find that the solvability condition for V̂ (2),δ in (4.3) is
〈
Lδ
2V̂

(0),δ
〉
= Lδ

2V̂
(0),δ = 0 , (4.4)

where

Lδ

2 ,
∂

∂t
+

1

2

(
bδ(t)

)2 ∂2

∂z2
− δz

∂

∂z
− (θ + z)bδ(t)

σ

∂

∂z
D1 +

(〈
y2
〉
+ (θ + z)

2
)

2σ2
D2 (4.5)

using
〈
y2
〉
=
∫
y2µ(y)dy = 1

2ρ
2
1β

2 and 〈y〉 = 0 (and the y derivatives are left out because V̂ (0),δ

does not depend on y). The solvability condition then leads to the order-zero term in expansion
(4.2) satisfying a Cauchy problem:

Lδ

2V̂
(0),δ = 0 , V̂ (0),δ(T, p, z) = Û(p) . (4.6)

Equation (4.6) has strongly elliptic operator iff
〈
y2
〉
6= 0, which is the case when ρ1 6= 0.

4.2. The Order-
√
ε Correction Term. Collecting terms of order

√
ε in equation (4.1) and

using the fact that V
(0),δ
y = V

(0),δ
yy = 0, we arrive at the equation

L0V̂
(3),δ + Lδ

1V̂
(2),δ + Lδ

2V̂
(1),δ = −Lδ

3V̂
(0),δ = 0 ,

for which the solvability condition for V̂ (3),δ is
〈
Lδ
1V̂

(2),δ + Lδ
2V̂

(1),δ
〉
= 0 .

Since V̂ (1),δ does not depend on y we have
〈
Lδ
2V̂

(1),δ
〉
= Lδ

2V̂
(1),δ, and the solvability condition

leads to

Lδ

2V̂
(1),δ = −

〈
Lδ
1V̂

(2),δ
〉
=
〈
Lδ
1L−1

0

(
Lδ
2 − Lδ

2

)
V̂ (0),δ

〉
,

10



where we have used equations (4.3) and (4.4) to replace V̂ (2),δ inside the brackets. In this case, we
have

(
Lδ
2 − Lδ

2

)
V̂ (0),δ =

(
y2 −

〈
y2
〉
+ 2y(θ + z)

2σ2
D2 −

ybδ(t)

σ

∂

∂z
D1

)
V̂ (0),δ ,

and we solve the following Poisson equations to obtain L−1
0

(
Lδ
2 −

〈
Lδ
2

〉)
V̂ (0),δ:

L0φ
(1)(y, z) =

y2 −
〈
y2
〉
+ 2y(θ + z)

2σ2
(4.7)

L0φ
(2)(t, y) = −ybδ(t)

σ
, (4.8)

which gives us

L−1
0

(
Lδ
2 −

〈
Lδ
2

〉)
V̂ (0),δ =

(
φ(1)(y, z)D2 + φ(2)(t, y)

∂

∂z
D1

)
V̂ (0),δ .

Hence, we have

Lδ

2V̂
(1),δ =

〈
Lδ
1

(
φ(1)(·, z)D2 + φ(2)(t, ·) ∂

∂z
D1

)〉
V̂ (0),δ

=
βρ1
σ

Σ
(0),δ
11

(〈
φ(1)
yy (·, z)

〉
D2 +

〈
φ(2)
yy (t, ·)

〉 ∂2

∂z2
D1

)
V̂ (0),δ

+ βρ1b
δ(t)

(〈
φ(1)
y (·, z)

〉 ∂

∂z
D2 +

〈
φ(1)
yz (·, z)

〉
D2 +

〈
φ(2)
y (t, ·)

〉 ∂2

∂z2
D1

)
V̂ (0),δ

− βρ1
σ

(
(θ + z)

〈
φ(1)
y (·, z)

〉
+
〈
yφ(1)

y (·, z)
〉)

D1D2V̂
(0),δ

− βρ1
σ

(
(θ + z)

〈
φ(2)
y (t, ·)

〉
+
〈
yφ(2)

y (t, ·)
〉) ∂

∂z
D2

1V̂
(0),δ . (4.9)

Now notice that the solutions to equation (4.8) are given by φ(2)(t, y) = y
σ b

δ(t)+C(t, p, z), for some
C that does not depend on y. Therefore,

〈
φ(2)
y (t, ·)

〉
=

1

σ
bδ(t) ,

〈
φ(2)
yy (t, ·)

〉
= 0 ,

〈
yφ(2)

y (t, ·)
〉
= 0 .

Next, notice that
β2ρ2

1

2 µy(y) + yµ(y) = 0, so that equation (4.7) can be re-written as

β2ρ21
2

(
φ(1)
y (y, z)µ(y)

)
y
=

y2 −
〈
y2
〉
+ 2y(θ + z)

2σ2
µ(y) .
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Hence, φ
(1)
y (y, z) = 2

β2ρ2
1µ(y)

∫ y

−∞
u2−〈y2〉+2u(θ+z)

2σ2 µ(u)du. Then, similar to the calculations in [FPS14]

and also the calculations on page 130 of [FPSS11], for φ(1) we find

〈
φ(1)
y (·, z)

〉
=

2

β2ρ21

∫ ∞

−∞

(∫ y

−∞

u2 −
〈
y2
〉
+ 2u(θ + z)

2σ2
µ(u)du

)
dy = −θ + z

σ2

〈
yφ(1)

y (·, z)
〉
=

2

β2ρ21

∫ ∞

−∞
y

(∫ y

−∞

u2 −
〈
y2
〉
+ 2u(θ + z)

2σ2
µ(u)du

)
dy = −β2ρ21

4σ2
,

which also implies that
〈
φ
(1)
yz (·, z)

〉
= 1

2σ2 . We also deduce
〈
φ
(1)
yy (·, z)

〉
= 2

β2ρ2
1

〈
yφ

(1)
y (·, z)

〉
= − 1

2σ2 .

Inserting these calculations into equation (4.9) yields the following equation for order-
√
ε correction

V̂ (1),δ:

Lδ

2V̂
(1),δ = −βρ1

2σ3
Σ

(0),δ
11 D2V̂

(0),δ

+ βρ1b
δ(t)

(
− θ + z

σ2

∂

∂z
D2 +

1

σ2
D2 +

bδ(t)

σ

∂2

∂z2
D1

)
V̂ (0),δ

+
βρ1
σ

(
(θ + z)2

σ2
+

β2ρ21
4σ2

)
D1D2V̂

(0),δ − βρ1
σ

(θ + z)bδ(t)

σ

∂

∂z
D2

1V̂
(0),δ (4.10)

V̂ (1),δ(T, x, z) = 0 .

Solving equation (4.10) is not a simple computation, but will simplify considerably in Section 5.3
when we consider small-δ behavior.

5. Small-δ Asymptotics Using Expert Opinions. Let’s now consider expert opinions so

that Ẑ0 = Z0 with initial covariance Σ
(0),δ
22 (0) = 0, and for time t > 0 having covariance Σ

(0),δ
22 (t)

with small-δ expansion given by equation (2.8). Sections 5.1 and 5.2 will expand V̂ (0),δ from Section
4.1 as

V̂ (0),δ = V̂ (0) +
√
δV̂ (0,1) + δV̂ (0,2) + . . . , (5.1)

and will compute the order-zero and order-
√
δ terms, respectively. Then, Section 5.3 will compute

the order-
√
ε correction term that is the limit of V̂ (1),δ that solves (4.10).

We start with the following definition:
Definition 5.1. The risk tolerance function based on the order-zero value function is defined

as

R(0)(t, x, z) , −V
(0)
x (t, x, z)

V
(0)
xx (t, x, z)

. (5.2)

In general, the value function V (0)(t, x, z) inherits the properties of the utility U(x), specifically

it is increasing and strictly concave in the wealth level x. The quantity −U ′′

U ′
is classically known

as the Arrow-Pratt measure of absolute risk aversion (see for instance [HL88, Chapter1]). The risk
tolerance given in Definition 5.1 is simply the reciprocal of this measure using the value function
(or indirect utility) V (0).
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5.1. The Order-Zero Term. The order-zero term in equation (5.1) is the small-δ limit of
the solution to equation (4.6). To obtain this limit, we start by considering the limiting behavior
of the differential operator defined in equation (4.5), which is

L(0)

2 ,
∂

∂t
+

1

2
λ̄2(z)D2

where λ̄(z) ,

√
β2ρ2

1

2σ2 + (θ+z)2

σ2 . This limit is easily deduced by recognizing that bδ(t) goes to zero

as δ → 0, and so L(0)

2 is simply the remaining terms. Indeed, if we plug the expansion of (5.1) into
equation (4.6) for V̂ (0),δ, then collecting terms of order δ0 we find that the order-zero term in (5.1)
solves the Cauchy problem

L(0)

2 V̂ (0) = 0 , V̂ (0)(T, p, z) = Û(p) . (5.3)

Furthermore, we can transform the PDE for the dual solution back to PDE in the primal domain.
Let us define the inverse dual

V (0)(t, x, z) , inf
p≥0

(
V̂ (0)(t, p, z) + xp

)
.

Applying the dual transforms of (3.9) we can convert the dual differential equation in (5.3) into its
primal version,

D2V̂
(0) = p2V̂ (0)

pp = −V
(0)
x

V
(0)
xx

V (0)
x

∣∣∣∣∣
x=x∗

= R(0)V (0)
x

∣∣∣
x=x∗

= −
(
R(0)

)2
V (0)
xx

∣∣∣
x=x∗

,

where x∗ = x∗(p) is the unique critical point such that

V̂ (0)(t, p, z) = sup
x≥0

(
V (0)(t, x, z)− xp

)
= V (0)(t, x∗, z)− x∗p. (5.4)

Hence the order-zero term in the ε and δ expansion of the primal value function is the solution to
(

∂

∂t
− 1

2
λ̄2(z)

(
R(0)

)2 ∂2

∂x2

)
V (0) = 0 , V (0)(T, x, z) = U(x) . (5.5)

5.2. The Order-
√
δ Correction Term. To obtain equation (5.3) we collected terms of order

δ0. After inserting the expansion of (5.1) into equation (4.6) and applying the small-δ expansion
of equation (2.8), we collect the terms of order

√
δ to obtain the following PDE problem for the

order-
√
δ correction:

L(0)

2 V̂ (0,1) = ρ2η
θ + z

σ

∂

∂z
D1V̂

(0) , V̂ (0,1)(T, p, z) = 0 . (5.6)

Due to the commutativity of the Dk operators, there is an explicit solution to (5.6):
Proposition 5.2. Equation (5.6) has the explicit solution

V̂ (0,1)(t, p, z) = −(T − t)2ρ2η
(θ + z)2

2σ3
D2D1V̂

(0)(t, p, z) = −(T − t)ρ2η
θ + z

2σ

∂

∂z
D1V̂

(0)(t, p, z) .

(5.7)
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Proof. This follows from calculations similar to those in the proof of [FSZ13, Proposition 3.2]).

Furthermore, we can use the duality relations of (3.9) to transform the explicit expression in
(5.7) back into the order-

√
δ correction in the formal expansion proposed in equation (3.8),

Proposition 5.3. In the primal formulation, the order-
√
δ correction in the singular-regular

expansion of V ε,δ in equation (3.8) is given explicitly as

V (0,1)(t, x, z) = (T − t)ρ2η
θ + z

2σ
R(0)(t, x, z)

∂2

∂z∂x
V (0)(t, x, z) . (5.8)

Proof. Applying the the duality relations of (3.9) to the convex, zero-order value function V (0),
to see that

∂

∂z
D1V̂

(0) = pV̂ (0)
pz =

V
(0)
x

V
(0)
xx

V (0)
xz

∣∣∣∣∣
x=x∗

= −R(0)V (0)
xz

∣∣∣
x=x∗

,

where x∗ = x∗(p) is the unique critical point defined in (5.4). We use this to transform (5.7) back
into the primal domain, and we obtain the result.

5.3. Limit of the Order-
√
ε Correction Term. As δ tends toward zero, the solution to

equation (4.10) can be expanded in powers of
√
δ,

V̂ (1),δ = V̂ (1,0) +
√
δV̂ (1,1) + δV̂ (1,2) + . . . . (5.9)

The order-zero term in this expansion is the order-
√
ε expansion to V̂ ε,δ for small ε and δ. Indeed,

plugging the expansion of (5.9) into equation (4.10) and collecting terms of order δ0, we find that
V̂ (1,0) satisfies the following PDE:

L(0)

2 V̂ (1,0) = −
(
βρ1
2σ3

Σ
(0),δ
11 D2 −

βρ1
σ

(
(θ + z)2

σ2
+

β2ρ21
4σ2

)
D1D2

)
V̂ (0) , V̂ (1,0)

∣∣∣
t=T

= 0 .

(5.10)

Then from the commutativity of the Dk operators it is easy to obtain an explicit solution:
Proposition 5.4. The explicit solution to (5.10) is given by

V̂ (1,0)(t, p, z) = (T − t)

(
β3ρ1(1 − ρ21)

4σ3
D2 −

βρ1
σ

(
(θ + z)2

σ2
+

β2ρ21
4σ2

)
D1D2

)
V̂ (0)(t, p, z) . (5.11)

Proof. The operators Dk and Dk′ commute for different k 6= k′, hence it’s straightforward to
check that (5.11) is the solution.

Applying the dual transforms in (3.9), along with an identity for V̂
(0)
ppp, the dual solution in

(5.11) is transformed back to obtaib the order-
√
ε term of the formal expansion proposed in (3.8):

Proposition 5.5. In the primal formulation, the order-
√
ε correction in the singular-regular

expansion of V ε,δ in equation (3.8) is given explicitly as

V (1,0)(t, x, z) = (T − t)

(
β3ρ1(1− ρ21)

4σ3
R(0) ∂

∂x
+

βρ1
σ

(
(θ + z)2

σ2
+

β2ρ21
4σ2

)(
R(0) ∂

∂x

)2
)
V (0)(t, x, z) .

(5.12)

14



Proof. Applying the dual transforms in (3.9), along with the identity that V̂
(0)
ppp =

V (0)
xxx(

V
(0)
xx

)3

∣∣∣
x=x∗

we find that

D1D2V̂
(0) = 2p2V̂ (0)

pp + p3V̂ (0)
ppp =

(
− 2

(
V

(0)
x

)2

V
(0)
xx

+
V

(0)
xxx

(
V

(0)
x

)3

(
V

(0)
xx

)3

∣∣∣∣∣
x=x∗

= −
(
R(0) ∂

∂x

)2

V (0)
∣∣∣
x=x∗

,

where x∗ = x∗(p) is the unique critical point in (5.4). This shows how the dual solution in (5.11)
is transformed back into the primal domain to obtain the result.

Remark 1. The expansions of V ε,δ solving the nonlinear HJB equation for small ε and small
δ with expert opinions, as proposed in equation (3.8), is

V ε,δ = V (0) +
√
εV (1,0) +

√
δV (0,1) + o(

√
ε) + o(

√
δ)

where V (0), V (1,0) and V (0,1) are given by (5.5), (5.8), and (5.12), respectively. Some remarks on
the accuracy of this final expansion of solutions to the nonlinear HJB equation are given in Appendix
B.2.

6. Numerical Studies. Our numerical studies aim for understanding of the small-δ partial-
information effects in the small-ε limit. We consider the parameterization θ = 0, σ = .15, δ = .05,
β = .2, ρ1 = −.3, η = .3, and ρ2 = −.7. We don’t specify a parameter ε, but simply assume that it
is small. We consider the mixture of power utility function

U(x) =
c1

1− γ1
x1−γ1 +

c2
1− γ2

x1−γ2

with c1 = c2 = .5 and γ2 = .45, γ1 = .9.

6.1. Partial Information Expansion Using Black’s Equation. As shown in [FSZ13], it
turns out that the solution V (0) to equation (5.5) can be obtained using the so-called Black’s PDE
for R(0), where R(0) is the risk-tolerance function defined in equation (5.2). The PDE for R(0) is

R
(0)
t +

1

2
λ̄2(z)

(
R(0)

)2
R(0)

xx = 0 for t < T , (6.1)

R(0)(T, x) = − Ux(x)

Uxx(x)
,

from which it can be determined that V
(0)
x is given by the following formula:

V (0)
x (t, x, z) = V (0)

x (t, xmax, z) exp

(∫ xmax

x

1

R(0)(t, ξ, z)
dξ

)
, (6.2)

where xmax ≫ 0 is some high value of the wealth process (e.g. xmax is the upper boundary on a

numerical domain). The recipe for V (0) is to solve for R(0), integrate to get V
(0)
x , and then integrate

over x to get V (0),

V (0)(t, x, z) = V (0)(t, xmax, z)−
∫ xmax

x

V (0)
x (t, ξ, z) dξ.
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For mixed power utility, the large-x asymptotics are given in [FSZ13]. When solving numerically for
the mixed power utility, we use the solution R(0)’s asymptotic behavior of limxց0 R

(0)(t, x, z) = 0

and limxր∞ R
(0)
x (t, x, z) = 1

γ2
as numerical boundary conditions. Given V (0), we then compute

V (0,1)(t, , x, z) based on formula in equation (5.8). Figure 6.1 (left plot) shows the value-function
approximation V (0) +

√
δV (0,1).
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Fig. 6.1. The value-function expansion V (0) +
√

δV (0,1) (left) and V (0),δ,full (right) with the parameters
given at the beginning of Section 6. The numerical scheme uses time step ∆t = .02, T = 1, ∆z = .003,
∆x = 0.0455, and evaluated at time t = 0.

6.2. The Full-Information Case. This section will provide a brief review of the method for
computing the full-information value function, and will highlight some qualitative differences/similarities
to partial information. The full-information problem is

V ε,δ,full(t, x, y, z) = sup
π

E

{
U(XT )

∣∣∣Xt = x, Yt = y, Zt = z
}

,

with optimal value function V ε,δ,full that solves the following full-information HJB equation

V ε,δ,full
t +

1

ε
L0V

ε,δ,full + δMV ε,δ,full + ρ12βη

√
δ

ε
V ε,δ,full
zy

−

(
θ+y+z

σ V ε,δ,full
x + βρ1√

ε
V ε,δ,full
xy + ηρ2

√
δV ε,δ,full

xz

)2

2V ε,δ,full
xx

= 0 , (6.3)

where L0 ,
β2

2
∂2

∂y2 − y ∂
∂y and M ,

η2

2
∂2

∂z2 − z ∂
∂z , with terminal condition V ε,δ,full(T, x, y) = U(x).

Due to strong ellipticity of the infinitesimal generator to the full-information SDEs, we expect there
to exist strong solutions to (6.3), particularly for small ε and δ when the solution will be very close
to the standard Merton value function. Furthermore, HARA and CARA utilities allow (6.3) to be
solved with an ansatz that yields explicit solutions, such as those given in [Bre06].

We write an expansion of the solution to (6.3),

V ε,δ,full = V (0),full +
√
δV (0,1),full +

√
εV (1,0),full + o(

√
ε) + o(

√
δ) ,
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where the terms V (0),full and V (0,1),full are computed using the asymptotic formulas from [FSZ13].
In particular, neither V (0),full or V (0,1),full depend on y:

V
(0),full
t +

1

2
λ̄2
f (z)

(
V

(0),full
x

)2

V
(0),full
xx

= 0 for t < T , (6.4)

where λ̄f(z) ,
√

β2

2σ2 + (θ+z)2

σ2 , with terminal condition V (0),full(T, x) = U(x), and

V (0,1),full = −(T − t)
ρ2η(θ + z)

2σ

V
(0),full
x

V
(0),full
xx

V (0),full
xz for t ≤ T . (6.5)

Similar to the partial-information case in Section 6.1, there is a full-information risk-tolerance

function R(0),full , −V
(0),full
x

/
V

(0),full
xx , which is a solution to Black’s PDE given in (6.1) but with the

full-information coefficient λ̄f(z). Figure 6.1 (right plot) shows the full-information value-function
approximation V (0),δ,full ≈ V (0),full +

√
δV (0,1),full, computed based on the full-information version

of Black’s equation.

6.3. Comparisons with Full Information. In [Bre06], [FPS14] and [Pap13], comparison
between partial-information and full-information value functions has shown there to be an infor-
mation premium. In particular, investors experience a lowering of their value function when the
market is not fully observable. In this section we compare and contrast the order-zero and order-

√
δ

terms, for both partial and full information, and explain how these terms capture the additional
risk associated with stochastic excess returns and partial information.

The information premium in the order-zero term is highlighted in [FPS14], where the partial
information Sharpe ratio was significantly lower than that of full information, with ρ1 being the
parameter with the biggest impact. Namely, the partial-information Sharpe ratio λ̄(z) defined in
Section 5.1 and for full-information λ̄f (z) defined in Section 6.2 have the relationship

λ̄(z) < λ̄f (z) iff |ρ1| < 1 .

We have taken ρ1 = −.3 in the numerical examples of this paper, and we can visually tell that there
is decreased Sharpe ratio in partial information plots of Figure 6.2. The full-information order-zero
term V (0),full is noticeably higher than V (0) for partial information. Overall, this decreased Sharpe
ratio can be thought of as an information premium due to partial information because having
ρ1 = ±1 is equivalent having fully-observable Yt, in which case we have λ̄(z) = λ̄f (z).

The effects of the order-
√
δ corrections are more qualitative. In Figure 6.2 we can see that

the order-
√
δ correction has a lowering effect on the value function, which is due in large part to

the parameterization of ρ2 < 0. For the full-information value function, it should be clear that
the order-

√
δ term is correcting for the additional risk due to stochasticity in excess returns, yet

it is interesting to see that the corrected full-information value function is still higher than the
order-zero term for partial-information, that is V (0),full +

√
δV (0,1),full > V (0).

For the partial information value function, it is difficult to differentiate an information premium
from a premium on risk from stochasticity in excess returns. From the top-row plots in Figure 6.2
we see that V (0) +

√
δV (0,1) < V (0), but this correction is due to stochasticity in Ẑt, whereas the

full-information correction was a correction due to stochasticity in Zt. Indeed, we can see a further
comparison of the full and partial correction in Figure 6.3, where the expansions are compared for
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Fig. 6.2. Top Left: The partial-information approximation V (0) +
√

δV (0,1). Top Right: The order-
zero term V (0), which corresponds to the order-zero term under partial information with expert opinions.

Bottom Left: The full-information approximation V (0),full +
√

δV (0,1),full. Bottom Right: The full-

information base term V (0),full, which is highest because it corresponds to the case of no loss due to
stochastic drift.

various levels of z. An important thing to notice from the plotted lines is that the correction to
the partial-information value function is less than the correction for full-information, which can be
attributed to the fact that the process Ẑt has much less volatility than the observed Zt.

6.4. Noise in Expert Opinions. In this section we consider an HJB equation that corre-
sponds to the setting where the expert opinion is a noisy unbiased estimate of Z0 with standard

deviation that is of order-
√
δ, that is

√
Σ

(0),δ
22 (0) ∼

√
δ and Ẑ0 ∼ N

(
Z0,Σ

(0),δ
22 (0)

)
. We will compute

a numerical solution to the PDE for V̂ (0),δ with a scheme taking full consideration of δ > 0 effects,
and then compare with the small-δ expansions of Section 5 where the expert opinion was noiseless.
From looking at numerical solutions we will see that expert opinions don’t make a difference unless
they have noise that is smaller than order

√
δ.

To make the computations simpler we consider a case where the PDE coefficients are constant

in time. Suppose that Ẑ(0) will be in its invariant state. That is, suppose that Σ
(0),δ
22 (0) = Σ

δ
where
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√
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Fig. 6.3. For various levels in z, comparisons among the order-zero and order-
√

δ terms of the value
function expansions, for both full and partial information. The correction for partial information is from the

additional risk due to stochasticity in Ẑt, whereas the correction for full information is from the additional
risk due to stochasticity in Zt.

Σ
δ
is the root to the right-hand side of the Riccati equation in (2.6). Specifically, the root is

Σ
δ
, −

(
δσ2 + ηρ2

√
δσ
)
+

√(
δσ2 + ηρ2

√
δσ
)2

+ δη2σ2(1− ρ22) ,

and we have the constant coefficient bδ(t) = b̄δ , Σ
δ
+
√
δσηρ2 =

√
δσηρ2 + o(

√
δ) for all t ∈ [0, T ].

Also to make the computations easier, we make the change of variables p̃ = log p. Then the PDE
for V (0),δ is equation (4.6) with a logarithmic change-of-variable and homogeneous coefficients:

(
∂

∂t
+

(
b̄δ
)2

2

∂2

∂z2
+

(
1
2ρ

2
1β

2 + z2
)

2σ2

∂2

∂p̃2
− zb̄δ

σ

∂2

∂z∂p̃
− δz

∂

∂z
−
(
1
2ρ

2
1β

2 + z2
)

2σ2

∂

∂p̃

)
V̂ (0),δ = 0 , (6.6)

with terminal conditions V̂ (0),δ
∣∣∣
t=T

= Û , and where the term
〈
y2
〉
from (4.6) has been written

explicitly as 1
2ρ

2
1β

2. Finally, by taking γ2 = 1
2γ1, we have an easy computation for the utility

function’s Legendre transform,

Û(p) =
c1

1− γ1
(x∗(p))1−γ1 +

c2
1− γ2

(x∗(p))1−γ2 − px∗(p) ,
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where x∗(p) =

(√
c22+4c1p−c2

2c1

)−1/γ2

is the root such that U ′(x)
∣∣∣
x=x∗(p)

= p.

0

10

20

30

40

−0.2

−0.1

0

0.1

0.2
0

5

10

15

20

25

x

Partial Information V (0 ) ,δ= infp(V̂
(0 ) ,δ+xp)

z
0

10

20

30

40

−0.2

−0.1

0

0.1

0.2
0

5

10

15

20

25

x

Partial Information V (0 ) +
√

δV (0 ,1 )

z

Fig. 6.4. Left: The numerically-inverted V (0),δ = infp
(
V̂ (0),δ + xp

)
where V̂ (0),δ solves equation

(6.6), where it is assumed that there is order-
√

δ noise in the experts’ opinion. Right: The partial-

information approximation V (0)+
√

δV (0,1) approximating solutions to equation (3.7), with the assumption
of zero noise in the experts’ opinion.

After computing a numerical solution to (6.6), we numerically invert the Legendre transform
to obtain a numerical solution to the nonlinear HJB at gridpoints (xi, zj) with indices i and j,

V i,j
t = min

ℓ

(
V̂ ℓ,j
t + xie

p̃ℓ

)

where V̂ ℓ,j
t is a numerical solution of (6.6) at gridpoints (p̃ℓ, zj) with indices ℓ and j. Figure 6.4

shows a side-by-side comparison of V (0),δ with the expansion from Figure 6.1 that was computed
assuming zero noise in the experts’ opinion. Notice how the the solution with no expert noise is
higher; this is evidence illustrating that noise in the expert opinions needs to be of order smaller
than order

√
δ, otherwise the value to the investor is the same as if he/she used filtering without

expert help.

7. Summary. This paper has shown how fast and slow time scales are useful in analyzing
an investment problem with partial information and expert opinions. The methodology is novel
because linearity of the PDE associated with convex dual allows for straightforward computation
of singular-regular expansions. The main results are simple formulas for a base-term , an order-√
ε, and an order-

√
δ term in the expansion of the optimal value function. Using the Hörmander

theorem we were able to show smoothness of solutions to the dual PDE, from which we can verify
that the inverse of the dual is optimal and the solution to the nonlinear HJB equation.

The second half of the paper provided numerical simulations focusing on the small-δ asymp-
totics. These numerics showed a premium due to partial information, and also demonstrated the
importance of having expert opinions with sufficiently low noise. In particular, expert opinions need
to be sufficiently confident so as to reduce the initial variance on expected returns to a level that
is significantly lower than the perturbations that will occur over the investment period. If expert
opinions are too noisy, then investors do not benefit from the extra information.
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Future directions in which to continue the work from this paper include further analysis of the
practical strategy, and extension to more specific examples with consumption, multiple assets, and
nonlinearity in the filtering equations.

Appendix A. Proofs for Filter Asymptotics.

Proof. [Proposition 2.1] We have E(Yt − Ŷt)
2 = EY 2

t − EŶ 2
t , and

EY 2
t = E

(
e−t/εY0 +

β√
ε

∫ t

0

e−(t−u)/εdB1
u

)2

→ β2

2

EŶ 2
t = E

(
e−t/εŶ0 +

1

σ2

∫ t

0

e−(t−u)/ε

(
Σε,δ

11 (u) + Σε,δ
21 (u) +

ρ1σβ√
ε

)
dνu

)2

→ ρ21β
2

2

as ε → 0, so that Σ
(0)
11 (t) =

β2(1−ρ2
1)

2 for all t > 0.

For the cross term E(Yt − Ŷt)(Zt − Ẑt) = EYtZt − EŶtẐt, we have

EYtZt = E

(
e−t(ε−1+δ)Y0Z0 +

β√
ε

∫ t

0

e−(t−u)(ε−1+δ)ZudB
1
u

+η
√
δ

∫ t

0

e−(t−u)(ε−1+δ)YudB
2
u +

√
δ

ε
βηρ12

∫ t

0

e−(t−u)(ε−1+δ)du

)

→ 0 as ε → 0 ,

and

EŶtẐt = E

{
e−t(ε−1+δ)Ŷ0Ẑ0 +

1

σ2

∫ t

0

e−(t−u)(ε−1+δ)

(
Σε,δ

11 (u) + Σε,δ
21 (u) +

ρ1σβ√
ε

)
Ẑudνu

+e−t(ε−1+δ)Ŷ0Ẑ0 +
1

σ2

∫ t

0

e−(t−u)(ε−1+δ)
(
Σε,δ

21 (u) + Σε,δ
22 (u) + ρ2ση

√
δ
)
Ŷudνu

+
1

σ2

∫ t

0

e−(t−u)(ε−1+δ)
(
Σε,δ

21 (u) + Σε,δ
22 (u) + ρ2ση

√
δ
)

×
(
Σε,δ

11 (u) + Σε,δ
21 (u) +

ρ1σβ√
ε

)
du

}
→ 0

as ε → 0, and hence, Σ
(0)
12 (t) = Σ

(0)
21 (t) = 0 for all t > 0. Finally, for the slow state, we have

Σε,δ
22 (t) = E(Zt − Ẑt)

2 = EZ2
t − EẐ2

t with

EZ2
t = E

(
e−δtZ0 +

√
δη

∫ t

0

e−δ(t−u)dB2
u

)2

= e−2δt
EZ2

0 + δη2
∫ t

0

e−2δ(t−u)du

EẐ2
t = E

(
e−δtẐ0 +

1

σ2

∫ t

0

e−δ(t−u)
(
Σε,δ

21 (u) + Σε,δ
22 (u) + ρ2ση

√
δ
)
dνu

)2

= e−2δtẐ2
0 +

1

σ2

∫ t

0

e−2δ(t−u)
(
Σε,δ

21 (u) + Σε,δ
22 (u) + ρ2ση

√
δ
)2

du

+
1

σ2

∫ t

0

e−2δ(t−u)
(
2Σε,δ

21 (t)
(
Σε,δ

22 (u) + ρ2ση
√
δ
)
+ (Σε,δ

21 (t))
2
)
du .
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Combing these two 2nd moments, we arrive at

Σε,δ
22 (t)− e−2δtΣε,δ

22 (0)−
1

σ2

∫ t

0

e−2δ(t−u)

(
δσ2η2 −

(
Σε,δ

22 (u) + ρ2ση
√
δ
)2)

du

= − 1

σ2

∫ t

0

e−2δ(t−u)
(
2Σε,δ

21 (t)
(
Σε,δ

22 (u) + ρ2ση
√
δ
)
+ (Σε,δ

21 (t))
2
)
du ,

for which the right-hand side goes to zero as ε → 0. Hence, limε Σ
ε,δ
22 (t) = Σ

(0),δ
22 (t) such that

Σ
(0),δ
22 (t)− e−2δtΣ

(0),δ
22 (0)− 1

σ2

∫ t

0

e−2δ(t−u)

(
δσ2η2 −

(
Σ

(0),δ
22 (u) + ρ2ση

√
δ
)2)

du = 0 ,

which is the same as the Riccati equation in equation (2.6). This complete the proof of the propo-
sition.

Proof. [Proposition 2.2] We write

Σε,δ(t) = Σ(0),δ(t) +
√
εΣ̃(0),δ(t) + . . . ,

where the
√
ε correction terms is computed by looking at the limit of 1√

ε

(
Σε,δ(t)− Σ(0),δ(t)

)
as

ε → 0. Computation of this limit is done using the forms for the variance/covariances that were
used in the proof of Proposition 2.1. In particular, all of the terms are zero, except for the following:

1√
ε

(
EŶ 2

t − ρ21β
2

2

)
→ ρ1β

σ
Σ

(0),δ
11 as ε → 0 ,

1√
ε
EŶtẐt →

ρ1β

σ

(
Σ

(0),δ
22 (t) + ρ2η

√
δ
)

as ε → 0 .

This verifies the correction matrix given by the statement of the proposition is in fact the order-
√
ε

correction in the expansion of Σε,δ.

Appendix B. Properties of PDE Solutions.

B.1. Existence of Classical Solutions to the Dual PDE. We consider log variables,
p̃ , log p and write equation (3.10) as the following degenerate linear PDE:

1

2
A2

1V̂
ε,δ −A0V̂

ε,δ = 0 (B.1)

with terminal condition V̂ ε,δ
∣∣∣
t=T

= Û , and where

A0 , − ∂

∂t
+

y

ε

∂

∂y
+ δz

∂

∂z
+

(
(θ + y + z)2

2σ2
− aε,δ(t)− bε,δ(t)

)
∂

∂p̃
,

A1 ,

(
aε,δ(t)

∂

∂y
+ bε,δ(t)

∂

∂z
− (θ + y + z)

σ

∂

∂p̃

)
.

The vector fields A0 and A1 are both smooth and bounded at all (t, p̃, y, z) in compact subsets of
R

4. Hence, we can verify that V̂ has a smooth solution if we check the Hörmander condition (see
[CM02, Hör67]).
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B.1.1. The Non-Stationary Case. Consider the expansion from Proposition 2.2 and sup-

pose that Σ
(0),δ
22 (0) is not the positive root to the right-hand side of equation (2.6), then the fil-

ter is in a non-stationary state because d
dtΣ

ε,δ
22 (t) 6= 0 for all t ∈ [0, T ]. Moreover, d

dta
ε,δ(t) =

√
ερ1β

σ2
d
dtΣ

(0),δ
22 (t) + o(

√
ε) 6= 0 for all δ > 0.

Letting [·, ·] denote Lie brackets, we have

[A0, A1] = 0
∂

∂t
+

(
1

ε
+

d

dt

)
aε,δ(t)

∂

∂y
+

(
δ +

d

dt

)
bε,δ(t)

∂

∂z

+

(
y

εσ
+

δz

σ
+

θ + y + z

σ2

(
aε,δ(t) + bε,δ(t)

)) ∂

∂p̃
,

[A0, [A0, A1]] = 0
∂

∂t
+

(
1

ε
+

d

dt

)2

aε,δ(t)
∂

∂y
+

(
δ +

d

dt

)2

bε,δ(t)
∂

∂z

−
{

y

ε2σ
+

δ2z

σ
+

(
ybε,δ(t)− aε,δ(t)(θ + z)

εσ2
+

δzaε,δ(t)− bε,δ(t)(θ + y)

σ2

)

− 2
θ + y + z

σ2

d

dt

(
aε,δ(t) + bε,δ(t)

)
}

∂

∂p̃
,

[A1, [A0, [A0, A1]]] = −
{(

2

εσ

d

dt
+

1

σ

d2

dt2

)
aε,δ(t) +

(
2δ

σ

d

dt
+

1

σ

d2

dt2

)
bε,δ(t)

+
2

σ2

(
aε,δ(t) + bε,δ(t)

) d

dt

(
aε,δ(t) + bε,δ(t)

)
}

∂

∂p̃

Condition B.1. The Hörmander condition is satisfied if

span {A0, [A0, A1], [A0, [A0, A1]] , [A1, [A0, [A0, A1]]]} = R
4

for all (t, y, z) ∈ [0, T ]× R× R, for which the following two conditions are sufficient:
i). vectors [A0, A1] and [A0, [A0, A1]] have

∂
∂y and ∂

∂z terms that span R
2, which happens if

(
1
ε + d

dt

)2
aε,δ(t)(

1
ε + d

dt

)
aε,δ(t)

6=
(
δ + d

dt

)2
bε,δ(t)(

δ + d
dt

)
bε,δ(t)

,

ii). and the dimension in ∂
∂p̃ is spanned by [A1, [A0, [A0, A1]]], which is the case if

(
2

εσ

d

dt
+

1

σ

d2

dt2

)
aε,δ(t) +

(
2δ

σ

d

dt
+

1

σ

d2

dt2

)
bε,δ(t)

+
2

σ2

(
aε,δ(t) + bε,δ(t)

) d

dt

(
aε,δ(t) + bε,δ(t)

)

6= 0 .

For any t ∈ (0, T ], from the expansion in Proposition 2.2 we have aε,δ(t) ∼ ρ1β√
ε
, d

dta
ε,δ(t) ∼

√
ερ1β

σ2
d
dtΣ

(0),δ
22 (t) and d2

dt2 a
ε,δ(t) ∼ √

ερ1β
σ2

d2

dt2Σ
(0),δ
22 (t). Using the expansion, we see that Part (i) of
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the Condition B.1 is satisfied if

(
1
ε + d

dt

)2
aε,δ(t)(

1
ε + d

dt

)
aε,δ(t)

∼ 1

ε
≫
(
δ + d

dt

)2
bε,δ(t)(

δ + d
dt

)
bε,δ(t)

,

which is the case when ε ≪ 1 and ρ1 6= 0. Part (ii) of the Condition B.1 is checked by looking at
terms of order ε−1, and is satisfied for ε ≪ 1 ρ1 6= 0 if

d

dt
aε,δ(t) 6= 0 ∀t ∈ [0, T ],

which is the case if d
dtΣ

ε,δ
22 (t) 6= 0. This verifies the Hörmander condition, and we can conclude that

equation (B.1) has smooth classical solutions.

B.1.2. The Stationary Case. If Σε,δ(0) is such that it solves the matrix Riccati equation
on the right-hand side of (2.5), then d

dta
ε,δ(t) = 0 = d

dtb
ε,δ(t) for all time, and the coefficients are

constant with aε,δ(t) = āε,δ and bε,δ(t) = b̄ε,δ for all t ≥ 0 (Section 6.4 considers the ε limit of
this stationary case). Time homogeneity makes verification of the Hörmander condition slightly
different from Appendix B.1.

We define the vector fields

A0 ,
y

ε

∂

∂y
+ δz

∂

∂z
+

(
(θ + y + z)2

2σ2
− āε,δ − b̄ε,δ

)
∂

∂p̃
,

A1 ,

(
āε,δ

∂

∂y
+ b̄ε,δ

∂

∂z
− (θ + y + z)

σ

∂

∂p̃

)
,

so that the PDE is
(

∂
∂t +

1
2A

2
1 −A0

)
V̂ ε,δ = 0. Then the Lie brackets are

[A0, A1] =
āε,δ

ε

∂

∂y
+ δb̄ε,δ(t)

∂

∂z
+

(
y

εσ
+

δz

σ
+

θ + y + z

σ2

(
āε,δ + b̄ε,δ

)) ∂

∂p̃
,

[A1, [A0, A1]] =

(
−2

(
āε,δ

εσ
+

δb̄ε,δ

σ

)
− (āε,δ + b̄ε,δ)2

σ2

)
∂

∂p̃
,

from which we see that span {A1, [A0, A1], [A1, [A0, A1]]} = R
3 if 1

ε 6= δ and −2
(
āε,δ

ε + δb̄ε,δ
)
6=

1
σ

(
āε,δ + b̄ε,δ

)2
. This verifies the parabolic Hörmander condition.

B.2. Accuracy of HJB Expansion. This appendix will give an idea of how to use the
expansion of the dual solution to justify the formal expansion of the solution to the nonlinear HJB;
all that is required is regularity. Consider the

√
δ expansion of V̂ (0),δ given in equation (5.1), and

its inverse Fenchel-Legendre transform,

V (0),δ(t, x, z) = inf
p≥0

(
V̂ (0),δ(t, p, z) + xp

)
.

From first-order conditions we find that V̂
(0),δ
p (t, p∗(x), z) = −x at the critical point. Now using

the implicit function theorem we obtain the expansion

p∗(x) = p(0)(x) +
√
δp(1)(x) + δp(2)(x) + . . .
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where p(0)(x) is the critical point such that V (0)(t, x, z) = V̂ (0)(t, p(0)(x), z) + xp(0)(x), where V (0)

is the solution to equation (5.5). Now using the
√
δ expansions and regularity, we find

V (0),δ(t, x, z) = V̂ (0),δ(t, p∗(x), z) + xp∗(x)

= V̂ (0)(t, p∗(x), z) +
√
δV̂ (0,1)(t, p∗(x), z) + xp(0)(x) +

√
δxp(1)(x) + o(

√
δ)

= V̂ (0)(t, p(0)(x), z) +
√
δp(1)(x)V̂ (0)

p (t, p(0)(x), z) +
√
δV̂ (0,1)(t, p(0)(x), z)

+ xp(0)(x) +
√
δxp(1)(x) + o(

√
δ)

= V̂ (0)(t, p(0)(x), z) +
√
δV̂ (0,1)(t, p(0)(x), z) + xp(0)(x) + o(

√
δ)

= V (0)(t, x, z) +
√
δV̂ (0,1)(t, p(0)(x), z) + o(

√
δ)

= V (0)(t, x, z) +
√
δV (0,1)(t, x, z) + o(

√
δ) ,

where the last equality follows from equation (5.8) of Proposition 5.3. As mentioned in Remark 1,
the above calculation is the beginning of a proof to show o(

√
ε) + o(

√
δ) accuracy of the expansion

of V ε,δ using order
√
ε and

√
δ terms given by Propositions 5.5 and 5.3, respectively.
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