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Abstract

We study how continuous time Bertrand and Cournot competitions, in which firms pro-
ducing similar goods compete with one another by setting prices or quantities respectively,
can be analyzed as continuum dynamic mean field games. Interactions are of mean field
type in the sense that the demand faced by a producer is affected by the others through their
average price or quantity. Motivated by energy or consumer goods markets, we consider the
setting of a dynamic game with uncertain market demand, and under the constraint of fi-
nite supplies (or exhaustible resources). The continuum game is characterized by a coupled
system of partial differential equations: a backward HJB PDE for the value function, and a
forward Kolmogorov PDE for the density of players. Asymptotic approximation enables us to
deduce certain qualitative features of the game in the limit of small competition. The equilib-
rium of the game is further studied using numerical solutions, which become very tractable
by considering the tail distribution function instead of the density itself. This also allows
us to consider Dirac delta distributions to use the continuum game to mimic finite N-player
nonzero-sum differential games, the advantage being having to deal with two coupled PDEs
instead of N. We find that, in accordance with the two-player game, a large degree of compet-
itive interaction causes firms to slow down production. The continuum system can therefore
be used qualitative as an approximation to even small player dynamic games.

1 Introduction

Oligopoly models of markets with a small number of competitive players go back to the clas-
sical works of Cournot [7] and Bertrand [3] in the 1800s. These have typically been static (or
one-period) models, where the existence and construction of a Nash equilibrium have been ex-
tensively studied. We refer to Vives [21] for a survey. In the context of nonzero-sum dynamic
games between N players, each with their own resources, the computation of a solution is a chal-
lenging problem, typically involving coupled systems of N nonlinear partial differential equa-
tions (PDEs), with one value function per player. This is further complicated when the players’
resources are exhaustible and the market structure changes over time as players deplete their
capacities and drop out of competition. See, for instance, [10] in a Cournot framework, and [16]
in a Bertrand model.
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On the other hand, mean field games proposed by Lasry and Lions [15] and independently
by Huang et al. [12, 13] allow one to handle certain types of competition in the continuum limit
of an infinity of small players by solving a coupled system of two PDEs. The interaction here
is such that each player only sees and reacts to the statistical distribution of the states of other
players. Optimization against the distribution of other players leads to a backward (in time)
Hamilton-Jacobi-Bellman (HJB) equation; and in turn their actions determine the evolution of
the state distribution, encoded by a forward Kolmogorov equation. We refer to the survey article
[9] and the recent monograph [1] for further background.

Our goal here is to understand the relationship between oligopoly games in the traditional
Nash equilibrium sense and their appropriately-defined mean field counterpart, especially the
approximation of one by the other. We look at oligopoly models for markets with differenti-
ated but substitutable goods, and in continuous time with potentially random fluctuations in
demands. The firms have different production capacities representing their different sizes, and
the fraction of firms remaining decreases over time as smaller firms exhaust their capacities and
disappear from the market.

In Cournot competition where firms choose quantities of production, an example might be
oil, coal and natural gas in the energy market, while in a Bertrand model, where firms set prices,
an example might be competition between food producers where consumers have preference for
one type of food, but reduce their demand for it depending on the average price of substitutes.
We shall see that, in the continuum mean field versions of these games, where there is an infinite
number of firms, the Cournot and Bertrand models are equivalent, in the sense that they result
in the same equilibrium prices and quantities. However, for concreteness, we will focus our
exposition on Bertrand competition, and, throughout, we work with linear demand systems.

In dynamic oligopoly problems with a finite number of players, the HJB system of PDEs does
not admit an explicit solution, except possibly in the monopoly case, and one needs numerical
means for computing the value functions as well as the equilibrium strategies, which of course
quickly becomes infeasible as the number of players goes beyond three. Moreover, even in the
two-player case, these equations are hard to handle when the competition is strong. To overcome
this problem, we study the market dynamics when the number of firms tends to infinity and the
resulting interactions are modeled as a mean field game (MFG).

Related works Guéant et al. [8, 9] have considered a mean field version of a Cournot game
with a quadratic cost function. Lucas and Moll [19] study knowledge growth in an economy
with many agents of different productivity levels. In similar spirit, Lachapelle and Wolfram [14]
apply the mean field approach to model congestion and aversion in pedestrian crowds. Here
the forward/backward structure comes from that a “smart” pedestrian anticipates the future
behavior of the population and reacts accordingly; while their collective behavior determines the
evolution of the crowds. Carmona and Delarue [4] provide a probabilistic analysis of a class of
stochastic differential games for which interaction between players is of mean field type and show
that solutions of the mean field game do indeed provide approximate Nash equilibria for games
with a large number of players. In a subsequent paper, Carmona et al. [5] discuss the similarities
and the difference between the MFG approach and control of McKean-Vlasov dynamics via
analysis of forward-backward stochastic differential equations. A mean field game model for
analyzing systemic risk is presented in [6]. For a comprehensive study of the uniqueness and
existence of equilibrium strategies of a general class of mean field games in the linear-quadratic
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framework, we refer to Bensoussan et al. [2].

Organization and Results

• In Section 2, we present the model for Bertrand competition with differentiated goods and
discuss the finite player and continuum limit MFG for the one-period problem. We see that
the MFG equilibrium is formally the limit of finite player Nash equilibrium.
• In Section 3, we introduce the dynamic Bertrand MFG problem with exhaustible capacities

and set up the resulting forward/backward PDE system. We give explicit calculations for
the monopoly problem.
• In Section 4, we obtain an asymptotic expansion in powers of a parameter that represents

the extent of competition between the firms in a deterministic game. This captures the
principle effects and quantifies the effect of product substitutability.
• In Section 5, we present the numerical solution of the forward/backward system of PDEs

that allows us to characterize the price strategies and resulting demands of firms in the
stochastic game.
• This allows us to compare and contrast the pricing strategies in the MFG approximation to

the N-player game in Section 6. Here we use the Dirac delta functions to mimic the finite
player case, and by considering the tail distribution function instead of the density itself,
numerical solutions become very tractable, especially in the deterministic setting.

We conclude in Section 7.

2 Linear Demand, Continuum Limit and Static MFG

To motivate the form of demand functions we are going to use in the continuum MFG, we first
study a finite market with N firms who produce substitutable goods which compete for market
share in a one-period game. Associated to each firm i ∈ {1, . . . , N} are variables pi ∈ R, qi ∈ R+

representing the price and quantity at which firm i offers its good for sale to the market. We
denote by p the vector of prices whose ith element is pi, similarly the ith element of the vector q
is qi. In the Cournot model, players choose quantities as a strategic variable in non-cooperative
competition with the other firms, and the market determines the price of each good. In a Bertrand
competition, which we will use as our main focus, firms set prices, and the market determines
its demand for each type of good.

2.1 Linear Demand System

The market model is specified by linear inverse demand functions, which give prices as a function
of quantity produced, and are the basis of Cournot competition. Our firms are suppliers, and so
quantities are nonnegative. For q ∈ RN

+ , the price received by player i is pi = Pi(q) where

Pi(q) = 1− (qi + εq̄i) , where q̄i =
1

N − 1 ∑
j 6=i

qj, i = 1, · · · , N, and 0 ≤ ε < N − 1. (1)

The inverse demand functions are decreasing in all of the quantities. In the linear model (1),
some of the prices pi = Pi(q) may be negative, meaning player i produces so much that he has
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to pay to have his goods taken away, but we will see negative prices do not arise in competitive
equilibrium.

The parameter ε measures the degree of interaction or product substitutability, in the sense
that the price received by an individual firm decreases as the other firms increase production of
their goods. In particular, the case ε = 0 corresponds to independent goods. In this paper, we
will consider the two cases of fixed and finite N as well as the continuum limit where N = ∞,
and study how varying the interaction parameter ε affects the competitive equilibrium.

The dependence of the price player i receives depends on the quantities produced by his
competitors through their mean q̄i. That is, the interaction is of mean field type. In particular,
the inverse demand (1) takes the form 1− p = Aq, where A can be written as a rank-one update
to the identity matrix

A =

(
1− ε

N − 1

)
I +

ε

N − 1
11T, where 1 = (1, · · · , 1)T.

As a consequence, the demand function q = A−1(1− p) can be computed explicitly using the
Sherman-Morrison formula [20]. However, the demands must be nonnegative and so the inver-
sion process is as follows. First order the price vector p ∈ RN such that p1 ≤ · · · ≤ pN , so that
resulting demands will be decreasing in the player number. We need to find the largest n ≤ N
such that player n receives nonnegative demand, while the players above him setting higher
prices will have their demands set to zero.

More specifically, for given n we invert the first n equations in (1) to give

D(n)
i (p) = an − bn pi + cn p̄n

i , p̄n
i =

1
n− 1

n

∑
j 6=i

pj, (2)

where the positive coefficients (an, bn, cn) are given by

an =
1(

1 + ε n−1
N−1

) , bn =
1 + ε n−2

N−1(
1 + ε n−1

N−1

) (
1− ε

N−1

) , cn =
ε n−1

N−1(
1 + ε n−1

N−1

) (
1− ε

N−1

) . (3)

Note that our assumption ε < N − 1 in (1) implies the system is invertible and that bn > cn > 0,
and we also observe that an + cn = bn.

Then we find the largest n such that D(n)
n (p) ≥ 0, and the actual demands are given by

qi = Di(p) =
{

an − bn pi + cn p̄n
i , i = 1, 2, · · · , n

0 i = n + 1, · · · , N.
(4)

These demand functions are the basis of Bertrand competition. The demand for player i’s good,
qi = Di(p), is decreasing in his own price and increasing in the prices of his competitors, again
through their mean p̄n

i .

Remark 1. Such a linear demand system can be derived from a quadratic utility function of the form

U(q) =
N

∑
i=1

qi −
1
2

(
N

∑
i=1

q2
i +

ε

N − 1 ∑
j 6=i

qiqj

)
,

and solving the utility maximization problem maxq∈RN
+

U(q) − q · p for a representative consumer; the
first-order condition gives equation (1). We refer to Vives [21, Chapter 6] for more details.
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Continuum Analog In the continuum limit N → ∞, the continuous variable corresponding to
n/N in the finite player game is denoted by η ∈ [0, 1], which is the proportion of players who
receive positive demand. The demand received by a representative producer decreases with his
own price p and increases with the average price p̄ charged by the other producers. We define
the demand function, by analogy with (2) and (3), to be

D(η)(p, p̄) = a(η)− b(η)p + c(η) p̄, η > 0, (5)

where the continuum limits of (3) are

a(η) =
1

(1 + εη)
, b(η) = 1, c(η) =

εη

(1 + εη)
, (6)

and the average price p̄ will be defined for the static game in the next section, and for the dynamic
game in Section 3. We note also that c(η) < b(η) = 1, and a(η) + c(η) = b(η) = 1.

Remark 2. In the traditional Cournot literature (see, for example, [21]), the inverse demand functions,
Pi in (1), are written as depending on the other players’ total quantity instead of the average q̄i, which
amounts to taking ε = N − 1. In this case, the goods are termed homogeneous in the sense that the
prices are the same for each players’ goods and the one price is Pi(q) ≡ P(q) = 1−∑N qj. This is the case
considered in the static and dynamic games in [10]. For a Bertrand game, when ε = N − 1, the system
(1) is not invertible, and this corresponds to the classical Bertrand “winner takes all” model in which all
demand goes to the player offering the lowest price. This type of competition typically results in a Nash
equilibrium in which players set prices equal to cost and so make zero profit. This “tough” competitive
effect is not usually seen in markets, and a differentiated (or substitutable) goods Bertrand model is more
reasonable. This is the basis of the static and dynamic games in [16]. For a discussion and comparison
between the four static games (Cournot and Bertrand with homogeneous or differentiated goods), we refer
to [18].

Remark 3. In this section, we are going to associate each player with a constant marginal cost of produc-
tion, even though there is no explicit production cost in the dynamic MFG. But as we will see in Section
3, the exhaustibility of production capacity induces a shadow cost that will play the role of marginal cost
in this section.

2.2 Static Bertrand Games

Here we consider the static Bertrand game of N players and the continuum MFG version of
it, and show that the limit of the former’s Nash equilibrium price vector as N → ∞ gives the
solution of the latter.

2.2.1 N-player Games

There are N players who have constant marginal costs of production 0 ≤ s1 ≤ · · · ≤ sN , which
are “small enough” (made precise in (11) below) such that all the players are active, in the sense
of receiving positive demand in the Nash equilibrium computed below. In other words, when
using the demand functions (4), we only have to consider n = N. (The case where some costs
are higher and so some firms are “blockaded” from competition and receive zero demand in
equilibrium is considered in detail in [18]).
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The optimization problem faced by each firm i is

max
pi

(aN − bN pi + cN p̄i) (pi − si), p̄i =
1

N − 1 ∑
j 6=i

pj. (7)

The first order condition for each player gives

p∗i =
1

2bN
(aN + bNsi + cN p̄i) , i = 1, · · · , N. (8)

This is the best response of player i if the other players play prices with average p̄i. We say
(p∗1 , · · · , p∗N) is a Nash equilibrium when the best response equations (8) intersect, that is

p̄i =
1

N − 1 ∑
j 6=i

p∗j for all i = 1, · · · , N.

Throughout, we will not attach a ∗ to p̄.
The system of equations (8) is scalarized by averaging over the players. Summing over i and

dividing by N, we find that the average price p̄ = 1
N ∑N

i=1 p∗i is given by

p̄ =
1

2bN − cN

(
aN + bN s̄(N)

)
, where s̄(N) =

1
N

N

∑
i=1

si. (9)

Note that p̄ is well-defined as bN > cN . In particular it depends on the costs only through their
average s̄(N).

The individual Nash equilibrium prices p∗i are given by (8), where p̄i, the average without
player i, can be written in terms of the full average p̄ as

p̄i =
N

N − 1
p̄− 1

N − 1
p∗i ,

the difference | p̄i − p̄| being small as N → ∞. Substituting back in to (8), we obtain

p∗i =
1

2bN + cN
N−1

(
bNsi + aN +

NcN

N − 1
p̄
)

. (10)

The resulting demands or quantities sold are given by q∗i = (aN − bN p∗i + cN p̄i). A sufficient and
necessary condition that all players receive positive demand, that is q∗i > 0, is that the highest
cost sN is small enough. In [18, Theorem 4.1], this is shown to be equivalent to

sN < smax
N :=

θN + εs̄(N−1)

θN + ε
, where θN =

(
1− ε

N − 1

)(2 +
( 2N−3

N−1

)
ε

1 +
(N−2

N−1

)
ε

)
, (11)

which restricts how far the highest cost sN can be from the average s̄(N−1) = 1
N−1 ∑N−1

j=1 sj of the
lower cost players. See [18] for further details, as well as the Nash equilibrium in other cases
where (11) does not hold.

If we assume that as more players are added the limit s̄ = limN→∞ s̄(N−1) is finite, then we
have

smax
N → 2 + εs̄

2 + ε
as N → ∞. (12)
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We shall see shortly that this limit coincides with the maximum marginal cost in the continuum
mean field game.

Moreover, using the limits of aN , bN , cN as N → ∞ given in equation (6), with η = 1 in the
case that all firms are active in equilibrium, we have

p̄→ 1
2 + ε

+
1 + ε

2 + ε
s̄,

and so

p∗i →
1
2

(
si +

2
2 + ε

+
ε

2 + ε
s̄
)

, and q∗i →
1
2

(
2

2 + ε
+

ε

2 + ε
s̄− si

)
. (13)

We shall again recover the same result from solving the continuum mean field game.

2.2.2 Continuum MFG

In the static continuum mean field game, there is an infinite number of players labeled by x > 0,
with associated density M(x) and marginal cost of production s(x). (In the static model, the
label x is really not necessary: one could label the players by their costs s and put a density M(s).
However, in the dynamic game of Section 3, x will denote the remaining capacities of the players,
so we retain it here). As in the finite-player example above, we suppose that the marginal costs
s(x) are “small enough” (made precise in (19) below) for all x > 0 such that all the players are
active, in the sense of receiving positive demand in the MFG solution we now compute. In other
words, we take η = 1 in the MFG demand function (5)-(6).

A player at location x optimizes his profit as though he is unable to affect the mean price p̄:

max
p

(a(1)− p + c(1) p̄) (p− s(x)), (14)

where we have used the continuum demand function defined in (5) and (6). Given p̄, the first
order condition gives

p∗(x) =
1
2
(s(x) + a(1) + c(1) p̄) . (15)

The mean price p̄ is

p̄ =
∫ ∞

0
p∗(x)M(x) dx,

and now the continuum system (15) is scalarized by multiplying by M and integrating over x,
which leads to

p̄ =
1

2− c(1)
(s̄ + a(1)) , where s̄ =

∫ ∞

0
s(x)M(x) dx. (16)

Note that p̄ is well-defined as c < 1. Substituting back into (15), we find the optimal price p∗(x):

p∗(x) =
1
2

(
s(x) +

2
2 + ε

+
ε

2 + ε
s̄
)

, (17)

which is the continuum analog of the limit of p∗i in (13). The demands are given by

q∗(x) = D(1)(p∗(x), p̄) = a(1)− p∗(x) + c(1) p̄ =
1
2

(
2

2 + ε
+

ε

2 + ε
s̄− s(x)

)
, (18)
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which is the continuum analog of the limit of q∗i in (13). The q∗(x) in (18) are positive for all
x > 0 if and only if

s(x) <
2 + εs̄
2 + ε

, ∀x > 0, (19)

which is the continuum analog of (11) and identical to the N → ∞ limit (12). Note also that it
turns out the profit function is simply the square of the quantity:

Π(x) = q∗(x) (p∗(x)− s(x)) = (q∗(x))2 .

Eventually we would like to use the MFG machinery to approximate finite player games, and
one way to do this is by taking the density M to be a series of delta functions centered at the
points {xi | s(xi) = si}: M = 1

N ∑N
i=1 δxi . Then, as in the discrete case, we have p̄ = 1

N ∑N p∗(xi)

and s̄ = 1
N ∑N s(xi). The optimal price set by the player at xi is

p∗(xi) =
1
2
(a(1) + si + c(1) p̄) , si = s(xi),

where p̄ is given in (16). Comparing this with the discrete case in equations (10) and (9), we see
that the only differences are (a(1), b(1), c(1)) ≈ (aN , bN , cN) and N

N−1 ≈ 1, which quantifies the
O(N−1) approximation of the finite player static game by the continuum MFG.

2.3 Cournot-Bertrand Equivalence as N → ∞ and in the Continuum

Next, we contrast the difference between the static N-player Cournot and Bertrand competitions,
and how the difference vanishes in the continuum limit. We focus on interior equilibrium in
which all firms participate.

2.3.1 Comparison of Cournot and Bertrand N-Player Games

For the N-player games, let q and p be the vector of quantities and prices respectively. We denote
by P the N × N matrix with 1’s on the diagonal and ε/(N − 1) everywhere else, so that the
inverse demand system (1) for the Cournot problem can be written

p = 1− Pq, where 1 = (1, · · · , 1)T.

From this, we have q = P−1(1 − p), which gives the demand system (4) (with n = N) for the
Bertrand problem:

q = aN1−Qp, where Q = P−1.

We note that Q is the matrix with bN on the diagonal and −cN/(N − 1) everywhere else, and
aN1 = P−11 (which is just the observation aN + cN = bN).

Cournot competition Here firms choose quantities, and so player i solves

max
qi

qi(1− (Pq)i − si),
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which leads to the Nash equilibrium intersection of the first-order conditions (I + P)q∗ = 1− s,
where s is the vector of costs. Therefore, the Cournot equilibrium quantities are given by q∗ =
(I + P)−1(1− s), and the corresponding prices p∗c = 1− Pq∗ are given by

p∗c = (I + P)−11 + P(I + P)−1s. (20)

Note that the average Cournot quantity q̄ and price p̄c satisfy (1 + ε)q̄ = (1− p̄c), which follows
from 1TP = (1 + ε)1T; and it is straightforward to compute

q̄ =
1− s̄(N)

2 + ε
, p̄c =

1
2 + ε

+
1 + ε

2 + ε
s̄(N), (21)

where s̄(N) is the average of the costs. One can also compute the profit of each player:

Πi = q∗i (p∗c,i − si) = (q∗i )
2 .

Bertrand competition Here, as in (7), firm i solves maxpi(pi − si)(aN − (Qp)i), which leads
to the first order conditions, intersected to find the Nash equilibrium p∗ that solves the linear
system:

(Q + bN I)p∗ = aN1 + bNs.

Multiplying by P and using that aN1 = P−11, we have (I + bNP)p∗ = 1 + bNPs, which gives

p∗ = (I + bNP)−11 + bNP(I + bNP)−1s,

where we have used an obvious commutation between P and (I + bNP)−1 (both being rank one
updates of a diagonal matrix). This coincides with the prices (20) from the Cournot competition
only if bN = 1, which is true only when the number of players goes to infinity. Indeed, since
bN = 1 +O(N−1), the difference between the Cournot and Bertrand solutions is O(N−1). The
Bertrand equilibrium demands are q∗b = aN1−Qp∗ and we can compute that the profit is given
by:

Πi = q∗b,i(p∗i − si) =
1

bN

(
q∗b,i
)2 .

Furthermore, we also have that the average Bertrand demand q̄b is given in terms of the
average price p̄ by (1 + ε)q̄b = (1− p̄), which follows from 1TQ = (bN − cN)1T and bN − cN =
aN = 1

1+ε . From the formula (9), we have

p̄ =
1− ε

N−1

2 + ε− 2ε
N−1

+
1 + ε

(N−2
N−1

)
2 + ε

(N−3
N−1

) s̄(N), q̄b =
1

1 + ε

(
1 + ε− ε

N−1

2 + ε− 2ε
N−1

−
1 + ε

(N−2
N−1

)
2 + ε

(N−3
N−1

) s̄(N)

)
,

and so the average Bertrand price and quantity do not equal their Cournot counterparts given in
(21), but | p̄− p̄c|, |q̄b − q̄| → 0 as N → ∞ at rate N−1.
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2.3.2 Cournot Continuum MFG

This observation anticipates that the Bertrand and Cournot continuum MFGs lead to the same
equilibrium prices and quantities. To see this, consider the continuum Cournot game where, as
in Section 2.2.2, there is an infinite number of players labeled by x > 0, with associated density
M(x) and marginal cost of production s(x). The optimization problem faced by a player at
position x > 0 is

max
q

q (1− q− εq̄− s(x)) , q̄ =
∫

qM,

where the continuum inverse demand function P(q, q̄) = 1− q− εq̄ is the analog of (1).
The first order condition gives

q∗(x) =
1
2
(1− s(x)− εq̄) ,

and integrating with respect to M leads to

q̄ =
1

2 + ε
(1− s̄) .

Therefore we obtain

q∗(x) =
1
2

(
2

2 + ε
+

ε

2 + ε
s̄− s(x)

)
,

which is the same as found from the Bertrand continuum MFG, equation (18).
We shall see in Appendix B that Cournot-Bertrand equivalence also hold in the dynamic mean

field game with exhaustible resources. We introduce the Bertrand version of this problem in the
next section.

3 Dynamic Mean Field Game with Exhaustible Capacities

We look now at a dynamic problem in which firms sell goods over time, but have different ca-
pacities or inventories, modeling that they are of different size. As they exhaust their supplies
or reserves, they no longer participate and the market shrinks, but the demand functions adjust
consistently according to (5). In the static game of the previous section, players were differenti-
ated by their costs of production. In the dynamic N-player Bertrand games considered in [16],
firms have different finite production capacities and, for simplicity, zero production costs. How-
ever, the firms will be faced with nonzero shadow costs due to the exhaustibility of production
capacities. Here, we analyze the continuum mean field version of this problem. As mentioned in
the introduction, the Cournot and Bertrand models give the same result in the continuum limit;
we focus our exposition on Bertrand competition for concreteness.

There is an infinity of producers setting prices for their goods. At time t = 0, the density
of players with remaining capacity x > 0 is given by M(x), where

∫
M = 1. Initial capacity

x allows us to distinguish between bigger and smaller players. As time evolves, some players
exhaust their capacity by selling all their goods and drop out of competition, and we denote by
m(t, x) the “density” of firms with positive capacity at time t > 0. Let η(t) be the fraction of
active firms remaining at time t:

η(t) =
∫

R+

m(t, x) dx, R+ = (0, ∞). (22)
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In general, we expect η(t) < 1 for large enough t > 0, and it plays the role of n/N in the discrete
setting. We define the exhaustion time T of the game to be the first time η hits zero, and all the
quantities introduced in the following are defined for t < T.

Given the price p(t, x) set by one of these players at time t, the expected demand for his good
is

q(t, x) = D(η(t))(p(t, x), p̄(t)) = a(η(t))− p(t, x) + c(η(t)) p̄(t), (23)

where the functions a and c were defined in (6), and p̄ is the average price at time t given by

p̄(t) =
1

η(t)

∫
R+

p(t, x)m(t, x) dx. (24)

The average price p̄ is the continuum counterpart of p̄n
i in (2), which denotes the average price

charged by the remaining firms except the ith one. In the continuum limit, a single firm no longer
affects the average price, and hence p̄ depends on t but not on x.

The actual demands are subject to random fluctuations and we model this with an additive
Gaussian white noise Ẇt so that the actual demand is given by q(t, x) − σẆt. The remaining
capacity (or reserves) (Xt)t≥0 of any producer depletes according to the actual demand and
follows the dynamics

dXt = −q(t, Xt) dt + σ dWt, (25)

as long as Xt > 0, and Xt is absorbed at zero. As in [9], the Brownian motion W is specific to the
agent considered, and σ ≥ 0 is a constant.

Remark 4. As an alternative interpretation to the random fluctuations of capacity reserves, we consider
the energy production market where the Cournot model is appropriate (as remarked earlier, we will show in
Appendix B that the Cournot model is equivalent to the Bertrand model in the continuum limit). Here firms
determine the extraction rates of the exhaustible resources such as oil or natural gas, and the fluctuations
in production capacities may be due to noisy seismic estimation of the oil or gas well.

A firm that starts with capacity x > 0 at time t ≥ 0 sets prices over the horizon [t, T) to
maximize the lifetime profit discounted at constant rate r > 0 over Markov controls pt = p(t, Xt),
with the corresponding demand qt = q(t, Xt) given by (23). The value function of the firm is
defined by

u(t, x) = sup
p

E

{∫ ∞

t
e−r(s−t)psqs1{Xs>0} ds | Xt = x

}
, x > 0.

The indicator function describes that the player is exhausted when Xt hits zero and he no longer
can produce and earn revenue.

Dynamic Programming and the HJB Equation

The associated HJB equation is

∂tu +
1
2

σ2∂2
xxu− ru + max

p≥0

[(
a(η(t))− p + c(η(t)) p̄(t)

)
(p− ∂xu)

]
= 0. (26)

We observe that the internal optimization is the static MFG equilibrium problem (14), but with
effective shadow cost (or scarcity) s(x) 7→ ∂xu(t, x). The first-order condition in (26) gives

p∗(t, x) =
1
2

(
a(η(t)) + ∂xu(t, x) + c(η(t)) p̄(t)

)
. (27)
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Substituting (27) into (24), we have

p̄(t) =
1

η(t)

∫
R+

1
2

(
a(η(t)) + ∂xu(t, x) + c(η(t)) p̄(t)

)
m(t, x) dx,

from which we obtain

p̄(t) =
1

2− c(η(t))

(
a(η(t)) +

1
η(t)

∫
R+

∂xu(t, x)m(t, x) dx
)

. (28)

From (23), the optimal (equilibrium) demand is given by

q∗(t, x) =
1
2

(
a(η(t))− ∂xu(t, x) + c(η(t)) p̄(t)

)
. (29)

Therefore, the HJB equation (26) is

∂tu +
1
2

σ2∂2
xxu− ru +

1
4

(
a(η(t))− ∂xu + c(η(t)) p̄(t)

)2

= 0, x > 0. (30)

When a player reaches x = 0, his reserves are exhausted and he no longer earns revenue, so we
have u(t, 0) = 0. Moreover, at time T all capacities are exhausted and u(T, x) = 0. The time T is
not known a priori and has to be determined endogenously.

The average price p̄ is computed from the density m(t, x) of the distribution of reserves Xt
which evolve by dynamics (25), with q = q∗ given by (29). It is the solution of the forward
Kolmogorov equation

∂tm−
1
2

σ2∂2
xxm + ∂x

(
−1

2

(
a(η(t))− ∂xu + c(η(t)) p̄(t)

)
m
)
= 0

m(0, x) = M(x),
(31)

where p̄ depends on m through (28) and M is the given initial density of reserves.
We will distinguish between stochastic and deterministic cases:

• In the first case σ > 0, we shall assume that m is a C1,2 function and therefore a classical
solution to (31). When x is close to zero, the short-term behavior is dominated by the
Brownian motion. Once a player is driven to zero he cannot be revived by the Brownian
motion, meaning that the effect of noise is predominately one-sided. Hence we have the
boundary condition m(t, 0) = 0 because players close to zero will “rapidly” be absorbed
into zero.

• In the deterministic case σ = 0, there is no boundary condition at x = 0. In this case we
also want to consider the case where the initial distribution is a sum of delta functions to
mimic the situation of finite player games. Therefore we assume the initial density M and
the later density m exist in the sense of distributions, and that the inner products with test
functions are C1 in time.

The system (30) and (31) is an instance of what Lasry and Lions [15] have called a mean
field game. The forward/backward system of PDEs is coupled through p̄ in (28) and η in (22).
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Existence, uniqueness and regularity of solutions to the MFG system is an ongoing challenge
and a subject of active research, and we do not attempt to prove these properties here. In the
following we shall assume sufficient regularity of u and m for our asymptotic calculations to
hold, but remark that the perturbation is around the monopoly case ε = 0 which is explicitly
solvable, and regularity of solution can be seen directly. The validity of our assumptions is
backed up by numerical experiments in Sections 5 and 6. We also note that our model does
not fit into the linear-quadratic framework studied by Bensoussan et al. [2], for which there are
explicit solutions, because of the nonlinear dependence of p̄ on the state variable and mean field
term.

3.1 Lifetime Production and Total Profit

We define here two useful objects of study for analyzing the effects of competition. The output
rate Q at time t can be defined as

Q(t) =
∫

R+

q∗(t, x)m(t, x) dx. (32)

From (23), q∗(t, x) = a(η(t))− p∗(t, x) + c(η(t)) p̄(t), and so we can also write the output rate Q
in terms of the average equilibrium price as Q(t) = [a(η(t))− p̄(t) + c(η(t)) p̄(t)] η(t).

In the deterministic setting, we expect that the integral of the output rate over time to be
simply the total initial capacity. We define the lifetime production to be

Lifetime production =
∫ T

0
Q(t) dt,

and this quantity is invariant under change in the level of competition. This invariance can serve
as a useful check for the numerical quality of our code when an explicit solution is not available.
The following proposition makes precise the above observation.

Proposition 1. In the deterministic setting, the lifetime production depends only on the initial capacity
distribution via ∫ T

0
Q(t) dt =

∫
R+

xM(x) dx. (33)

Proof. Notice equation (31) is ∂tm = ∂x(q∗m). Hence we have

− d
dt

∫
R+

xm(t, x) dx = −
∫

R+

x∂tm dx = −
∫

R+

x
d

dx
[q∗m] dx =

∫
R+

q∗(t, x)m(t, x) dx = Q(t),

where the boundary terms in the integration-by-parts clearly vanish. Then integrating this ex-
pression in time gives∫ T

0
Q(t) dt =

∫ T

0

(
− d

dt

∫
R+

xm(t, x) dx
)

dt =
∫

R+

xM(x) dx.

13



We define the total profit rate Π(t) by

Π(t) =
∫

R+

p∗(t, x)q∗(t, x)m(t, x) dx (34)

=
1
4

((
a(η(t)) + c(η(t)) p̄(t)

)2
η(t)−

∫
R+

(
∂xu(t, x)

)2m(t, x) dx
)

.

We will use this to demonstrate the effect of competition in Section 5.

3.2 Monopoly with Deterministic Demand (σ = 0)

Ultimately, our goal is to quantify the effects of market competition in the continuum mean field
setting. We do so by studying the first-order corrections to the value function and density in the
presence of small but nonzero degree of product substitutability. In preparation for the asymp-
totic expansion, we first look at the case when ε = 0, which implies that c in (6) is identically
zero, so the goods are independent and the players are monopolists in their own markets. In this
subsection, we also suppose that demand is deterministic, so that σ = 0. Later on in Section 4
we will see that the monopoly solution corresponds precisely to the zeroth order expansion in
our asymptotic approximation.

From equation (6), when ε = 0, a is constant and equal to 1. Let (u0, m0) be the value function
and density in this case. Then equation (30) becomes

∂tu0 − ru0 +
1
4
(1− ∂xu0)

2 = 0, x > 0,

with u0(t, 0) = 0. The solution is time-independent and given by u0(t, x) = u0(x) solving

1
4
(1− u′0)

2 = ru0, u0(0) = 0. (35)

Proposition 2. The solution u0 to the ODE with boundary condition give in (35) is

u0(x) =
1
4r

(
1 + W

(
θ(x)

))2
, θ(x) = −e−2rx−1, (36)

where W is the Lambert W-function defined by the relation x = W(x)eW(x) with domain x ≥ −e−1 and
for x ∈ (−1/e, 0), we take the principal branch W(x) > −1.

The economically sensible solution is given by the principal branch of W, as this ensures that
the shadow (or scarcity) cost u′0(x)→ 0 as x → ∞.

Proof. One can check that −1 ≤ W(z) < 0 for z ∈
[
−e−1, 0

)
, with W

(
−e−1) = −1, and for

z > −e−1

W′(z) =
W(z)

z (1 + W(z))
.

It is now clear that equation (36) indeed satisfies equation (35) and the zero boundary condition.

14



From the explicit solution of u0, we can rewrite equation (25) as the ordinary differential
equation (ODE)

X′(t) = −1
2

(
1 + W

(
θ(X(t))

))
, X(0) = x0. (37)

Proposition 3. Equation (37) can be solved in closed form and the solution is given by

X(t; x0) = x0 −
1
2

t +
1
2r
(1− ert)W

(
θ(x0)

)
. (38)

Proof. Consider the function defined by f (t) = W
(
θ(X(t))

)
. A short calculation shows that

f ′(t) = r f (t), and hence
W
(
θ(X(t))

)
= W

(
θ(x0)

)
ert. (39)

Using this one can integrate the ODE (37) to get (38).

We observe that equation (39) is the famous Hotelling’s rule [11]. Recall that the shadow cost
in the monopoly setting is simply

u′0(x) = −W
(
θ(x)

)
. (40)

Then equation (39) says that u′0(X(t)) = u′0(x0)ert. In other words, along the optimal extraction
path, the shadow cost grows at the discounting rate r. In the case of linear demand, Hotelling’s
rule can be equivalently written as

d
dt

(
p∗(t, X(t))− 1

2

)
= r

(
p∗(t, X(t))− 1

2

)
, ⇒ p∗(t, X(t)) =

1
2
(
1− ert)+ p∗(0, x0)ert.

That is, the (shifted) optimal price p∗ grows at the discount rate r along the optimal extraction
path.

We define the hitting time τ : R+ → R+ to be the time to exhaustion in the deterministic
monopoly market starting at initial capacity x0:

τ(x0) = inf{t ≥ 0 | X(t; x0) ≤ 0}. (41)

Proposition 4. The hitting time is given explicitly by:

τ(x0) = 2x0 +
1
r

(
1 + W

(
θ(x0)

))
. (42)

Formula (42) follows directly from (38). The hitting time τ is monotonic increasing as ex-
pected; for large x0, τ grows linearly in x0. In fact, in the deterministic setting, when the ini-
tial density M has compact support [0, xmax], it follows that the exhaustion time T is given by
T = τ(xmax).

For the density, recalling from equation (6) that a ≡ 1 and c ≡ 0 when ε = σ = 0, the forward
Kolmogorov equation (31) becomes

∂tm0 −
1
2

∂x
(
(1− u′0)m0

)
= 0, (43)

with m0(0, x) = M(x).
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Proposition 5. The solution to equation (43) is given by

m0(t, x) =
1 + W

(
θ(x)

)
e−rt

1 + W
(
θ(x)

) M
(
X(−t; x)

)
. (44)

Proof. The solution follows from the method of characteristics. For fixed (t, x), we define the
characteristic curve by the ODE

z′(s) = −1
2

(
1 + W

(
θ(z(s))

))
, z(t) = x, (45)

whose solution is precisely the monopoly capacity trajectory started at (t, x): z(s) = X(s− t; x).

Along the curve z(s), the function m̃0(s) =
(

1 + W
(
θ(z(s))

))
m0(s, z(s)) is constant, and in

particular we have

m0(t, x) =
1

1 + W
(
θ(x)

) m̃0(t) =
1 + W

(
θ(z(0))

)
1 + W

(
θ(x)

) M(z(0)) =
1 + W

(
θ(x)

)
e−rt

1 + W
(
θ(x)

) M
(
X(−t; x)

)
,

using Hotelling’s rule (39) and the definition of X.

It turns out that the integral of m0, or the proportion of remaining active firms η0, can be
computed in closed-form.

Proposition 6. Given the distribution M : R+ → R+ of the initial capacity x0, the proportion η0 :
R+ → [0, 1] of remaining players, as defined by equation (22), is given by

η0(t) = 1− F
(

τ−1(t)
)

(46)

where F denotes the cumulative distribution function (CDF) of the initial distribution M, and τ−1 is the
inverse function of τ in (42), explicitly given by

τ−1(t) =
t
2
− 1

2r
(
1− e−rt) .

Proof. First we note both sides of equation (46) evaluate to 1 at t = 0. It suffices to show that the
time derivatives on both sides are equal for all t > 0. Using equation (43), we have

η′0(t) =
∫

R+

∂tm0(t, x) dx =
1
2

∫
R+

∂x
(
(1− u′0)m0

)
dx =

1
2

(
1 + W

(
θ(x)

))
m0(t, x)

∣∣∣∣∞
0+

= −1
2
(1− e−rt)M

(
X(−t; 0)

)
,

where we have used that m0(t, x)→ 0 as x → ∞. Now, since that X(−t; 0) = τ−1(t), we recognize
the last line is precisely the time derivative of 1− F

(
τ−1(t)

)
, the right-hand side of equation

(46).
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Proposition 7. In the case of monopoly, the average equilibrium price p̄0 is given by

p̄0(t) =
1
2

(
1− I(t)

η0(t)

)
, (47)

where I satisfies the first-order linear ODE

I′(t)− rI(t) = −η′0(t), I(0) =
∫

R+

W
(
θ(x)

)
M(x) dx. (48)

Proof. We see from equation (28) with ε = 0 that the average equilibrium price is given by (47),
where, using the formula (36) for u0, we define I(t) =

∫ ∞
0 W

(
θ(x)

)
m0(t, x) dx. Then we compute

I′(t) =
∫

R+

W
(
θ(x)

)
· ∂tm0(t, x) dx

=
1
2

∫
R+

W
(
θ(x)

)
· ∂x
(
(1− u′0)m0

)
dx

=
1
2

W
(
θ(x)

)(
1 + W

(
θ(x)

)
e−rt

)
M
(
X(t; x)

)∣∣∣∣∞
0
+ r

∫
R+

W
(
θ(x)

)
m0(t, x) dx

= −η′0(t) + rI(t).

which gives (48).

This representation is convenient for numerical purposes because all we need is to solve a
first-order linear ODE to obtain the time evolution of the average equilibrium price p̄0. Moreover,
we will see in Section 4 that this splitting is used to prove certain qualitative features of first-order
corrections to the game in the case of small substitutability.

Finally, recall the output rate Q(t) defined in (32). In the monopoly setting, this simplifies to

Q0(t) = η0(t)
(
1− p̄0(t)

)
.

4 Small Competition Asymptotics under Deterministic Demand

Having studied the monopoly problem where many quantities, including the value function and
density, are explicitly solvable, we are now ready to investigate the effect of competition. We first
note that ε = 0 (or equivalently a ≡ 1 and c ≡ 0 from equation (6)) is equivalent to stating that
firms have independent goods in the sense that they operate in markets without competing with
one another. When ε > 0, firms produce goods that are actually in competition with one another.
Our approach is to formally construct a perturbation expansion around the non-competitive case
for small ε > 0 to view the effects of a small amount competition. Throughout this section, we
work with deterministic demand where σ = 0.

We will look for an approximation to the PDE system of the form

u(t, x) = u0(t, x) + ε u1(t, x) + ε2 u2(t, x) + · · · ,

m(t, x) = m0(t, x) + ε m1(t, x) + ε2 m2(t, x) + · · · .
(49)

To leading order in ε, the demand coefficients a and c in (6) are given by

a(η(t)) = 1− ε η0(t) + · · · , c(η(t)) = ε η0(t) + · · · ,
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where η denotes the proportion of remaining players, and hence in the expansion

η = η0 + ε η1 + . . . , we have ηi(t) =
∫

R+

mi(t, x) dx, i = 0, 1, · · · . (50)

We also expand the average equilibrium price p̄(t) = p̄0(t) + ε p̄1(t) + · · · , where, from (28), we
find

p̄0(t) =
1
2

(
1 +

1
η0(t)

∫
R+

∂xu0(t, x) ·m0(t, x) dx
)

.

4.1 First-order Correction to Value Function

Inserting the expansion (49) for u into equation (30) and collecting terms independent of ε, we
recover the monopoly equation (35) for u0 whose solution is given by equation (36). We obtain
the following equation for u1 by equating terms of order ε:

∂tu1 −
1
2
(
1− u′0

)
∂xu1 − ru1 =

1
2
(
1− u′0

)
(1− p̄0) η0, u1(t, 0) = 0. (51)

Observe that equation (51) does not involve m1, and this greatly simplifies the solution process
for otherwise the forward-backward structure of mean field games typically requires an iterative
solver, with each iteration involving a finite-difference solution to some PDEs, as we do in Section
5.

Proposition 8. The correction to the value function u1 is given by

u1(t, x) = −1
2

∫ τ(x)

0

(
e−rs + W

(
θ(x)

))
·
(
1− p̄0(t + s)

)
· η0(t + s) ds, (52)

where τ(x) is given by equation (42). In particular, the first-order correction u1(t, x) is negative for all
(t, x).

Proof. Using (40), equation (51) can be rewritten as

∂tu1 −
1
2

(
1 + W

(
θ(x)

))
∂xu1 − ru1 =

1
2

(
1 + W

(
θ(x)

))
(1− p̄0) η0.

This is a first-order transport equation and can be solved by the method of characteristics. Given
fixed (t, x), we define the characteristic curve z as in (45). Then the discounted first-order correc-
tion ũ1(s) = u1(s, z(s))e−r(s−t) satisfies the ODE along the characteristic curve

ũ′1(s) =
1
2

(
1 + W

(
θ(z(s))

))(
1− p̄0(s)

)
η0(s)e−r(s−t), ũ1(t + τ(x)) = 0.

Integrating from t to t + τ(x), we obtain

u1(t, x) = ũ1(t) = −
1
2

∫ t+τ(x)

t

(
1 + W

(
θ(z(s))

))
e−r(s−t)(1− p̄0(s)

)
η0(s) ds,

using Hotelling’s rule (39). This yields (52) after a change of variable s 7→ s + t. It follows readily
that u1 is negative for all (t, x) since

(1− p̄0)η0 =
1
2
(η0 + I) =

1
2

∫
R+

(
1 + W

(
θ(x))

))
m0(t, x) dx ≥ 0.
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4.2 First-order Correction to Density

Inserting the expansion (49) for m into equation (31) and collecting terms independent of ε we
recover equation (43) whose solution is given by equation (44). We obtain the following equation
for m1 by equating terms of order ε:

∂tm1 −
1
2

∂x
(
(1− u′0)m1 + (−η0 + η0 p̄0 − ∂xu1)m0

)
= 0, m1(0, x) = 0. (53)

Proposition 9. The solution to equation (53) is given by

m1(t, x) =
∫ t

0

1 + W
(
θ(x)

)
e−r(t−s)

1 + W
(
θ(x)

) g
(
s, X(s− t; x)

)
ds, (54)

where
g(t, x) =

1
2

∂x
(
(−η0 + η0 p̄0 − ∂xu1)m0

)
,

and X(t; x) was given in equation (38).

Proof. This follows from the method of characteristics. For fixed (t, x), we define the characteristic
curve by equation (45). Along the characteristic curve, the function

m̃1(s) =
(

1 + W
(
θ(z(s))

))
m1(s, z(s))

satisfies the ODE
m̃′1(s) = g(s, z(s))

(
1 + W

(
θ(z(s))

))
, m̃1(0) = 0.

Integrating from 0 to t, and using the definition of m̃1 we obtain

m1(t, x) =
∫ t

0
g(s, z(s))

1 + W
(
θ(z(s))

)
1 + W

(
θ(x)

) ds =
∫ t

0
g(s, X(s− t; x))

1 + W
(
θ(x)

)
e−r(t−s)

1 + W
(
θ(x)

) ds.

We plot the first-order corrections to the value function and density in Figures 1a and 1b
respectively. Notice that the density correction is positive for large values of x, then changes sign
and becomes negative for smaller values of x. This suggests that firms are exhausting their pro-
duction capacity more slowly in the presence of competition and hence the capacity distribution
is shifted away from zero. We will see that this is indeed the case in a later Proposition 10.

Remark 5. We observe that expansion of the form (49) may lead to negative density. This leads us to
consider a multiplicative asymptotic perturbation for m given by

m(t, x) ≈ m0(t, x)
(

1 + tanh
(

ε m1(t, x)
m0(t, x)

))
. (55)

Using that tanh x = x +O(x3) for small x, one can show that (55) agrees with (49) up to first order in ε.
Moreover, since tanh x ∈ (−1, 1) for all x, we obtain a positivity-preserving asymptotic perturbation
for m.
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4.3 First-order Correction to Demands and Capacity Trajectories

Expanding the equilibrium demand q∗ given by (29) as q∗ = q0 + ε q1 +O(ε2), we have

q0 =
1
2
(
1− u′0

)
, q1 =

1
2
(−η0 + η0 p̄0 − ∂xu1) .

Solving equation (25) yields the first-order correction to the capacity trajectories, which we plot in
Figure 1d for various values of ε. In Figure 1c we plot the first order correction to the equilibrium
demand q1 and observe that it is negative. We show that this is true in general in the following
proposition.
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Figure 1: Small substitutability expansion under deterministic demand, where r = 0.2 and the initial capacity is
chosen to following the beta distribution with shape parameters α = 2, β = 4.

Proposition 10. The first order correction to the equilibrium demand q is negative, that is q1 ≤ 0 for
0 ≤ t ≤ T and x ≥ 0.

Proof. In light of equation (51), it suffices to show that ∂tu1 − ru1 ≥ 0 since 1 + W
(
θ(x)

)
≥ 0 for

x ≥ 0. To this end, we first notice that e−rs + W
(
θ(x)

)
≥ 0 for 0 ≤ s ≤ τ(x) and x ≥ 0. Now

using the explicit form of u1 in equation (52), it suffices to show that

(−η0 + η0 p̄0)
′ − r(−η0 + η0 p̄0) ≥ 0.
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First we rewrite

η0 p̄0 =
1
2

(
η0 +

∫
R+

∂xu0 ·m0 dx
)
=

1
2
(η0 − I)

where I satisfies the differential equation (48).
It follows that (−η0 + η0 p̄0) = − 1

2 (η0 + I). The claim follows immediately since

(−η0 + η0 p̄0)
′ − r(−η0 + η0 p̄0) =

1
2

rη0 ≥ 0.

The asymptotic approximation to first order demonstrates the principal effect of competition
in the continuum mean field game compared with the monopoly case: demand for the goods
drop, the firms sell at a slower rate and so take longer to exhaust their capacities, and so their
density is shifted away from zero. We investigate these effects further by numerical methods
in the next two sections. Expressions for the higher order terms in the expansions are given in
Appendix A.

5 Numerical Analysis

We have been able to capture many of the qualitative features of the model analytically in the
case of deterministic demand using the asymptotic expansions of the previous section. However,
in order to fully analyze the case where ε is not so small, or in the stochastic model σ > 0, we
have to solve the PDE system numerically.

In the deterministic monopoly game, the density m(t, x) becomes singular as x → 0 when
players begin to exhaust their capacities. Similar problematic behavior is expected in the case
of substitutable goods, and this renders accurate numerical solution to the forward equation
difficult. It turns out, however, that the tail distribution function η̄(t, x), defined by

η̄(t, x) =
∫ ∞

x
m(t, y) dy, (56)

is more amenable to numerical treatment. Substituting equation (56) into the forward Kol-
mogorov equation (31), we get for t ≥ 0 and x ≥ 0

∂tη̄(t, x)− 1
2

σ2∂2
xxη̄(t, x)− 1

2

(
a(η(t))− ∂xu(t, x) + c(η(t)) p̄(t)

)
∂xη̄(t, x) = 0, (57)

with initial condition
η̄(0, x) =

∫ ∞

x
M(y) dy.

Note that while M may be singular at certain values of x (for instance certain cases of the Beta
distribution or, later when we take M to be a sum of delta functions), η̄(0, x) is bounded and,
even in the extreme example of delta functions, still piecewise continuous.
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5.1 Solution Strategy

We employ an iterative algorithm to calculate the MFG solution. Starting with initial guesses
(η0, p̄0) for (η, p̄), we follow for n = 0, 1, 2, . . . :

Step 1. Given (ηn, p̄n), solve the HJB equation (30) to calculate un:

∂tun +
1
2

σ2∂2
xxun − run +

1
4

(
a(ηn(t)) + ∂xun(t, x) + c(ηn(t)) p̄n(t)

)2
= 0, un(t, 0) = 0.

We have the terminal condition un(T, x) = 0. In practice we do not know T and choose
Tmax to be significantly larger than (for instance double) its monopoly counterpart τ(xmax).
Then the strategy pn,∗ and the corresponding demand qn,∗ are given by

pn,∗(t, x) =
1
2

(
a(ηn(t)) + ∂xun(t, x) + c(ηn(t)) p̄n(t)

)
,

qn,∗(t, x) =
1
2

(
a(ηn(t))− ∂xun(t, x) + c(ηn(t)) p̄n(t)

)
.

Step 2. Given the price pn,∗ and demand qn,∗, solve equation (57) for η̄n+1:

∂tη̄
n+1 − 1

2
σ2∂2

xxη̄n+1 − qn,∗(t, x)∂xη̄n+1(t, x) = 0, η̄n+1(0, x) = η̄(0, x).

Then generate new (ηn+1, p̄n+1) from

ηn+1(t) = η̄n+1(t, 0), mn+1(t, x) = ∂xη̄n+1(t, x), p̄n+1(t) =
1

ηn+1(t)

∫
R+

pn,∗(t, x)mn+1(t, x) dx.

When (ηn+1, p̄n+1) is close enough to (ηn, p̄n), we call (un, mn) a solution to the MFG. Steps 1 and
2 themselves involve PDE solvers using finite difference which we describe in more detail.

Step 1 Using the method of lines, we discretize the HJB equation in the space dimension but not
in time and solving the resulting system of ODEs using the fourth-order Runge-Kutta method.

Step 2 In the stochastic case, we apply the standard finite difference method. In the deter-
ministic case, we can write the forward Kolmogorov equation in terms of the tail distribution η̄
as

∂tη̄
n+1(t, x)− qn,∗(t, x)∂xη̄n+1(t, x) = 0, η̄n+1(0, x) =

∫ ∞

x
M(y) dy.

In this form, it is clear that η̄n+1 just gets transported along the characteristics

d
dt

xn+1(t) = −qn,∗(t, xn+1(t)), xn+1(0) = x0.

It therefore suffices to solve a family of ODEs with different initial x0.
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5.2 Results and Observations

Deterministic Bertrand Games (σ = 0)

We illustrate the numerical results with one instance of the model, where we choose ε = 0.3, r =
0.2 and assume a beta distribution with shape parameters α = 2, β = 4 for the initial capacity.
See Figure 2 for the convergence graph in this case, we note that the iterative solver converges
very rapidly, often in less than 10 iterations.
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Figure 2: Convergence of L1 error in the iterative solver, for deterministic Bertrand competition,
with model parameters as in Figure 3. Here we take the final iteration of our algorithm as a
proxy as the true solution, and measure the L1 error by ‖η − ηtrue‖L1 .

Figure 3d compares the average equilibrium price p̄ in Bertrand competition against the
monopoly case. Figure 3c shows the proportion of remaining players in Bertrand competition
as well as the monopoly case. Figure 3e compares the output rate Q in Bertrand competition
against the monopoly case. Figure 3a shows the capacity trajectories for various initial values in
Bertrand competition as well as the monopoly case.

In the presence of competition, firms are more cautious and exhaust their production capacity
more slowly, as shown in Figure 3c and 3a. This is in accordance with Proposition 10 where
an asymptotic expansion is used to show that production is slowed down in the presence of
competition. Although each firm reduces their production level, and hence the decrease in the
output rate Q as shown in Figure 3e, as the game proceeds further, the production level in the
presence of competition is actually above the monopoly level. This is because firms are more
cautious in the competitive market and find themselves with higher production capacities as the
game unfolds, even though they each chooses a smaller production level than they would in
monopoly, overall we still see an increase in the production level. This is in accordance with
Proposition 1 since the time integral of Q has to be invariant to the degree of competition ε.
Figure 3f shows the total profit rate Π(t) defined in (34): it is initially higher in the case ε = 0 of
many firms producing independent goods, but declines more quickly as resources become scarce
and firms drop out than when ε > 0 and competition enforces greater discipline in price setting
close to exhaustion.
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Figure 3: Various descriptive statistics of deterministic Bertrand competition, where r = 0.2 and the initial capacity
is assumed to follow a beta distribution with shape parameters α = 2, β = 4.
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Stochastic Bertrand Games (σ > 0)

For σ > 0, the forward equation can no longer be solved using the method of characteristics, and
we need to specify the boundary conditions for η̄(t, x) and solve the PDE using finite differences.
We choose

lim
x→∞

η̄(t, x) = 0, lim
x→0

∂xη̄(t, x) = 0.

This is appropriate because we have an absorbing boundary at x = 0, that is to say, once a firm
hits zero, it is out of the game and cannot return.

Solving the full PDE using our iterative solver, we compare the average equilibrium price in
the presence of noise, with and without competition, see Figure 4. We notice that a high level
of noise pushes down the average equilibrium price p̄ as well as shortens the duration of game.
This is expected since the effect of our stochastic term is predominantly one-sided, once a firm
exhausts their production capacity, they cannot be revived by the Brownian motion. Moreover, a
high level of noise washes out the effects of competition, since the Brownian motion dominates
the interactions between competitive firms.
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Figure 4: Average equilibrium price p̄ and proportion of remaining players η, in the presence of noise. Dotted lines
and solid lines represent respectively the monopoly and competitive case. Initial capacity is assumed to follow a beta
distribution with shape parameters α = 2, β = 4. Other relevant model parameters are r = 0.2, σ = 0.1 (low noise),
or σ = 0.5 (high noise).
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6 MFG Approximations to Deterministic Finite Player Games

Since real-world situations involve games with only a finite number of players, we consider using
the MFG framework to study the N-player game. The goal is to apply the MFG methodology to
provide an efficient way to model situations with a moderate to large number of players in the
deterministic dynamic game where σ = 0.

The idea is to approximate an N-player game by an initial density of the form

M(x) =
1
N

N

∑
i=1

δ(x− xi
0),

where δ is the Dirac-delta function, and xi
0 corresponds to the initial capacity of the ith player.

In the deterministic setting, we denote the hitting time of player i to reach 0 by τi, where i =
1, 2, . . . , N. The remaining proportion of active players η(t) is then a pure jump function, with
jump times given by (τi)1≤i≤N . The average equilibrium price p̄(t) will also jump across τi. We
describe the algorithm we use to solve the MFG in this setting.

6.1 Discretization Algorithm

Again the solution to the discrete MFG depends on an iterative algorithm. We modify our scheme
slightly to take advantage of the discrete nature of the problem at hand. Starting with the initial
guess u0 = u0 in (36) for the value function u, we follow

Step 1. Given un, solve N ODEs

d
dt

xn,i(t) = −qn,∗(t, xn,i(t)), xn,i(0) = xi
0.

We obtain, in particular, τn,i for i = 1, 2, . . . , which is the hitting time of the ith player, in
the nth iteration. Then for τn,k−1 < t ≤ τn,k, we have

ηn(t) = ηn
k =

N − k + 1
N

,

p̄n(t) =
1

2− c(ηn(t))

(
a(ηn(t)) +

1
ηn(t)

1
N

N

∑
i=k

∂xun
(

t, xn,i(t)
))

.

Step 2. Given (ηn, p̄n), we solve the HJB PDE (30) to obtain a new guess for the value function
un+1.

We iterate until the updated approximation for (η, p̄) is close enough to the previous iterate.
See Figure 5d and 5e for the average equilibrium price p̄ and output rate Q, respectively, in a
numerical example, with initial capacity distribution of the N-players is specified in the caption.
As N increases, we can use this discrete algorithm to approximate the continuous MFG, thus
providing another way to solve the MFG PDE system.
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Figure 5: MFG approximation to the N-player game, in the case of 10 players with initial sizes given by
(0.08, 0.14, 0.19, 0.24, 0.29, 0.34, 0.39, 0.45, 0.53, 0.66), and ε = 0.3.
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6.2 Comparison with two-player Bertrand Competition

In the two-player case, each firm has a fixed lifetime capacity of production at time t = 0 denoted
by xi(0), and where xi(t) denotes the remaining capacity at time t. Each firm i chooses a dynamic
pricing strategy, pi = pi(x(t)) where x(t) = (x1(t), x2(t)). Given these prices, each firm i receives
market demand at a rate Di(p1, p2), where Di are given in (4) with n = N = 2. Their capacities
deplete as:

dxi

dt
(t) = −Di (p1 (x(t)) , p2 (x(t))) .

The value functions of the two firms are

Vi(x1, x2) = sup
pi≥0

{∫ ∞

0
e−rt pi (x(t)) Di (p1 (x(t)) , p2 (x(t))) 1xi(t)>0 dt

}
.

As long as both players have resources, this is a duopoly. After the first player has exhausted his
capacity, the other player has a monopoly until he also runs out of reserves. As detailed in [17],
a dynamic programming argument for nonzero-sum differential games yields that these value
functions, if they have sufficient regularity, satisfy the following system of PDEs:

sup
pi≥0

{
−D1(p1, p2)

∂Vi

∂x1
− D2(p1, p2)

∂Vi

∂x2
+ piDi(p1, p2)

}
− rVi = 0, (x1, x2) ∈ R2

+,

Vi|xi=0 = 0, Vi|xj=0 = u0(xi), i = 1, 2, j 6= i,

where u0 given in (36) is the monopoly value function.
In [17], the following asymptotic approximation is constructed in the small ε limit. The value

function of player i is expanded as

Vi(x1, x2) = u0(xi) + εv(1)i (x1, x2) +O(ε2).

The correction v(1)i is given, for x1 > x2, by

v(1)1 (x1, x2) =
1
4r

(
e−rΛ(x2) (1 + rΛ(x2))− e−rΛ(x1) (1− rΛ(x2)) + e−r(Λ(x1)+Λ(x2)) − 1

)
, (58)

where Λ(x) = − 1
r log (−W (θ(x))), and, for x2 ≥ x1, by reversing the roles of x1 and x2 in (58).

The solution for v(1)2 is the same: v(1)2 = v(1)1 . From these, approximations to the Nash equilibrium
prices and demands can be computed, and hence approximate game trajectories xi(t).

Numerical Example In the two-player game, the two firms have sizes 0.25 and 0.75 respectively,
while the continuum MFG approximation uses two (equally weighted) delta functions centered at
0.25 and 0.75. See Figure 6 for the capacity trajectories in the monopoly case (dotted), computed
using the two-player asymptotic expansion (dashed), and the MFG approximation (solid).

We notice that the MFG approximation predicts a more cautious behavior since the firms are
producing at a slower pace than the two-player solution. However, while the continuum MFG
overstates the extent of competition when used to approximate the 2-player game, the trajectories
are remarkably close.
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Figure 6: MFG approximation for two-player game (solid), compared with the asymptotic expansion (dashed) and
the monopoly solution (dotted). Here we take ε = 0.3.

7 Conclusion

We have studied nonzero-sum stochastic differential games arising from Bertrand competitions
of mean field type with linear demand functions in the limit of an infinite number of players. By
considering the case where there is a small degree of interaction between the firms, we are able
to construct an asymptotic approximation that captures many of the qualitative features of the
ordinary differential games. Numerical solutions provide further insight into the stochastic case
and when there is a higher degree of competition. By considering the tail distribution instead of
the density itself, numerical solution becomes very tractable.

We find that, in the presence of competition, firms tend to be more cautious and slow down
their production, and hence the duration of the game increases. Moreover, firms find themselves
left with a higher production capacity as the game proceeds, and therefore total production
Q goes up even though each individual firm reduces their production level compared to the
monopoly case. This leads to a more stable output level throughout the lifetime production
profile.

Moreover, we consider the case where the initial distribution of the production capacity is
a sum of delta functions. This setting mimics the case of finite player games and allows us
to compare the MFG solution with the two-player asymptotic solution. Surprisingly, as seen
in Figure 6, the game trajectories are quite close even when approximating a two-player game.
Therefore the continuum MFG technology has excellent promise in approximating very difficult
nonzero-sum differential game problems with a small number of players.
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A Asymptotic correction of arbitrary order

In this section we give expressions for successive terms in the small ε expansions (49) for u and m
in the deterministic mean field game where σ = 0. It is straightforward to compute the expansions
for the coefficients α(t) = a(η(t)) and γ(t) = c(η(t)) using the expansion for η(t) in (50). We
also expand p̄(t). The terms in the three series are labeled αk(t), γk(t) and p̄k(t) respectively, but
we do not give their cumbersome formulas here.

Value function

Inserting the expansion of u into the PDE (30) with σ = 0, we find that the kth-order value
function correction uk satisfies the equation

∂tuk − ruk −
1
2

(
1 + W

(
θ(x)

))
∂xuk = fk(t, x), uk(t, 0) = 0, (59)

where the inhomogeneous term fk is given by

fk(t, x) = −1
4

{
k−1

∑
i=1

ξiξk−i + 2(1− u′0)

(
αk +

k

∑
j=0

γj p̄k−j

)}
, ξn = αn − ∂xun +

n

∑
i=0

γi p̄n−i.

Observe that fk depends only on uj and mj for 0 ≤ j < k. Having solved for these uj and mj, the
uk equations can be solved in closed-form:

uk(t, x) = −
∫ τ(x)

0
e−rs fk (t + s, X(s; x)) ds, (60)

where X(t; x) is the capacity trajectory starting from x, given by (38).

Density

The kth-order density correction mk satisfies the equation

∂tmk −
1
2

∂x

(
(1− u′0)mk

)
= gk(t, x), mk(0, x) = 0, (61)

where the inhomogeneous term gk is given by

gk(t, x) =
1
2

k

∑
i=1

∂x (ξimk−i) .

Again we see that gk depends only on uj and mj for 0 ≤ j < k. Then mk can be written as

mk(t, x) =
∫ t

0

1 + W
(
θ(x)

)
e−r(t−s)

1 + W
(
θ(x)

) gk
(
s, X(s− t; x)

)
ds. (62)

B Cournot-Bertrand Equivalence in the Stochastic Dynamic CMFG

In this section we show that in the continuum mean field setting, the dynamic Cournot game
and Bertrand games are identical. We first derive the Cournot MFG PDEs.

30



B.1 Dynamic Cournot Mean Field Game

As in the Bertrand game described in Section 3, there is an infinity of players on x > 0 with
initial density M(x). Here they choose quantities of production qt which deplete the remaining
capacity of the producers (Xt) following the dynamics

dXt = −qt dt + σ1{Xt>0} dWt,

for some Brownian motion W, and where σ > 0 is a constant. The Cournot market model is
specified by the inverse demand function pt = 1− (qt + εq̄(t)), where q̄ is the mean production.
We will denote by mc(t, x) the “density” of firms with positive capacity at time t > 0, and by
ηc(t) =

∫
R+

mc(t, x) dx the fraction of active firms remaining. Then the average quantity is

q̄(t) =
∫

R+

q(t, x)mc(t, x) dx.

The value function uc of the producers is

uc(t, x) = sup
q

E

{∫ Tc

t
e−r(s−t)psqs ds

∣∣∣∣Xt = x
}

, x > 0, (63)

where Tc is the Cournot exhaustion time, the first time ηc reaches zero, analogous to T in the
Bertrand game. In the following every quantities are defined for t < Tc. The associated HJB
equation is

∂tuc +
1
2

σ2∂2
xxuc − ruc + max

q≥0

(
1−

(
q + εq̄(t)

)
− ∂xuc

)
q = 0, x > 0. (64)

The internal optimization is the static continuum mean field Cournot game (Section 2.3.2) with
cost function s(x) 7→ ∂xuc. The first-order condition gives

q∗(t, x) =
1
2
(1− εq̄(t)− ∂xuc(t, x)) , (65)

with the optimal (equilibrium) price given by p∗(t, x) = 1
2 (1− εq̄(t) + ∂xuc(t, x)). Therefore, the

HJB equation becomes

∂tuc +
1
2

σ2∂2
xxuc − ruc +

1
4

(
1− εq̄(t)− ∂xuc

)2

= 0, x > 0. (66)

When all the reserves are exhausted, the game is over and uc(t, 0) = 0.
The density mc(t, x) of the distribution of reserves is the solution of the forward Kolmogorov

equation

∂tmc − 1
2

σ2∂2
xxmc − 1

2
∂x

((
1− εq̄(t)− ∂xuc)mc

)
= 0, (67)

with mc(0, x) = M(x). The average demand is computed by averaging (65) with respect to mc,
which leads to

q̄(t) =
1

2 + εηc(t)

(
ηc(t)−

∫
R+

∂xuc(t, x)mc(t, x) dx
)

. (68)
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B.2 Equivalence of Bertrand and Cournot Problems

We start by recalling the Bertrand MFG equations:

0 = ∂tu +
1
2

σ2∂xxu− ru +
1
4
(a(η(t))− ∂xu + c(η(t)) p̄(t))2

0 = ∂tm−
1
2

σ2∂xxm− 1
2

∂x ((a(η(t))− ∂xu + c(η(t)) p̄(t))m)

p̄(t) =
1

2− c(η(t))

(
a(η(t)) +

1
η(t)

∫
∂xu(t, x)m(t, x) dx

)
,

(69)

where η(t) =
∫

R+
m(t, x) dx.

If we define

q̄b(t) =
1

2 + εη(t)

(
η(t) +

∫
∂xu(t, x)m(t, x) dx

)
,

then it follows that (1 + εη)q̄b(t) = η(1− p̄(t)) and hence

a(η(t)) + c(η(t)) p̄(t) = 1− εq̄b(t).

Then equations (69) can be written

0 = ∂tu +
1
2

σ2∂xxu− ru +
1
4
(1− εq̄b(t)− ∂xu)2

0 = ∂tm−
1
2

σ2∂xxm− 1
2

∂x ((1− εq̄b(t)− ∂xu)m) ,

and these are exactly the Cournot CMFG equations (66), (67) and (68). As the boundary condi-
tions are the same, we have u ≡ uc, m ≡ mc and q̄ ≡ q̄b, and the Bertrand and Cournot dynamic
MFG problems are equivalent.
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[9] O. Guéant, J.M. Lasry, and P.L. Lions. Mean field games and applications. Paris-Princeton Lectures on
Mathematical Finance 2010, pages 205–266, 2011.

[10] C. Harris, S. Howison, and R. Sircar. Games with exhaustible resources. SIAM Journal on Applied
Mathematics, 70(7):2556–2581, 2010.

[11] H. Hotelling. The economics of exhaustible resources. The Journal of Political Economy, 39(2):137–175,
1931.
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