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Abstract. We study the pricing of defaultable derivatives, such as bonds, bond options,

and credit default swaps in the reduced form framework of intensity-based models. We use

regular and singular perturbation expansions on the intensity of default from which we derive

approximations for the pricing functions of these derivatives. In particular, we assume an

Ornstein-Uhlenbeck process for the interest rate, and a two-factor diffusion model for the

intensity of default. The approximation allows for computational efficiency in calibrating

the model. Finally, empirical evidence on the existence of multiple scales is presented by

the calibration of the model on corporate yield curves.
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1. Introduction

In this article we study the effect of stochastic intensity of default in the pricing of default-
able derivatives in an intensity-based framework (reduced form models). We construct an
asymptotic expansion to obtain approximations of the pricing functions of defaultable bonds,
options on such defaultable bonds, and spreads of credit default swaps. These approximations
are based on the modeling of the default intensity via two processes that vary on different
time scales. The first process evolves on a fast scale, and the second on a slow one. This
naturally allows flexibility in the intensity of default to capture empirically the short and
long end of the yield curve (for defaultable bonds) or spread curve (for credit default swaps).

The approximations allow us to leave unspecified the precise form of the intensity of default
in the model and instead we calibrate the group parameters that arise directly from data. Our
expansions allow us to approximate the price of the securities outside of the usual affine-model
specification.

The outline of the paper is as follows: in Section 2 we give a concise review of the intensity-
based models proposed so far, and we explain the motivation of our approach. Section 3
presents the main results of the approximations to the defaultable bond price, the credit de-
fault swap spread and the price of a bond option. Finally, Section 4 illustrates the calibration
of the model on data and the conclusions drawn from that are summarized on Section 5.

2. Background and Motivation

For the setup of the problem we employ the usual intensity-based framework for the mod-
eling of the default intensity process. While it is not the most general framework for intensity
modeling, since it does not allow for contagion and frailty phenomena, it has been visited
widely in the literature.

2.1. Brief Review. Driven by the growth in the credit derivatives market, the modeling of
credit risk and credit defaults has seen a remarkable surge during the last decade. Defaultable
securities are derivatives that have their payoff linked to a firm’s intrinsic risk of defaulting
before meeting its financial obligations.

The first attempts to model credit risk were made in the mid 1970’s by Merton (1974)
and Black and Cox (1976). Merton adopted the model by Black and Scholes (1973) for
the valuation of claims contingent on the evolution of an underlying stock price, to credit
risk. This is the structural approach to credit risk modeling. In particular, the assets of
a corporation are modeled by a diffusion process and the default happens at some fixed
predetermined maturity time if the asset value at that time is smaller than a predefined
default level. Black and Cox introduced the first-passage framework that extended Merton’s
model to allow for default at any time before the maturity time.

The failure to capture market observed short-term yield spreads with default times that
are predictable in the diffusion framework led to the introduction of a different class of credit
risk models during the 1990’s. Artzner and Delbaen (1995), Jarrow and Turnbull (1995),
Madan and Unal (1998), Lando (1998), Schönbucher (1998a) Schönbucher (1998b), Duffie and
Singleton (1999), and Bielecki et al. (2004) studied so-called intensity-based models where
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the default arrives according to a conditionally Poisson process (or Cox process). These
models resolve the problem of non-trivial short-term yield spreads that appeared in their
structural framework counterparts and provide us with convenient pricing tools because of
the advantageous doubly-stochastic structure.

A major benefit of intensity-based models is the direct modeling and calibration of the
risk of default. In structural models, the modeling of the assets of the underlying firm value
and debt value requires knowledge of the firm’s financial situation. On the contrary, models
under the intensity-based setup instead use the hazard rate and implied probability of default
data from credit markets.

Furthermore, in the intensity-based framework the pricing of defaultable securities is an
extension of the pricing methodology of their default-free counterparts, for which there are
many tractable models. The dynamics of the processes needed for pricing require at least
two-factor models, since we need to describe the evolution of the short rate of interest and the
stochastic intensity of default. The class of models we work with is described in Section 3.1.

2.2. The Doubly-Stochastic Poisson Framework. Let (Ω,H, P) be a complete proba-
bility space. We assume that there exist two stochastic processes r = (rt)t≥0 and λ = (λt)t≥0

with continuous paths that represent the evolution of the basic ingredients of our model. The
former process is known as the short rate of interest, and the latter as the stochastic default
rate or stochastic intensity of default. We also define the filtration F = (Ft)t≥0 given by

Ft := σ{rs, λs; 0 ≤ s ≤ t},

that describes the history of the processes r and λ.
We use a doubly-stochastic Poisson process (or Cox process, or conditionally Poisson pro-

cess) to describe the arrivals of default events. A doubly-stochastic Poisson process is a
generalization of a time-inhomogeneous Poisson process. In particular, if N = (N(t))t≥0 is a
Poisson process with unit rate that is also independent of the process λ, the process Ñ with

Ñt := N

(∫ t

0
λs ds

)
,

is called doubly-stochastic Poisson process with intensity process λ. We define the default
time τ as the time of first jump of the process Ñ . The probability that the default time will
be greater than t, conditional on the path of (λs)0≤s≤t is

P{τ > t | (λs)0≤s≤t} = exp
(
−
∫ t

0
λs ds

)
.

For the details of the existence and construction of the doubly-stochastic Poisson process we
refer to Brémaud (1981).

Intensity-based models provide closed-form pricing expressions for basic defaultable secu-
rities such as bonds, bond options and single-name credit default swaps. There have been
a few suggestions in the literature for specific models for r and λ, and the pricing func-
tions stemming from them. Duffie and Singleton (1997), Duffee (1999) and Duffie and Liu
(2001) proposed either multidimensional affine processes for the state variables that drive the
processes r and λ or affine combinations thereof.
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One of the inherent drawbacks of the multidimensional affine models is that they do not
allow for complete generality in the specification of the underlying processes. As is usually
the case, if closed-form expressions for the pricing functions are needed we assume mean-
reverting processes for the short rate of interest r and the intensity of default λ such as
Ornstein-Uhlenbeck or square-root diffusions (CIR type). Then we obtain these expression
only under restrictive assumptions, such as independence, or positive-only correlation between
the two processes. Additionally, the intensity of default needs to remain positive at all times,
thus the choice of Gaussian processes for the intensity process λ is not valid. For more on
these shortcomings we refer to Chapter 7 of Schönbucher (2003) and Chapter 5 of Lando
(2004).

In what follows we illustrate a method to relax the usual assumptions imposed on multi-
dimensional affine models, and obtain a pricing tool that offers flexibility in yield curve and
credit default swap spread fitting. We adopt a similar setup to that of Fouque et al. (2003a)
for multiscale perturbation methods for stochastic volatility in equity models, as well as Cot-
ton et al. (2004) for the application of stochastic volatility models to interest-rate derivatives.
Fouque et al. (2006) apply multiscale methods to price defaultable securities with stochastic
volatility in the structural framework.

3. Multiscale Intensity Models

In this section we provide the main results of the paper. We introduce the main model
that is based on the Vasicek model for the short rate of interest. We present the asymptotic
approximation of the pricing functions for the defaultable bond, the credit default swap, and
the option on a defaultable bond.

3.1. Model. We assume the existence of a probability measure P?, equivalent to P, which
we use for pricing. In what follows we will present the stochastic processes r and λ under
the market-determined pricing measure, ignoring their representation under the “real-world”
measure P.

A convenient practice is to model the interest rate r as a mean-reverting process. Usual
practices are to use the models suggested by either Vasicek (1977) or Cox et al. (1985) (or
extensions of them) because of their closed-form expressions for the price functions and also
due to their simplicity in calibration. Many other term-structure models—and the prices of
default-free derivatives under them—have been studied in the literature, and their advantages
and shortcomings have been thoroughly discussed. For a survey see Rogers (1995) while for
a more complete collection of interest rate models, their analysis, and extensions we refer to
Brigo and Mercurio (2001).
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The following system of stochastic differential equations (SDEs) describes the dynamics of
the model:

drt = α(r̄ − rt)dt + σdW
(0)
t ,(3.1)

λt = f(Yt, Zt),

dYt =
1
ε

(m− Yt) dt +
ν
√

2√
ε

dW
(1)
t ,(3.2)

dZt = δ c(Zt) dt +
√

δ g(Zt) dW
(2)
t ,(3.3)

where the Wiener process W = (W (0),W (1),W (2)) has covariance matrix ΣΣT with

Σ =

 1 0 0
ρ1

√
1− ρ2

1 0
ρ2 ρ̃12

√
1− ρ2

2 − ρ̃2
12

 .

All the correlation coefficients ρ1, ρ2, ρ̃12 are in (−1, 1).
For modeling purposes, we link the evolution of the stochastic default rate λ to two driving

processes Y = (Yt)t≥0, Z = (Zt)t≥0 through a bounded, smooth, and strictly positive function
f : R2 → R+.

The first driving process for the intensity of default, Y , is modeled as a mean-reverting
Ornstein-Uhlenbeck process. The ε in (3.2) is a small, strictly positive, parameter that scales
the reversion time of the process to its long-term mean m. The rate of mean reversion is
1/ε. Recall that processes of such form are Gaussian, and that the invariant distribution of
Y , that is, the distribution of Y∞ = limt→∞ Yt is Gaussian with law

P?{Y∞ ∈ dy} = Ψ(y) dy,

where

(3.4) Ψ(y) =
1√

2πν2
exp

(
−(y −m)2

2ν2

)
, y ∈ R.

Notice that under the above formulation the rate of mean reversion 1/ε of the process Y does
not appear in its invariant distribution.

The process Z of the intensity of default is modeled as a general diffusion with the as-
sumption that the Lipschitz and growth conditions for the drift and the volatility coefficients
c and g are satisfied, so that it admits a unique strong solution. The δ parameter in the
SDE (3.3) above for Z controls the speed of fluctuation of Z in the following sense. Let the
process Z(1) satisfy (3.3) with δ = 1. Then, we have

Zt
d= Z

(1)
δt , t ≥ 0,

where the equality is in distribution.
We work in the regime of the parameters ε and δ such that

0 < ε � 1, 0 < δ � 1.

These determine the speed of the evolution of each process: fast evolution for Y and slow
evolution for Z, with respect to the time horizon T .
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The SDE (3.1) corresponds to an Ornstein-Uhlenbeck process, adopted by Vasicek (1977)
as a short-rate model for term-structure modeling. It has the favorable property that is
mean-reverting, in the sense that the drift parameter changes accordingly so that it tries to
force each trajectory towards the level of mean-reversion r̄. The strictly positive parameter
σ is the diffusion coefficient of the process r.

As mentioned already the distribution of the random variable rt is Gaussian, which is
one of the drawbacks of the Vasicek model since there is always positive probability that the
short rate of interest will be negative. This comes in contradiction with the usual no-arbitrage
consideration of term-structure models but is often overlooked by practitioners in light of the
numerical tractability of this process.

3.2. Defaultable Bond Price. Consider a defaultable zero-coupon bond with maturity
date T and par value $1. To account for recovery, we assume that if the bond defaults prior
to maturity, it recovers a constant fraction 1− q of the pre-default value with q ∈ (0, 1]. The
no-arbitrage price of such a bond at time t ≤ T is

P (t;T ) = E?

[
exp

(
−
∫ T

t
rs ds

)
1{τ>T}

+exp
(
−
∫ τ

t
rs ds

)
1{τ≤T}(1− q)P (τ−;T ) | Ft ∨ σ{Ñs; 0 ≤ s ≤ t}

]
,

where τ is the time of the first jump of the doubly-stochastic Poisson process (default time).
This recovery assumption is known as the recovery of market value with rate of recovery 1−q,
and we refer to q as the loss fraction. Duffie and Singleton (1999) and Schönbucher (1998b)
showed that the recovery rate enters the pricing expression as

(3.5) P (t, rt, Yt, Zt;T ) = E?

[
exp

(
−
∫ T

t
(rs + qf(Ys, Zs)) ds

)
| rt, Yt, Zt

]
,

on {τ > t} where we also used the Markov property of the three-dimensional process (r, Y, Z).
The process r as described in (3.1) is not bounded from below, but it is straightfor-

ward to show that the expectation in (3.5) is indeed finite.1 Then the bond price function
P (t, x, y, z;T ) satisfies the Feynman-Kac partial differential equation (PDE) problem

Lε,δP (t, x, y, z;T ) = 0, t < T,(3.6)

P (T, x, y, z;T ) = 1,

where

Lε,δ :=
1
ε
L0 +

1√
ε
L1 + L2 +

√
δM1 + δM2 +

√
δ

ε
M3,(3.7)

1Since r = (rt)t≥0 is a Gaussian process, the random variable
R T

t
rs ds has moments of all orders. Also

the Laplace transform of the positive random variable
R T

t
f(Ys, Zs) ds is finite, and the rest follows from the

inequality |ab| ≤ a2/2 + b2/2, for a, b ∈ R.
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and L0, L1, and L2 are defined as

L0 := ν2 ∂2

∂y2
+ (m− y)

∂

∂y
,(3.8)

L1 := ρ1σν
√

2
∂2

∂x∂y
,

L2 :=
∂

∂t
+

1
2
σ2 ∂2

∂x2
+ α(r̄ − x)

∂

∂x
− (x + qf(y, z))· ,

where the · in the last term of L2 denotes the identity operator. The operator ε−1L0 is the
infinitesimal generator of the process Y , the operator L1 contains the correlation between
the fast factor Y and the short rate r, and L2 is the Vasicek generator for the price function
P corresponding to (3.1), with potential term x + qf(y, z).

The operators M1, M2, and M3 associated with the slow-varying process Z = (Zt)t≥0

are defined as

M1 := ρ2σg(z)
∂2

∂x∂z
,

M2 :=
1
2
g(z)2

∂2

∂z2
+ c(z)

∂

∂z
,(3.9)

M3 := ρ12ν
√

2g(z)
∂2

∂y∂z
.(3.10)

The operatorM1 contains the correlation between the short rate process r and the slow factor
Z, and δM2 is the infinitesimal generator of the process Z. Finally, the operator M3 comes
from the correlation between the processes Y and Z. The correlation coefficient ρ12 appearing
in the expression for M3 is the instantaneous correlation of the Wiener processes W (1) and
W (2) which is written in terms of the other correlation coefficients as ρ12 := ρ1ρ2+ρ̃12

√
1− ρ2

1.
Recall that in the absence of default risk, that is f ≡ 0, the price of such a bond at time t

is the usual exponential-affine expression in the state variable rt:

A(T − t) exp(−B(T − t)rt).

The terms A and B satisfy the ordinary differential equations (ODEs)

B′ + αB = 1,(3.11)

−A′

A
+

1
2
σ2B2 − αr̄B = 0,(3.12)

that along with the initial conditions

A(0) = 1, B(0) = 0,

yield the expressions

B(s) =
1− e−αs

α
, s ≥ 0,(3.13)

A(s) = exp
(
−
(

r̄ − σ2

2α2

)
(s−B(s))− σ2

4α
B(s)2

)
, s ≥ 0.(3.14)

For more on the affine representations of bond prices we refer to Brigo and Mercurio (2001).
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3.2.1. Asymptotic Expansion. We construct an asymptotic expansion for the price of the
bond, P and we adopt the notation convention Pj,k for the εj/2δk/2-order term (j, k =
0, 1, 2, . . .). We shall refer to P0,0 ≡ P0 simply as the leading order term, and to the higher
order terms as the perturbation or correction terms.

The price function will first be expanded in the slow scale in half-powers of δ, and then
for each of these terms we will construct a fast scale expansion in half-powers of ε. The
approximation remains the same if we expand in the fast scale first and then in the slow, but
we choose the aforementioned route because the calculations are slightly simpler. We write
then

P (t, x, y, z;T ) = P ε
0 (t, x, y, z;T ) +

√
δ P ε

1 (t, x, y, z;T )(3.15)

+ δ P ε
2 (t, x, y, z;T ) + · · · , t ≤ T,

P ε
k (t, x, y, z;T ) = P0,k(t, x, y, z;T ) +

√
ε P1,k(t, x, y, z;T )(3.16)

+ ε P2,k(t, x, y, z;T ) + · · · , t ≤ T,

for k = 0, 1, 2, . . .. The convergence of the approximation (3.15) to P (t, x, y, z;T ) defined in
(3.5) for fixed t, x, y, z as ε, δ → 0 is given in Theorem 3.1.

The PDE problems that P ε
0 and P ε

1 satisfy are defined by(
1
ε
L0 +

1√
ε
L1 + L2

)
P ε

0 = 0, t < T,(3.17)

P ε
0 (T, x, y, z;T ) = 1,

and (
1
ε
L0 +

1√
ε
L1 + L2

)
P ε

1 = −
(
M1 +

1√
ε
M3

)
P ε

0 , t < T,(3.18)

P ε
1 (T, x, y, z;T ) = 0,

which are obtained by inserting (3.15) into (3.6) and comparing terms in δ0 and
√

δ respec-
tively.

Next we insert the fast-scale expansion (3.16) with k = 0 for P ε
0 into (3.17) and collecting

terms in ε−1 gives

L0P0 = 0.

This is a homogeneous ODE in y, and its solutions either have exponential growth at infinity
or are independent of y. We therefore construct our approximation so that P0 is independent
of y, i.e., P0 = P0(t, x, z;T ).

The terms in ε−1/2 lead to

L0P1,0 + L1P0 = 0.

Since L1 takes derivatives in y, L1P0 = 0 hence the PDE becomes the ODE L0P1,0 = 0 and
we again choose P1,0 = P1,0(t, x, z;T ).

The terms independent of ε give

(3.19) L0P2,0 + L2P0 = 0,
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since L1P1,0 = 0. This is a Poisson equation for P2,0 in y, which has a solution only if the
source term L2P0 is centered with respect to the invariant distribution of Y . This solvability
condition in also known as the Fredholm alternative. In other words, we require

〈L2〉P0(t, x, z;T ) = 0, t < T,(3.20)

where 〈L2〉 corresponds to the operator L2 after averaging with respect to the invariant
distribution of the process Y , or

〈L2〉 =
∂

∂t
+

1
2
σ2 ∂2

∂x2
+ α(r̄ − x)

∂

∂x
− (x + q〈f〉(z)) · .

Here, 〈·〉 denotes integration with respect to the invariant distribution of Y (see (3.4)),

〈f〉(z) :=
∫

R
f(y, z)Ψ(y) dy.

Along with the terminal condition P0(T, x, z;T ) = 1 the PDE problem (3.20) defines the
leading order term.

The terms in
√

ε give
L0P3,0 + L1P2,0 + L2P1,0 = 0,

which is a Poisson equation for P3,0 whose solvability condition is

〈L2〉P1,0 = −〈L1P2,0〉.

From (3.19) and (3.20) we have

L0P2,0 = −L2P0 = −(L2 − 〈L2〉)P0,

and so the solvability condition becomes

〈L2〉P1,0 = 〈L1L−1
0 (L2 − 〈L2〉)〉P0.

Let us define ϕ : R2 → R to be a solution to the Poisson equation

(3.21) L0ϕ(y, z) = f(y, z)− 〈f〉(z),

and we also define the operator A as

A :=
〈
L1L−1

0 (L2 − 〈L2〉)
〉
,

which, when it is applied to functions that depend only on t, x, and z, can be written explicitly
as

A = −ρ1σνq
√

2 〈ϕy〉 (z)
∂

∂x
.(3.22)

We arrived to this by using the definition of the operator L1, the solution ϕ to the Poisson
equation (3.21), since L2 − 〈L2〉 = q(〈f〉(z)− f(y, z))· .

This leads us to define P̃1,0 :=
√

ε P1,0 as the solution of

〈L2〉P̃1,0(t, x, z;T ) =
√

εAP0(t, x, z;T ), t < T,(3.23)

P̃1,0(T, x, z;T ) = 0.

Next, we insert the expansion (3.16) with k = 1, namely

P ε
1 = P0,1 +

√
ε P1,1 + ε P2,1 + · · · ,
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into (3.18) and collect terms in like powers of ε. Similar arguments as before lead us to define
P̃0,1 :=

√
δ P0,1 as the solution of

〈L2〉P̃0,1(t, x, z;T ) = −
√

δM1P0(t, x, z;T ), t < T,(3.24)

P̃0,1(T, x, z;T ) = 0.

Notice that the asymptotic approximation up to order O(ε, δ) does not depend on the current
value of the process Y , i.e. on {Yt = y}. Instead, only parameters of the process Y enter
the pricing function via the distribution of Y∞. This is an important feature of the solutions
that we take advantage of in the calibration of the pricing functions in Section 4.

Below we summarize this asymptotic pricing function for the defaultable zero-coupon bond
and give explicit formulas. We also state the accuracy result for the bond price and sketch
its proof.

3.2.2. Bond Price and Bond Yield Approximation. Let us define

λ̄(z) := q〈f〉(z),(3.25)

V1(z) :=
√

ε ρ1νq
√

2〈ϕy〉(z),(3.26)

V2(z) :=
√

δ ρ2g(z)q〈f〉z(z),(3.27)

h1(s) :=
σ

α
(B(s)− s),(3.28)

h2(s) :=
σ

2α2
(2 + αs)s− σ

α2
(1 + αs)B(s),(3.29)

with B as in (3.13), and 〈f〉z(z) := ∂
∂z 〈f〉(z).

The solutions to the PDE problems (3.20), (3.23), and (3.24) determine the following
approximation terms

P0(t, x, z;T ) = A(T − t) exp
(
−B(T − t)x− λ̄(z)(T − t)

)
,(3.30)

P̃1,0(t, x, z;T ) = V1(z)h1(T − t)P0(t, x, z;T ),(3.31)

P̃0,1(t, x, z;T ) = V2(z)h2(T − t)P0(t, x, z;T ),(3.32)

with A defined in (3.14). The leading order term is the default-free zero-coupon bond price
assuming the model (3.1) for the short rate process further discounted by the “average credit
spread” λ̄ evaluated at the time t value of the slowly-varying process Z, i.e., at Zt = z.

The correction terms, P̃1,0 and P̃0,1, are products of the leading order term with time-
dependent functions and the parameters V1 and V2. The parameter V1 contains the effect of
the correlation ρ1 between the fast intensity factor Y and the short rate r, and similarly V2

contains the effect of ρ2 between the slow intensity factor Z and the short rate r. Both are
proportional to the loss fraction q and the square root of ε and δ respectively.

We denote the approximation up to order O(ε, δ) of the price at time t of a defaultable
zero-coupon bond with maturity T by P ε,δ and is given by

(3.33) P ε,δ(t, x, z;T ) = P0(t, x, z;T ) + P̃1,0(t, x, z;T ) + P̃0,1(t, x, z;T ), t ≤ T.
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Figure 3.1. The effect of the group parameters V1 and V2 on the credit spreads
derived from the approximation to the defaultable zero-coupon bond. The three spread
curves were drawn for the combinations V1 = 0.02, V2 = 0 (Case I), V1 = 0, V2 =
0.001 (Case II), and V1 = 0.1, V2 = 0.01 (Case III). We set λ̄ = 0.01 for all curves
and the parameters for the short-rate process are α = 0.5, r̄ = 0.05, σ = 0.03, and
r0 = x = 0.045.

The yield curve corresponding to the approximate defaultable bond price is the mapping
s 7→ R(·, ·, ·; s) with

R(λ̄(z), V1(z), V2(z); s) = −1
s

log P ε,δ(0, x, z; s)

= −1
s

log (1 + h1(s)V1(z) + h2(s)V2(z))− 1
s

log P0(0, x, z; s),(3.34)

for s > 0.
Similarly, the yield spread curve or credit spread curve of the defaultable bond is defined

as the excess spread of the yield of the defaultable bond over the equivalent default-free
security, in this case a treasury bond. The spread curve is then, simply, the mapping s 7→
R(·, ·, ·; s)−R(0, 0, 0; s) for s ∈ R+.

The asymptotic approximation of the bond price offers a variety of spread curve shapes,
as can be seen from Figure 3.1. This is particularly important when calibrating the model on
spread curves of distressed firms, such as firms with low credit ratings where the probability
of an imminent default is considerably higher. Notice the hump-shaped spread curve for
Case III, which matches a typical spread curve for structural models as in the Merton (1974)
model, but with non-zero spread at short maturities. We elaborate on the spread curves and
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the effects of the group parameters V1 and V2 on them in Section 4 where we also perform a
calibration exercise for two investment grade companies.

3.2.3. Accuracy of the Asymptotic Approximation. Under the expansion described in Sec-
tion 3.2.1, the asymptotic approximation of the bond price given by the expression (3.33) has
an error of order O(ε, δ). We state this formally below.

Theorem 3.1. For fixed 0 < t < T , fixed x, y, z ∈ R, and for every ε ≤ 1, δ ≤ 1, there
exists a positive constant C < ∞ that depends on (t, x, y, z) but not on ε and δ such that

|P (t, x, y, z;T )− P ε,δ(t, x, z;T )| ≤ C(ε + δ).

Proof. The first step of the proof is to control the unbounded potential term in L2, since the
Ornstein-Uhlenbeck process r may go to −∞. To that end, we make the transformation

P (t, x, y, z;T ) = A(T − t)e−B(T−t)xF (t, y, z;T ), t ≤ T.

Using the ODEs (3.12) and (3.11) for A and B, we find that F solves the following PDE
problem

L̃ε,δF = 0, t < T,(3.35)

F (T, y, z;T ) = 1,

where

L̃ε,δ :=
1
ε
L0 +

1√
ε
L̃1 + L̃2 +

√
δ M̃1 + δM2 +

√
δ

ε
M3,

L̃1 := −B(T − t)ρ1σν
√

2
∂

∂y
,

L̃2 :=
∂

∂t
− qf(y, z)· ,

M̃1 := −B(T − t)ρ2σg(z)
∂

∂z
,

and L0, M2, and M3 are defined in (3.8), (3.9), and (3.10) respectively.
Now, it suffices to show that for fixed y and z in R and for fixed 0 < t < T the approx-

imation of F (shown below) is of order O(ε, δ), since the pre-factor A(T − t)e−B(T−t)x is
independent of (ε, δ).

Similar to the approximation for the bond price P we can construct an expansion for F ,
denoted F ε,δ and given explicitly by

F ε,δ(t, y, z;T ) = F0(t, y, z;T ) +
√

ε F1,0(t, y, z;T ) +
√

δ F0,1(t, y, z;T ), t ≤ T.

Analogous to (3.30), (3.31), and (3.32) we have

F0(t, z;T ) = exp(−λ̄(z)(T − t)),
√

ε F1,0(t, z;T ) = V1(z)h1(T − t)F0(t, z;T ),
√

δ F0,1(t, z;T ) = V2(z)h2(T − t)F0(t, z;T ),

where V1, V2, h1, and h2 were defined in (3.26), (3.27), (3.28), and (3.29) respectively.
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We further define the higher-order terms F1,1, F2,0, F2,1, and F3,0 to be solutions of〈
L̃2

〉
F1,1 = ÃF0,1 − M̃1F1,0,(3.36)

L0F2,0 = −
(
L̃2 −

〈
L̃2

〉)
F0,(3.37)

L0F2,1 = −
(
L̃2 −

〈
L̃2

〉)
F0,1,(3.38)

L0F3,0 = −
(
L̃1F2,0 −

〈
L̃1F2,0

〉)
−
(
L̃2 −

〈
L̃2

〉)
F1,0,(3.39)

where

Ã :=
〈
L̃1L−1

0

(
L̃2 −

〈
L̃2

〉)〉
= ρ1σνq

√
2〈ϕy〉(z)B(T − t) · .

These PDEs are motivated by inserting the higher expansion for F ε,δ into the PDE (3.35)
and collecting the terms of order

√
εδ, ε, ε

√
δ, and ε3/2, respectively.

Next we introduce the higher order approximation for F ,

F̂ ε,δ :=F ε,δ + ε (F2,0 +
√

ε F3,0) +
√

δ (
√

ε F1,1 + ε F2,1)

=F0 +
√

ε F1,0 + ε F2,0 + ε3/2F3,0 +
√

δ(F0,1 +
√

εF1,1 + εF2,1),

and we introduce the error term Qε,δ defined as

Qε,δ(t, y, z;T ) := F̂ ε,δ(t, y, z;T )− F (t, y, z;T ).

Applying the operator L̃ε,δ on Qε,δ and using (3.35) we get

L̃ε,δQε,δ = L̃ε,δF̂ ε,δ

=
1
ε
L0F0 +

1√
ε
(L̃1F0 + L0F1,0) + L0F2,0 + L̃1F1,0 + L̃2F0

+
√

ε (L0F3,0 + L̃1F2,0 + L̃2F1,0) +
√

δ

[
1
ε
L0F0,1 +

1√
ε

(
L̃1F0,1 + L0F1,1 +M3F0

)]
+
√

δ (L0F2,1 + L̃1F1,1 + L̃2F0,1 + M̃1F0 +M3F1,0) + ε Qε
1 +

√
εδ Qε

2 + δ Qε
3,

where

Qε
1 := L̃2F2,0 + L̃1F3,0 +

√
ε L̃2F3,0,

Qε
2 := L̃2F1,1 + L̃2F2,1 + M̃1F1,0 +M3F2,0 +

√
ε (L̃2F2,1 + M̃1F2,0 +M3F3,0)

+ εM̃1F3,0,

Qε
3 := M̃1F0,1 +M2F0 +M3F1,1 +

√
ε (M̃1F1,1 +M2F1,0 +M3F2,1)

+ ε (M̃1F2,1 +M2F2,0).

All the terms on the right-hand side of the expression for L̃ε,δQε,δ, apart from the last three,
are zero by the definition of the terms F0, F1,0, F0,1, F1,1, F2,0, F2,1, F3,0 above and the PDEs
(3.36), (3.37), (3.38), and (3.39).
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Furthermore, at the maturity time T we have (suppressing the dependence on y and z at
places)

Qε,δ(T ;T ) = F̂ ε,δ(T ;T )− F (T ;T )

= ε F2,0(T ;T ) + ε3/2 F3,0(T ;T ) +
√

εδ F1,1(T ;T ) + ε
√

δ F2,1(T ;T )

= ε
(
F2,0(T ;T ) +

√
ε F3,0(T ;T )

)
+
√

εδ
(
F1,1(T ;T ) +

√
εF2,1(T ;T )

)
=: ε G1(y, z;T ) +

√
εδ G2(y, z;T ).

We write then the probabilistic representation for Qε,δ as

Qε,δ(t, y, z;T )

= ε E?
t,y,z

[
e−

R T
t qf(Ys,Zs) dsG1(YT , ZT ;T )−

∫ T

t
e−

R u
t qf(Ys,Zs) dsQε

1(u, Yu, Zu) du

]
+
√

εδ E?
t,y,z

[
e−

R T
t qf(Ys,Zs) dsG2(YT , ZT ;T )−

∫ T

t
e−

R u
t qf(Ys,Zs) dsQε

2(u, Yu, Zu) du

]
+ δ E?

t,y,z

[
−
∫ T

t
e−

R u
t qf(Ys,Zs) dsQε

3(u, Yu, Zu) du

]
,

with E?
t,y,z[·] = E?[· | Yt = y, Zt = z]. For fixed y, z ∈ R and t < T the terms Qε

1, Qε
2, and Qε

3

are uniformly bounded by smooth functions of t, z independent of ε, δ which grow at most
linearly in |y|. We arrive to this conclusion by the fact that f is bounded and so we can
choose the solution ϕ to the Poisson equation (3.21) to be at most linearly growing in |y| (see
Fouque et al., 2003b, Lemma 4.3 and Appendix C). Additionally, as functions of z the higher
order terms F1,1, F2,0, F2,1, F3,0 as defined in (3.36), (3.37), (3.38), and (3.39) are bounded
because of our boundedness assumption on f , and because they satisfy ODEs in y with z

just as a parameter. Further, F1,1, F2,0, F2,1, F3,0 can be chosen to grow at most linearly in
|y| because of their dependence on ϕ. For this reason, the terms G1 and G2 (which do not
depend on t) are uniformly bounded in z and at most linearly growing in |y|.

Therefore, since for fixed y, z ∈ R and fixed 0 < t < T all the expectations above are
uniformly bounded by some constants, we can write

|F (t, y, z;T )− F ε,δ(t, z;T )| = |F − F̂ ε,δ + F̂ ε,δ − F ε,δ|

≤ |F − F̂ ε,δ|+ |F̂ ε,δ − F ε,δ|

= |Qε,δ|+ ε |F2,0 +
√

ε F3,0|+
√

εδ |F1,1 +
√

ε F2,1|

≤ ε C1 +
√

εδ C2 + δ C3

≤ C(ε + δ),

for suitably defined constants C, C1, C2, and C3 which depend on the parameters, but not
on ε and δ. This completes the proof. �

3.3. Credit Default Swap. A credit default swap (CDS) contract is a derivative that pro-
vides insurance against the default of a reference entity which is usually a corporation or
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a sovereign (i.e., a national government). Below we provide a brief description of such a
contract.

3.3.1. Preliminaries. In a single-name credit default swap the protection buyer, that is, the
counterparty that receives a payoff if the reference entity defaults, pays a periodic premium to
the protection seller. In return, the protection seller has to compensate the protection buyer
in the case where the reference entity defaults prior to a pre-determined maturity time. The
premiums the protection buyer pays to the protection seller are usually paid quarterly or
semiannually until the maturity of the credit default swap contract, or until the time of the
default event, whichever comes first.

To fix ideas, suppose that the CDS is written on a bond issued by the reference entity.
In the case where the reference entity defaults before the maturity of the CDS contract, we
assume that the protection seller compensates the protection buyer with a cash settlement.
In particular, the protection seller will make a cash payment to the protection buyer equal to
the difference of the notional amount of the bond and its post-default market value which is
usually determined by polling several dealers. Unlike the recovery of market value introduced
above, here we assume that in default the bond recovers 1−q of its face value—which is known
as recovery of face value—and the protection seller provides the remaining proportion q of
the face value to the protection buyer.

While there are other types of settlement used in practice, we will not go into details here.
For a detailed specification of the repayment methods at default, more information on what
constitutes a default event, usual practices for settlements in the financial industry, and other
legal issues we refer to the books by Duffie and Singleton (2003), Schönbucher (2003), and
Lando (2004).

The pricing of a credit default swap amounts to determining the CDS spread which de-
termines the amount paid by the protection buyer to the protection seller on each payment
date. Assume that there are M such scheduled periodic payments and let T be the payment
tenor, used to denote the sequence of these payment dates Tm, m = 1, . . . ,M or in other
words T = (T1, . . . , TM ), with T1 < · · · < TM . We refer to TM as the maturity of the CDS
contract.

The CDS spread is quoted in basis points or one hundredth of one percent (i.e., 1/10000)
and thus the payment of the protection buyer to the protection seller at each payment date
is the product of the CDS spread and the face value of the bond which is designated in the
CDS contract. We will also make the simplifying assumptions that

(i) the bond coupon dates match the payment dates of the CDS, and
(ii) if a default occurs the settlement takes place at a coupon date following the default

but we do not consider the accrued interest of the intermediate period.

Instead of determining the CDS spread for a credit default swap that would be active
immediately we will price a forward CDS (forward contract on a CDS). A forward CDS is
a CDS contract between a protection buyer and a protection seller with payment tenor T
that is active after some initial time T0 (the effective date, where 0 ≤ T0 < T1). In the case
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where the credit event happens prior to the effective date the forward CDS is worthless and
no payments are made from either counterparty.

Since the CDS contract is made up from two distinct counterparties’ payoffs, its pricing
follows from no-arbitrage arguments based on the pricing of each counterparty’s position. We
will determine the payment of the protection buyer, cpb, and that of the protection seller, cps,
at some time t with t ≤ T0. We denote the forward CDS spread at time t with effective date
T0 and payment tenor T as cds(t, T0; T ) and so the spread of a CDS is given by the spread
of a forward CDS with immediate effective date, i.e., cds(t, t; T ).

Let us consider the case of the protection buyer first. Such an individual will pay a premium
at each payment date Tm (m = 1, . . . ,M) until maturity or until default, whichever comes
first, for every dollar of the face value of the bond. By recalling that τ is the time of the first
jump of the doubly-stochastic Poisson process Ñ we can express this premium as

cpb(t, T0; T ) = E?

[
M∑

m=1

exp
(
−
∫ Tm

t
rs ds

)
1{τ>Tm}c

ds(t, T0; T ) | Ft ∨ σ{Ñs; 0 ≤ s ≤ t}

]

= cds(t, T0; T )
M∑

m=1

E?

[
exp

(
−
∫ Tm

t
(rs + λs) ds

)
| Ft

]
, t < τ.(3.40)

We arrived at the expression (3.40) as in the defaultable bond pricing expression (3.5). Indeed,
the conditional expectation that appears in (3.40) is simply the price of a zero-coupon bond
at time t with zero recovery of market value (or zero recovery of face value) and maturity
Tm, which we denote by p(t;Tm) and is given by

p(t;Tm) = 1{t<τ}E?

[
exp

(
−
∫ Tm

t
(rs + λs) ds

)
| Ft

]
.

The payment of the protection buyer is zero if t ≥ τ .
Under the cash settlement assumption we made, the present (time t) payment by the

protection seller at the default time τ is

cps(t, T0; T ) = E?

[
exp

(
−
∫ τ

t
rs ds

)
1{T0≤τ≤TM}q | Ft ∨ σ{Ñs; 0 ≤ s ≤ t}

]
= E?

[∫ TM

T0

exp
(
−
∫ u

t
(rs + λs) ds

)
qλu du | Ft

]
, t < τ.

Similarly, the protection seller payment is zero on {t ≥ τ}.
The forward CDS spread is, by definition, the spread that equates the payments of the

two counterparties, thus

cds(t, T0; T ) =
E?
[∫ TM

T0
exp

(
−
∫ u
t (rs + λs) ds

)
qλu du | Ft

]
∑M

m=1 p(t;Tm)
, t < τ.

3.3.2. Asymptotic Approximation of the CDS Spread. The asymptotic approximation of the
payment of the protection buyer is obtained from the corresponding defaultable bond expres-
sion given in Section 3.2.1. Under the asymptotic approximation (3.33) for the defaultable
zero-coupon bond price, we will denote this price by pε,δ(t;Tm), or pε,δ(t, x, z;Tm) as needed,
and it is equal to P ε,δ in (3.33) with q = 1.
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For the protection seller payment let

w(t, rt, Yt, Zt;T ) = E?

[∫ T

t
exp

(
−
∫ u

t
(rs + f(Ys, Zs)) ds

)
qf(Yu, Zu) du | rt, Yt, Zt

]
.

Then the protection seller payment is given by

cps(t, T0; T ) = w(t, rt, Yt, Zt;TM )− w(t, rt, Yt, Zt;T0), t < τ ∧ T0.

The inhomogeneous PDE problem that w satisfies is

`ε,δw(t, x, y, z;T ) + qf(y, z) = 0, t < T,(3.41)

w(T, x, y, z;T ) = 0,

where the operator `ε,δ is defined similar to Lε,δin (3.7),

`ε,δ :=
1
ε
L0 +

1√
ε
L1 + `2 +

√
δM1 + δM2 +

√
δ

ε
M3.

The operators L0, L1, M1, M2, and M3 are defined in Section 3.2, and `2 corresponds to
L2 with q = 1 for the no-recovery case,

`2 =
∂

∂t
+

1
2
σ2 ∂2

∂x2
+ α(r̄ − x)

∂

∂x
− (x + f(y, z)) · .

Note the presence of the source term qf(y, z) in the PDE (3.41).
We denote wε,δ the approximation to the pricing function w under our setup. Then using

the same notation conventions as in the bond price case we write for the asymptotic expansion
of the pricing function

w(t, x, y, z;T ) = wε
0(t, x, y, z;T ) +

√
δ wε

1(t, x, y, z;T ) + δ wε
2(t, x, y, z;T ) + · · · ,

wε
k(t, x, y, z;T ) = w0,k(t, x, y, z;T ) +

√
ε w1,k(t, x, y, z;T ) + ε w2,k(t, x, y, z;T ) + · · · ,

for k = 0, 1, 2, . . .. Setting again w̃1,0 :=
√

ε w1,0, w̃0,1 :=
√

δ w0,1, the defining PDE problems
for the leading order and perturbation terms are

〈`2〉w0(t, x, z;T ) + λ̄(z) = 0, t < T,(3.42)

w0(T, x, z;T ) = 0,

〈`2〉w̃1,0(t, x, z;T ) =
√

ε
1
q
Aw0(t, x, z;T ), t < T,(3.43)

w̃1,0(T, x, z;T ) = 0,

〈`2〉w̃0,1(t, x, z;T ) = −
√

δM1w0(t, x, z;T ), t < T,(3.44)

w̃0,1(T, x, z;T ) = 0,

where λ̄(z) is defined in (3.25), and the operator 〈`2〉 is similar to 〈L2〉:

〈`2〉 =
∂

∂t
+

1
2
σ2 ∂2

∂x2
+ α(r̄ − x)

∂

∂x
− (x + 〈f〉(z)) · .

Notice that in the source term of the PDE (3.43) the operator A is divided by the loss
fraction, q, to account for the use of the operator `2 instead of L2 in the original PDE (3.41).
This is due to the recovery of face value assumption made for the CDS contract.
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Let p0(t, x, z;T ) be equal to the leading order term P0(t, x, z;T ) in (3.30) of the approxi-
mation of a defaultable zero-coupon bond for zero recovery of market value, or

p0(t, x, z;T ) = A(T − t) exp (−B(T − t)x− 〈f〉(z)(T − t)) .

The solutions of the PDEs (3.42), (3.43), and (3.44) are

w0(t, x, z;T ) = λ̄(z)
∫ T−t

0
p0(0, x, z; s) ds,

for the leading order term, and

w̃1,0(t, x, z;T ) = −σV1(z)
λ̄(z)

q

∫ T

t

∫ T

s
B(v − s)p0(t, x, z; v) dv ds,(3.45)

w̃0,1(t, x, z;T ) = σV2(z)
λ̄(z)

q

∫ T

t

∫ T

s
(v − s)B(v − s)p0(t, x, z; v) dv ds(3.46)

− σV2(z)
∫ T

t

∫ T

s
B(v − s)p0(t, x, z; v) dv ds,

for the perturbation terms with the functions V1 and V2 defined in (3.26) and (3.27), re-
spectively. The latter integrals cannot be calculated in closed form but can be handled
numerically.

The asymptotic approximation up to order O(ε, δ) for the price of the protection seller
payment is

(3.47) wε,δ(t, x, z;T ) = w0(t, x, z;T ) + w̃1,0(t, x, z;T ) + w̃0,1(t, x, z;T ).

Notice again that the approximation up to order O(ε, δ) does not depend explicitly on the
current level Yt = y but the parameters of Y enter through V1 and V2.

Unlike the bond and bond option price approximations (see Section 3.4.1 below) in the final
expression for the CDS we have the presence of an additional q parameter in the expressions
for w̃1,0 and w̃0,1 in (3.45) and (3.46). This is due to the recovery assumption made for the
protection seller payment. Hence, we assume that the rate of recovery 1− q (or, equivalently,
the loss fraction q) is known, to avoid estimating it separately. Typical values for the recovery
fraction of the underlying bond value are in [0.4, 0.5], or q ∈ [0.5, 0.6].

Figure 3.2 shows four spread curves for different values of the group parameters V1 and
V2. The curves take a variety of shapes which is necessary for optimal fit to data.

The order of approximation of the protection seller payment by wε,δ is O(ε, δ) for fixed
x, y, z ∈ R and fixed t < T . The argument is very similar as for the bond price given in
Theorem 3.1 and we do not repeat it here.

3.4. Option on a Defaultable Bond. We are interested in approximating the price of a
European call option on a defaultable bond using our asymptotic expansion method. Let T0

be the maturity of the option, T1 the maturity of the bond with T0 < T1, and K the strike
price. Assuming that the bond has recovery of market value 1− q as before, the price of the
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Figure 3.2. CDS spread curves for different values of the group parameters V1 and
V2. The unmarked line corresponds to the CDS spread curve with no correction effect
(V1 = V2 = 0) The other three lines were drawn for the parameter sets V1 = −0.5,
V2 = 0 (Case I), V1 = 0, V2 = 0.01 (Case II), and V1 = 0, V2 = −0.01 (Case III).
The parameter λ̄ was set to 0.005 for all lines and the rest of the parameters were
α = 0.5, r̄ = 0.06, σ = 0.03, r0 = x = 0.06, and q = 0.6.

option at time t ≤ T0 is given by

(3.48) u(t, rt, Yt, Zt)

= E?

[
exp

(
−
∫ T0

t
(rs + qf(Ys, Zs)) ds

)
(P (T0, rT0 , YT0 , ZT0 ;T1)−K)+ | rt, Yt, Zt

]
,

for t < τ . When a default happens prior to T0, the option expires worthless.
The Feynman-Kac PDE problem corresponding to the price u of such a derivative is the

same as the one for the defaultable zero-coupon bond in (3.6) but with a different terminal
condition, namely

Lε, δu(t, x, y, z) = 0, t < T0,

u(T0, x, y, z) = (P (T0, x, y, z;T1)−K)+,

where Lε, δ was defined in (3.7).

3.4.1. Asymptotic Approximation of the Bond Option. We look for an asymptotic expansion
of the price of the bond option in half-powers of ε and δ similar to the bond and CDS cases
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above. We construct the expansion in the following form

u(t, x, y, z) = uε
0(t, x, y, z) +

√
δ uε

1(t, x, y, z) + δ uε
2(t, x, y, z) +O(δ3/2),

uε
k(t, x, y, z) = u0,k(t, x, y, z) +

√
ε u1,k(t, x, y, z) + ε u2,k(t, x, y, z) +O(ε3/2),

where k = 0, 1, 2, . . .. We denote u0 := u0,0 the leading order term. Let H be the payoff
function,

H(s) = (s−K)+,

and combining the asymptotic approximation (3.33) with a Taylor expansion for H we write
the terminal condition of the PDE for u as

(3.49) H(P ε,δ(T0, x, z;T1))

≈ H(P0(T0, x, z;T1)) + (
√

ε P1,0(t, x, z;T1) +
√

δ P0,1(t, x, z;T1))H ′(P0(T0, x, z;T1)).

The payoff function H is not smooth, since the first derivative has a discontinuity at K, or
in other words

H ′(x) = 1{x≥K}.

This affects the accuracy of the price approximation and we address this in Section 3.4.2.
We use this expansion of the terminal condition to define the terminal conditions for the
PDE problems of the leading order term u0 and the correction terms u1,0, u0,1. The defining
PDE problems for these are given by (using the shorthand notations ũ1,0 :=

√
ε u1,0 and

ũ0,1 :=
√

δ u0,1)

〈L2〉u0(t, x, z) = 0, t < T0,(3.50)

u0(T0, x, z) = (P0(T0, x, z;T1)−K)+,

〈L2〉ũ1,0(t, x, z) =
√

εAu0(t, x, z), t < T0,(3.51)

ũ1,0(T0, x, z) = P̃1,0(T0, x, z;T1)1{P0(T0,x,z;T1)≥K},

〈L2〉ũ0,1(t, x, z) = −
√

δM1u0(t, x, z), t < T0,(3.52)

ũ0,1(T0, x, z) = P̃0,1(T0, x, z;T1)1{P0(T0,x,z;T1)≥K},

where A is given in (3.22). These PDEs are derived in the same way as (3.20), (3.23), and
(3.24). Their terminal conditions come from the expansion (3.49).

The leading order term is given by

(3.53) u0(t, x, z) = P0(t, x, z;T1)Φ(d1)−KP0(t, x, z;T0)Φ(d2),

with

d1,2 :=
log(P0(t, x, z;T1)/P0(t, x, z;T0))− log K ± σ̄(t)2/2

σ̄(t)
,

σ̄(t) := σB(T1 − T0)

(
1− e−2α(T0−t)

2α

)1/2

,(3.54)

where Φ is the usual standard normal distribution function. This expression is similar to the
price of an option on a default-free bond, when the short rate of interest process is driven by
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the Vasicek model. The difference here is that this option is written on a defaultable bond
where the default risk is contained in P0 through λ̄(z).

The expressions for the correction terms are complicated functions of the leading order
term. However, the only dependence of ũ1,0 and ũ0,1 on the parameters of Y and Z is via
the aggregate parameters V1 and V2 as shown below. This is precisely the same effect as in
the asymptotic approximations of the bond price. In particular,

ũ1,0(t, x, z) = η1(t)V1(z)P0(t, x, z;T1)Φ(d1)− h1(T0 − t)V1(z)KP0(t, x, z;T0)Φ(d2)(3.55)

+ P̃1,0(t, x, z;T1)Φ(d3),

ũ0,1(t, x, z) = η2(t)V2(z)P0(t, x, z;T1)Φ(d1)− h2(T0 − t)V2(z)KP0(t, x, z;T0)Φ(d2)(3.56)

+ P̃0,1(t, x, z;T1)Φ(d3) + η3(t)V2(z)P0(t, x, z;T1)Φ′(d1)

where Φ′ is the standard normal density function, and h1, h2 were defined in (3.28) and
(3.29), respectively. The functions d3, η1, η2, and η3 are defined in Appendix A along with
their derivation details. Once again, the approximation up to this order does not depend
explicitly on the current value of Yt = y.

The group parameters V1 and V2 have a complicated role in the approximation of the bond
option price. In the two left panels of Figure 3.3, we plot the effect of the correction terms
ũ1,0 and ũ0,1 on the bond option price with respect to either the bond’s time to maturity, T1

(upper left figure), or the bond option’s time to maturity, T0 (lower left figure). We borrow
the numerical values of the parameters from the calibration example of the next Section. The
bond prices were at-the-money (to leading-order term), or in other words the strike price at
each bond option quote was taken as

K ≡ K(T0, T1) = P0(T0, x, z;T1).

In both cases, the correction terms reduce the bond price and subsequently the bond option
price, but the magnitude of this reduction is different for the two maturities. More specifically,
when the option maturity, T0, remains constant the correction effect becomes noticeable as
the bond maturity, T1, increases. On the other hand, when the option maturity, T0, varies
while keeping the bond maturity, T1, constant the size of the correction is constant across
T0, thus making the two curves move in parallel as can be seen from the lower left figure.

The right panels plot the implied λ̄ of the corresponding plots on the left. By implied λ̄ of
an option price u? we mean the value of λ̄ that makes the leading order term u0 as defined
in (3.53) match u?. We imply the average default rate λ̄ through u0 in (3.53) as it is the
immediate extension of the corresponding formula for pricing options on default-free bonds.

Notice that the implied λ̄ spikes when the maturities of the bond option, T0, and the bond,
T1, approach each other. This is indicative of the very high average default intensity, λ̄, that
is required so that the effect of the correction terms ũ1,0 and ũ0,1 is offset by the leading order
term u0 on the approximate bond prices.

3.4.2. On the Asymptotic Approximation with Irregular Payoffs. The following theorem gives
the order of approximation. We provide a sketch of the proof below.
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Figure 3.3. The effect of bond time to maturity, T1, (upper panels) and bond option
time to maturity, T0, (lower panels) on the bond option price (left panels) and implied
λ̄ parameter (right panels). For the upper panels we held T0 = 0.5 whereas for the
lower panels we set T1 = 4. The bond prices were quoted at-the-money and we also
set the various parameters from our calibration example for IBM Corp. in Section 4
as α = 0.0816, r̄ = 0.1658, σ = 0.0327, r0 = x = 0.0205, λ̄ = 0.0038, V1 = 0.0358,
and V2 = 0.0008.

Theorem 3.2. For fixed 0 < t < T0 < T1, fixed x, y, z ∈ R, and ε ≤ 1, δ ≤ 1, there exists a
positive constant C < ∞ that depends on (t, x, y, z) but not on ε and δ such that

(3.57) |u− (u0 + ũ1,0 + ũ0,1)| ≤ C(ε|log ε|+ δ).

Sketch of the proof. The order of this approximation cannot be justified in the same way as
the bond price approximation in Theorem 3.1 due to the nonsmoothness of the payoff function
H at K. It requires a regularization of the payoff function as in Fouque et al. (2003a) for
equity call options with stochastic volatility and Cotton et al. (2004) for options on default-
free bonds with stochastic volatility on a fast scale. The regularization technique is similar
for options on defaultable bonds, yet more involved due to the presence of both singular and
regular perturbations.

In the case where the payoff function H is continuous and piecewise smooth (as is the case
with the bond option), we can approximate the price of such a security through a regularized
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payoff Hζ , such that |H(x)−Hζ(x)| = O(ζ), for every x ∈ R and ζ ≤ 1. If we denote by ǔ0,
ǔ1,0, and ǔ0,1 the analogous terms that correspond to u0, ũ1,0, and ũ0,1 using the payoff Hζ

instead of H, then we can show that each ǔ term approximates its corresponding u term to
order O(ζ).

Finally, we show through the finite exponential moments of the random variables
∫ T0

t rs ds

and rT0 , the aforementioned approximation argument for the regularized payoff Hζ , and
an additional approximation of the pricing function with smooth payoff H by the pricing
function with payoff Hζ that the approximation for the bond price by u0 + ũ1,0 + ũ0,1 (with
the non-smooth payoff H) is indeed as in (3.57). We omit the lengthy derivation details
here. �

4. Model Calibration & Empirical Evidence

In this section we test our multiscale model for the stochastic intensity of default process.
We find from empirical evaluation that such a two-factor class of diffusion models is flexible,
and the time-scale of the slow factor is on the order of three months (see below). Furthermore,
we illustrate the performance of our modeling setup for the fitting of yield curves.

4.1. Model Parametrization. The calibration of the model amounts to estimating the
parameters of the SDEs (3.1)–(3.3) so that the yield curve R of the approximation in (3.34)
matches the corporate yield curve as closely as possible. The usual criterion to determine
this “closeness” is the least-squares fitting and it is what we employ below.

A major advantage of the asymptotic approximation of the defaultable bond prices is the
parameter reduction of the initial model (3.1)–(3.3). The parameters of the processes Y and
Z appear in the yield curve expression only as factors in the aggregate functions V1 and V2

given in (3.26) and (3.27). For this reason, the estimation of every parameter of Y and Z is
not necessary to quantify the effect of the correction—only certain products of them, namely
the functions λ̄, V1, and V2.

Moreover, the reduction in the parametric dependence of the pricing expressions does not
detract from the interpretative ability of the model. The fast mean reversion of the process
Y and the slow evolution of Z, with respect to time, allow for ample flexibility in calibrating
across maturities of the yield spread (and CDS spread curve). In particular, for the yield
curve of a defaultable bond, we can relate the behavior of

• the short end of the curve (small maturities) to the fast-scale parameter V1 (more
precisely the slope of the curve for small maturities),

• the long end of the curve (larger maturities) to the slow-scale parameter V2, and
• the overall level (and thus the mid maturities) to λ̄, which also allows for parallel

shifts of the curve. This is the reason we interpret λ̄ as an average credit spread of
the defaultable bond as mentioned before.

Additionally, the asymptotic approximation of the price of an option written on a default-
able zero-coupon bond up to order O(ε, δ) depends on the same parameters λ̄, V1, and V2

(and, of course, on the parameters of the short rate model). Subsequently, the estimation
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Table 4.1. Summary for the estimated parameters α, r̄, σ, and r0 for the U.S.
Treasury yield curve in the period January 2, 2004 to August 11, 2005.

Mean StDev Min Max
α 0.0816 0.0296 0.0515 0.2037
r̄ 0.1658 0.0654 0.0284 0.3266
σ 0.0327 0.0165 0.0027 0.0708
r0 0.0205 0.0109 0.0044 0.0393

of these parameters from the liquid market of bonds allows for an approximation of the cor-
responding bond option prices. The same is true as well for other credit derivatives on the
same name—that is not to say though that having calibrated the model on corporate yield
curves is equivalent to calibrating it on CDS curves. Recent studies have shown the existence
of systematic parameters that affect the credit spreads from the corporate bonds and CDSs
to behave differently (see Blanco et al., 2005; Longstaff et al., 2004).

Under our asymptotic approximation of the credit default swap spread curve the aggregate
parameters λ̄, V1, and V2 have again a similar effect on the different parts of the curve as for
the bond yield curve.

4.2. Calibration Method. We regard the U.S. government Treasury yield curve as the
risk-free rate of interest. As such, we calibrate the yield curve corresponding to the process
r on the eight Treasury yield quotes: half-, one-, two-, three-, five-, seven-, ten-, and 20-year
for each day between January 2, 2004 and August 11, 2005. From these, the estimates of the
parameters (α, r̄, σ, r0) are obtained with a simple least-squares fitting and a summary table
is provided on Table 4.1.

Since the beginning of 2004 the Federal Reserve started a series of gradual increases of
the overnight bank lending rate for a quarter of a percent at a time. This had an immediate
effect on the short end of the yield curve which increased as well. That policy continued
throughout the period we examine, resulting in a “flattening” of the yield curve, or in other
words a decreasing difference of the long and the short end of the yield curve. For this reason,
we stopped our analysis on August 11, 2005. After that date the fitting of the treasury yield
curve would require an interest-rate model with richer structure, which goes beyond the scope
of the present exercise.

We demonstrate the calibration of the corporate yield curve on two investment grade
companies: IBM Corporation (A+) and Wal-Mart Stores (AA). We perform least-squares
estimations on λ̄, V1, and V2 by solving for each of the 420 days between January 2, 2004
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Figure 4.1. Least-square estimates for the parameters λ̄, V1, and V2 (top-down)
for IBM (A+) for the 410 days between January 2, 2004 until August 11, 2005. The
estimates for the group parameters V1 and V2 are very stable until April 2005. The
bursting behavior of these estimates for the final part of the sample is attributed to
the “flattening” of the Treasury yield curve.

and August 11, 2005 the following three successive problems

(I): ̂̄λ := arg min
λ̄

n∑
j=1

(
RC(TC

j )−R
(
λ̄, V ?

1 , V ?
2 ;T C

j

))2
,

(II): V̂1 := arg min
V1

n∑
j=1

(
RC(TC

j )−R
(̂̄λ, V1, V

?
2 ;TC

j

))2
,

(III): V̂2 := arg min
V2

n∑
j=1

(
RC(TC

j )−R
(̂̄λ, V̂1, V2;TC

j

))2
,

where RC(TC
j ) is the corporate yield curve quote corresponding to TC

j remaining years-to-
maturity and V ?

1 , V ?
2 are constants in R. The number n is the number of bonds that are used

to construct the corporate yield curve for each company.
Under this calibration setup the average credit spread is fitted first, while the remaining

part of the spread is explained by the other two group parameters. The order in which we
execute problems (II) and (III) has a small effect on the estimates of V1 and V2. Had we
reversed their order (and used V ?

1 in (II) and V̂2 in (III)), the focus of the calibration would
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Figure 4.2. Least-square estimates for the parameters λ̄, V1, and V2 (top-down) for
Wal-Mart (AA) from the 410 days between January 2, 2004 until August 11, 2005.
Again, the estimates for the group parameters V1 and V2 are stable until about April
2005. The overall level of the average credit spread λ̄ is lower than the corresponding
level of IBM, that is in accordance with the higher rating of Wal-Mart (compare to
Figure 4.1).

change accordingly to improve the fitting of the yield curve on the short end of the maturity
spectrum. In any way, the root-mean-squared-error (RMSE) does not change significantly
between the two methods. The RMSE on a given day is defined as√√√√ 1

n− 3

n∑
j=1

(
RC(TC

j )−R
(̂̄λ, V̂1, V̂2;TC

j

))2
.

The starting guesses V ?
1 and V ?

2 in problems (I) and (II) were chosen recursively so that the
average RMSE of the 420 days is minimized.

The stability of the group parameters V1 and V2 can be seen in Figures 4.1 and 4.2. These
lend support and evidence that the separation of scales assumption we made throughout is
a valid one. In particular, the parameters λ̄, V1, and V2 are functions of the slowly-varying,
with respect to time, process Z and as such they evolve likewise. By visual examination of
the patterns for λ̄ in Figures 4.1 and 4.2 the slow scale appears to exhibit a characteristic
time scale on the order of three months.
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Table 4.2. Summary for the estimated group parameters λ̄, V1, and V2 and their
RMSEs for IBM (A+) and Wal-Mart (AA).

IBM Wal-Mart
Mean StDev Min Max Mean StDev Min Max

λ̄ 0.0038 0.0007 0.0025 0.0054 0.0030 0.0008 0.0013 0.0050
V1 0.0358 0.0105 0.0259 0.0895 0.0326 0.0051 0.0281 0.0602
V2 0.0008 0.0006 −0.0009 0.0015 0.0010 0.0004 −0.0001 0.0014
RMSE 0.0612 0.0484 0.0067 0.2027 0.0362 0.0230 0.0069 0.1232

Another aspect of the flexibility of the modeling setup is the yield curve fitting. Almost
all of the fits were very close on both the short and the long ends of the yield curve having
average RMSEs of 6.1 and 3.6 basis points for IBM and Wal-Mart, respectively as Table 4.2
indicates.

5. Conclusions

We have studied a computationally efficient approximation for single-name credit deriva-
tives with stochastic interest-rate and intensity process. The two-factor multiscale approach
is flexible for calibration from market yield spreads. The fast and slow factors in the intensity
are well-suited to capturing the short and long ends respectively of the corporate yield curves.

The calibrated parameters can then be used in our closed-form approximation for options
on defaultable bonds. Future work is to extend this approach to multi-name intensity models
for valuation of basket credit derivatives such as collateralized debt obligations (CDOs) and
single-tranche CDOs.

Appendix A. Bond Option Calculations

The solutions of the PDE problems for the leading order terms of either the bond (see
(3.30)), or the bond option (see (3.53)) are simple extensions of their default-free counterparts.
For detailed calculations, see for example Brigo and Mercurio (2001).

For the bond option correction terms, we solve the inhomogeneous PDEs (3.51) and (3.52).
For instance, in the PDE (3.51) for ũ1,0 the operator 〈L2〉 corresponds to the infinitesimal
generator of the short rate process r in (3.1) with the potential term x+q〈f〉(z), where z ∈ R
is only a fixed constant. Then, using the expression for the operator A in (3.22) and the
group parameter V1 as in (3.26), the probabilistic representation of the correction term ũ1,0

for the bond option price as defined in (3.51) is

(A.1) ũ1,0(t, x, z)

= E?

[
exp

(
−
∫ T0

t
(rs + q〈f〉(z)) ds

)
P̃1,0(T0, rT0 , z;T1)1{P0(T0,rT0

,z;T1)≥K} | rt = x

]
+ E?

[∫ T0

t
exp

(
−
∫ T0

θ
(rs + q〈f〉(z)) ds

)
σV1(z)

∂

∂x
u0(θ, rθ, z) dθ | rt = x

]
.
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The first expectation corresponds to the terminal condition of the PDE. It can be calculated
by the forward measure idea due to Jamshidian (1989), where we define the Radon-Nikodým
process ξ = (ξt)0≤t≤T1 , via

ξT1 :=
exp

(
−
∫ T1

0 (rs + q〈f〉(z)) ds
)

E?
[
exp

(
−
∫ T1

0 (rs + q〈f〉(z)) ds
)] ,

ξt :=
dP1

dP?

∣∣∣∣
Ft

:= E? [ξT1 | Ft] ,

use the probabilistic expression for P̃1,0 (or the probabilistic representation for P0 because of
(3.31)), and the law of iterated expectations to get

E?

[
exp

(
−
∫ T0

t
(rs + q〈f〉(z)) ds

)
P̃1,0(T0, rT0 , z;T1)1{P0(T0,rT0

,z;T1)≥K} | rt = x

]
= E?

[
V1(z)h1(T1 − T0) exp

(
−
∫ T1

T0

(rs + q〈f〉(z)) ds

)
1{P0(T0,rT0

,z;T1)≥K} | rt = x

]
= P̃1,0(t, x, z;T1)P1 {P0(T0, rT0 , z;T1) ≥ K | rt = x} .

For the probability of the last equation we observe that the random variable rT0 given rt = x

is normally distributed under the measure P1, and thus the probability is explicitly given by
Φ(d3), where Φ denotes the standard normal distribution function and

d3 :=
log A(T1 − T0)− log K − (T1 − T0)λ̄(z)−B(T1 − T0)µ(t)

σ̄(t)
,

µ(t) := e−α(T0−t)x +
(

αr̄ − σ2

α

)
B(T0 − t)− σ2

(
B(T1 − T0)−

1
α

)(
1− e−2α(T0−t)

2α

)
.

This justifies the third term in the right-hand side of (3.55) for ũ1,0.
Denote the second expectation in the expression for ũ1,0 in (A.1) by v(t, x, z) and this will

satisfy the inhomogeneous PDE

〈L2〉v(t, x, z) = −σV1(z)
∂

∂x
u0(t, x, z), t < T0,

v(T0, x, z) = 0.

Here z is again a fixed constant. To solve this problem we take advantage of the fact that u0

satisfies a very similar PDE as v (without the source term). To wit, we make the ansatz

v(t, x, z) = D1(T0 − t)
∂

∂x
u0(t, x, z) + D2(T0 − t)u0(t, x, z), 0 < t < T0,

and we notice that the operator 〈L2〉 has the following commutation relationships with
D1∂/∂x and D2· ,

〈L2〉D1
∂

∂x
= −

(
∂

∂t
D1

)
∂

∂x
+ D1

(
α

∂

∂x
+ ·
)

+ D1
∂

∂x
〈L2〉,

〈L2〉D2 = −
(

∂

∂t
D2

)
·+D2〈L2〉.
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When the last terms of these operators are applied to u0 they cancel because of (3.50).
Coefficient matching gives ODEs for D1 and D2, which after solving and combining with the
expression for the greek of the leading order term gives us

v(t, x, z) = η1(t)V1(z)P0(t, x, z;T1)Φ(d1)− V1(z)h1(T0 − t)KP0(t, x, z;T0)Φ(d2),

with

η1(t) :=
σ

α

(
e−α(T1−T0)B(T0 − t)− (T0 − t)

)
,

which is indeed equal to the first two terms of ũ1,0 in (3.55).
The derivation for the expression of ũ0,1 in (3.56) is similar to the one for ũ1,0 above and

we do not repeat it. The presence of the second order derivative in the operator M1 in the
PDE (3.52) adds extra terms in the ansatz for the corresponding homogeneous PDE. This
ansatz for the new term is

D̃1(T0 − t)
∂2

∂x∂z
u0(t, x, z) + D̃2(T0 − t)

∂

∂x
u0(t, x, z) + D̃3(T0 − t)

∂

∂z
u0(t, x, z)

+ D̃4(T0 − t)u0(t, x, z), 0 < t < T0,

and by using the additional commutative properties of the operator 〈L2〉 with D̃1
∂2

∂x∂z and
D̃3∂/∂z, (where we denote λ̄z := ∂λ̄/∂z)

〈L2〉D̃1
∂2

∂x∂z
= −

(
∂

∂t
D̃1

)
∂2

∂x∂z
+ D̃1

[
α

∂2

∂x∂z
+

∂

∂z
+ λ̄z

∂

∂x

]
+ D̃1

∂2

∂x∂z
〈L2〉,

〈L2〉D̃3
∂

∂z
= −

(
∂

∂t
D̃3

)
∂

∂z
+ λ̄zD̃3 ·+D̃3

∂

∂z
〈L2〉,

we can solve the resulting ODEs for the D̃k, k = 1, . . . , 4, terms:

−D̃′
1 + αD̃1 + ρ2σg(z) = 0,

−D̃′
2 + αD̃2 + λ̄zD̃1 = 0,

−D̃′
3 + D̃1 = 0,

−D̃′
4 + D̃2 + λ̄zD̃3 = 0,

with D̃1(0) = D̃2(0) = D̃3(0) = D̃4(0) = 0. The associated derivatives of the leading order
term are

u0,x(t, x, z) = −B(T1 − t)P0(t, x, z;T1)Φ(d1) + B(T0 − t)KP0(t, x, z;T0)Φ(d2),

u0,z(t, x, z) = −λ̄z(z)(T1 − t)P0(t, x, z;T1)Φ(d1) + λ̄z(z)(T0 − t)KP0(t, x, z;T0)Φ(d2),

u0,xz(t, x, z) = λ̄z(z)(T1 − t)B(T1 − t)P0(t, x, z;T1)Φ(d1)

− λ̄z(z)(T0 − t)B(T0 − t)KP0(t, x, z;T0)Φ(d2)

+
1

σ̄(t)
λ̄z(z)(T1 − T0)(B(T1 − t)−B(T0 − t))P0(t, x, z;T1)Φ′(d1),

with σ̄ defined in (3.54).
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Putting everything together, we arrive to the expression (3.56) with the functions η2 and
η3 given by

η2(t) :=
σ

α

[
B(T1 − T0)

(
T1 − T0 +

1
α

)
−B(T1 − t)

(
T1 − t +

1
α

)
+

T0 − t

α

+(T0 − t)(T1 − t)− (T0 − t)2

2

]
,

η3(t) := (T1 − T0)B(T0 − t)

(
1− e−2α(T0−t)

2α

)−1/2

.

Notice that η3(t) → 0, as t → T0.
Finally, we derive the bond price approximations in a simpler manner than those of the

bond option because of the zero terminal condition for the PDEs of the perturbation terms.
Furthermore, the CDS protection seller payment approximations can also be solved in the
same way as we did with the bond option asymptotic approximations.
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