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Abstract

Multiname default modeling is crucial in the context of pricing credit derivatives such as
Collaterized Debt Obligations (CDOs). We consider here a simple reduced form approach for
multiname defaults based on the Vasicek or Ornstein-Uhlenbeck model for the hazard rates of
the underlying names. We analyze the impact of volatility time scales on the default distribution
and CDO prices. We demonstrate how correlated fluctuations in the parameters of the name
hazard rates affect the loss distribution and senior tranches of CDOs. The effect of stochastic
parameter fluctuations is to change the shape of the loss distribution and cannot be captured
by using averaged parameters in the original model. Our analysis assumes a separation of time
scales and leads to a singular-regular perturbation problem [7, 8]. This framework allows us to
compute perturbation approximations that can be used for effective pricing of CDOs.

1 Introduction

Credit derivatives are financial securities that pay their holders amounts that are contingent on
the occurrence (or not) of one or more default events such as the bankruptcy of a firm or non-
repayment of a loan. The dramatic losses in the credit derivatives market in 2007 illustrates that
the problem of appropriate modeling and pricing of large portfolios of debt obligations is challenging
and also a largely open question. The mathematical challenge is to model the default times of
the firms (or names) and, most importantly, the correlation between them. Part of the challenge
is that incorporating heterogeneity and correlations may appear as intractable due to the curse of
combinatorial complexity. Here we consider pricing of collateralized debt obligations (CDOs) using
intensity-based models with multiscale stochastic volatility. A main aspect of our approach is to
make use of approximation methods via singular and regular perturbation expansions that make the
multi-dimensional problems tractable.

In the last few years, the standard in the industry has been copulas for creating correlation
structures. This is even the case at present after the recent credit crisis. The main drawback of this
approach is the fact that these are static models which do not take into account the time evolution
of joint default risks. This has been recognized in the academic literature on dynamic models with
recent developments in the multiname structural approach [10, 13], reduced form models [2, 16, 15, 4],
and top-down models [6, 14, 18].
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We shall consider the case when we use the Vasicek model in the context of (bottom-up) multi-
name reduced form modeling of credit risk. Here, we let the hazard rates of the default times of
the N names be specified as correlated Vasicek or Ornstein-Uhlenbeck processes. Clearly, in this
Gaussian model, the intensity might become negative. But, as stated in [3], “the computational ad-
vantage with explicit solutions may be worth the approximation error associated with this Gaussian
formulation”. This is particularly the case when it comes to calibration, which typically involves a
large number of evaluations of the default probabilities as part of an iterative procedure. In addition
to “explicitly modeled” correlation in between name hazard rates, implicit correlation generated by a
common factor is important. This phenomenon, with a common volatility factor has been analyzed
in [9, 10, 16] and we continue here this line of research. We show below how the roles of “explicit and
implicit” correlations in joint default probabilities become transparent in the Vasicek framework.

We introduce the pricing problem in Section 2.1 and discuss the doubly stochastic framework in
some more detail in Section 2.2. See for instance [3, 17] for a detailed discussion of these concepts.
In Section 2.3 we discuss the Vasicek credit model and pricing of CDOs. Our focus is on correlation
effects between names and the effects of stochastic multiscale parameter variations. We discuss
both the symmetric case with simple explicit formulas for survival probabilities and the case where
there is heterogeneity in between the models for the name intensities. In the latter case effective
computational procedures via conditioning are given and we illustrate with numerical examples.

2 Modeling

2.1 The CDO contract

CDOs are designed to securitise portfolios of defaultable assets. Their main feature is that the
total nominal associated with the names or obligors is sliced into tranches. Each tranche is then
insured against default. The first default events apply to the first tranche and so on. The protection
seller for the first tranche, the equity tranche, is therefore strongly exposed to credit risk relative to
the protection sellers for the subsequent mezzanine and senior/super-senior tranches, and the CDO
provides a prioritization of credit risk. Two credit derivative indexes are the US based CDX and
the European iTraxx. Each tranche is described by a lower and an upper attachment point. In the
CDX case the decomposition into tranches corresponds to {0-3, 3-7, 7-10, 10-15, 15-30}% of the
total nominal and this is the decomposition we shall use below in our computational examples.

Let α` be the yield associated with tranche `, that is, the rate at which the insurance buyer
pays for protection of tranche `. In the event of default in this tranche, the protection seller pays a
fraction 1 − R of the loss, with R being the recovery, to the tranche holder (the buyer). We shall
assume a fixed recovery, and, moreover, that the payments are made at a set of predetermined times
Tk, k ∈ {1, 2, · · · ,K}. Under the pricing measure IP ?, we have that α` is determined by:

∑

k

e−rTkf`(Tk−1)α`(Tk − Tk−1) =
∑

k

e−rTk (f`(Tk−1)− f`(Tk)) (1−R)

where r is the constant short rate and f`(Tk) is the expected fraction of tranche ` left at time Tk.
This is an approximation corresponding to the defaults occurring in the time interval from Tk−1

to Tk being accounted at the end of this time interval. This is the simple model contract we use
below when the tranches are those associated with the CDX. Further details can be found in [5], for
instance.

In the following, we shall compute the tranche prices α` when the default of the obligors are
modeled in terms of the Vasicek reduced form model, and we comment next on the doubly stochastic
modeling.
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2.2 Doubly Stochastic Modeling

We consider N obligors or underlying names. The event that a particular obligor i defaults is
modeled in terms of the first arrival τi of a Cox process with stochastic intensity or hazard rate X(i).
Conditioned on the paths of the hazard rates, the default times τi of the firms are independent, and
the probability that obligor i has survived till time T , is given by exp(− ∫ T

0 X
(i)
s ds). Therefore, the

unconditional survival probability is

IP ?{τi > T} = IE?
{

e−
∫ T
0 X

(i)
s

}
,

with the expectation taken with respect to the risk neutral pricing measure IP ?.
Consider a subset {i1, · · · , in} of obligors. The probability of the joint survival of this set till

time T is then, under the doubly stochastic framework,

IP ?{τi1 > T, · · · , τin > T} = IE?

{
e−

∑n
j=1

∫ T
0 X

(ij)
s ds

}
.

2.3 Vasicek Intensities and Survival Probabilities

We start by considering N names whose intensities (X(i)
t ) are given by correlated Ornstein-Uhlenbeck

processes 1 ≤ i ≤ N . This corresponds to the Vasicek model

dX
(i)
t = κi

(
θi −X

(i)
t

)
dt + σi dW

(i)
t , (1)

where the (W (i)
t ) are correlated Brownian motions, with the correlation matrix c given by:

d
〈
W (i), W (j)

〉
t

= cij dt . (2)

We denote the survival probability for name i by

Si(T ; xi) = IP ?(τi > T | X(i)
0 = xi) = IE?

{
e−

∫ T
0 X

(i)
s ds | X(i)

0 = xi

}
.

We also denote the joint survival probability of all N names by

S(T ;x, N) = IE?
{

e−
∫ T
0

∑N
i=1 X

(i)
s ds | X(1)

0 = x1, · · · , X
(N)
0 = xN

}
,

with x = (x1, · · · , xN ) ∈ IRN . From the Feynman-Kac formula it follows that the joint survival
probability from time t till time T

u(t,x) = IE?
{

e−
∫ T

t

∑N
i=1 X

(i)
s ds | Xt = x

}
,

solves the partial differential equation

∂u

∂t
+

1
2

N∑

i,j=1

(σiσjcij)
∂2u

∂xi∂xj
+

N∑

i=1

κi(θi − xi)
∂u

∂xi
−

(
N∑

i=1

xi

)
u = 0 , (3)

with terminal condition u(T,x) = 1.
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Assume first that the covariance matrix c is the identity matrix, corresponding to the components
of the intensity process X being independent. Then, as is well known, or can be readily checked,
the solution is given by

u(t,x) =
N∏

i=1

Ai(T − t)e−Bi(T−t)xi ,

where we introduce

Bi(s) =
∫ s

0
e−κiξ dξ =

1− e−κiτ

κi
, (4)

Ai(s) = e−θi

∫ s
0 κiBi(ξ) dξ+ 1

2
σ2

i

∫ s
0 B2

i (ξ) dξ = e
−

(
θd
i (s−Bi(s))+

σ2
i

4κi
B2

i (s)

)

, (5)

and θd
i = θi − σ2

i

2κ2
i
.

In the general correlated case, we can write

u(t,x) = Ac(T − t)
N∏

i=1

Ai(T − t)e−Bi(T−t)xi , (6)

with

Ac(s) = e
1
2

∑N
i=1

∑N
j 6=i=1(σiσjcij)

∫ s
0 Bi(ξ)Bj(ξ) dξ. (7)

The last integral is given explicitly by
∫ s

0
Bi(ξ)Bj(ξ) dξ =

s

κiκj
− Bi(s)

κi(κi + κj)
− Bj(s)

κj(κi + κj)
− Bi(s)Bj(s)

(κi + κj)
. (8)

3 Symmetric Name Case

In this section, we analyze the symmetric names case where the dynamics and the starting points
of the intensities are the same for all the names. This is convenient to understand the effects of the
correlation and the size of the portfolio. We return to the heterogeneous case in Section 4.

Specifically, we have

dX
(i)
t = κ

(
θ −X

(i)
t

)
dt + σ dW

(i)
t , X

(i)
0 = x,

with the parameters κ, θ σ and x assumed constant and positive. Moreover, we assume that the
correlation matrix is defined by cij = ρX , for i 6= j, with ρX ≥ 0, and ones on the diagonal. We
remark that such a correlation structure can be obtained by letting

W
(i)
t =

√
1− ρX W̃

(i)
t +

√
ρX W̃

(0)
t , (9)

where W̃ (i), i = 0, 1, · · · , N , are independent standard Brownian motions.
It follows from (6) that the joint survival probability for n given names, say the first n names, is

S(T ; (x, · · · , x), n) = IE?
{

e−
∫ T
0 (X

(1)
s +···+X

(n)
s ) ds | X(1)

0 = x, · · · , X
(n)
0 = x

}

= e−n[θ∞(T−B(T ))+[1+(n−1)ρX ]σ2B2(T )/(4κ)+xB(T )] , (10)
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with

B(T ) =
1− e−κT

κ
,

θ∞ = θ − [1 + (n− 1)ρX ]
σ2

2κ2
. (11)

This expression shows explicitly how the joint survival probability depends on the correlation ρX

and the “basket” size n. Note in particular how the basket size enhances the correlation effect. We
consider next how a characterization of the loss distribution follows from (10).

3.1 The Loss Distribution

The loss distribution at time T of a basket of size N is given by its mass function

pn = IP ? {(#names defaulted at time T ) = n} , n = 0, 1, · · · , N , (12)

and is explicitly

pn =
(

N
n

) n∑

j=0

(
n
j

)
SN+j−n(−1)j , (13)

using the short hand notation Sn = S(T ; (x, · · · , x), n) for the joint survival probability of n names
(for a derivation of this classical formula, see for instance [10]). This gives rise to anO(N2) procedure
for calculating the loss distribution.

However, a direct implementation of this formula is not numerically stable due to catastrophic
cancellation errors in finite precision arithmetics. We comment therefore on an alternative imple-
mentation of (13). Note first that, from the formula (10) for the survival probability, we can write

Sn = e−d1n+d2n2
, (14)

with di explicitly given as

d1 = d1(T, x) = θT + (x− θ)B(T )− 1
2
σ2(1− ρX)B(2)(T ) , (15)

d2 = d2(T ) =
1
2
σ2ρXB(2)(T ) , (16)

B(2)(T ) =
∫ T

0
B2(s) ds =

(T −B(T ))
κ2

− B(T )2

2κ
,

and we assume that the model parameters are chosen so that d1 > 0. In the independent case
ρX = 0, we get the binomial distribution:

pn =
(

N
n

)
(1− e−d1)ne−(N−n)d1 =: p̃n(d1) .

In the general case, we can write

Sn = IE
{

e−d1n+n
√

2d2Z
}

,

for Z a zero mean unit variance Gaussian random variable. Therefore, in the general case we find

pn = IE
{

p̃n(d1 +
√

2d2 Z)
}

. (17)
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Thus, we get the loss distribution stably and fast by integrating (non-negative) binomial distributions
with respect to the Gaussian density. We remark that this essentially corresponds to conditioning
with respect to the correlating Brownian motion, W (0), in (9). The argument d1 +

√
2d2 Z will

be negative for Z negative and with large magnitude. This reflects the fact that we are using a
Vasicek model where the intensity may be negative. Below, we condition the Gaussian density to
Z > d1/

√
2d2 and choose parameters such that the complementary event has probability less than

10−3.

3.2 Example with Constant Parameters and Strong Correlations

In the model (1) we choose the parameters

θ = .02 , κ = .5 , σ = .015 , x = .02 ,

and we let time to maturity T = 5 and the number of names N = 125, corresponding to th most
common CDO contracts on the CDX and iTraxx. The loss distributions with ρX = 0 and ρX = .75
respectively are shown in Figure 1 (left). Note how the strong correlation widens the loss distribution.
Hence, it will strongly affect tranche prices. We consider the tranche prices for the CDX, defined in
Section 2.1. The short rate is chosen to be fixed at 3%, and the recovery is 40%. In Figure 1 (right)
we show the tranche prices plotted against the upper attachment point of each tranche, that are
associated with the loss distributions on the left. The top plot is on a linear scale and the bottom
on log scale to visually resolve well the senior tranches. Note how the strong correlations affects all
tranches and that its relative effects are strongest for the senior tranches. The equity tranche is also
strongly affected by the correlation with a negative correction.
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Figure 1: Loss distribution (left) and CDX tranche prices against upper attachment point (right),
without and with strong correlations in between names.

4 Stochastic Volatility Effects

Stochastic volatility driven by common factors varying on fast and slow time scales has been shown
to be effective in the structural approach, for capturing the yield spreads of single-name defaultable
bonds [9], and multiname loss distributions [10]. Here we extend multiname intensity models, de-
scribed in the previous section, to incorporate multiscale stochastic volatility. The intuitive idea is

6



that simultaneous high volatility in intensity will generate clustering of defaults, giving the needed
flexibility in the loss distribution. The slow factor gives additional freedom for the term structure.

Under the risk-neutral probability measure we assume the model

dX
(i)
t = κi(θi −X

(i)
t )dt + σ

(i)
t dW

(i)
t , (18)

for 1 ≤ i ≤ N where the W (j)’s are correlated Brownian motions as in (2). The volatilities are
stochastic and depend on a fast evolving factor Y and slowly evolving factor Z:

σ
(i)
t = σi(Yt, Zt),

where the functions σi(y, z) are positive, bounded and bounded away from zero, and smooth in the
second variable.

The fast process is modeled by

dYt =
1
ε
(m− Yt)dt +

ν
√

2√
ε

dW
(y)
t ,

with the small parameter ε corresponding to the short time scale of the process Y . In fact, it is not
important which particular model we choose for the fast scale, the important aspects of the process
Y are that it is ergodic and that it evolves on a fast time scale. We assume the correlations

d
〈
W (i),W (y)

〉
t

= ρY dt , for 1 ≤ i ≤ N .

The slow factor evolves as

dZt = δc(Z)dt +
√

δg(Z) dW
(z)
t ,

with the large parameter 1/δ corresponding to the long time scale of the process Z.
The functions and c and g are assumed to be smooth and we assume the correlations

d
〈
W (i),W (z)

〉
t
= ρZ dt .

We denote by ρY Z the correlation coefficient defined by

d
〈
W (y),W (z)

〉
t
= ρY Z dt

We assume the coefficients ρY , ρZ , ρY Z and the matrix (cij) are such that the joint covariance matrix
of the Brownian motions W (i) (i = 1, · · · , n), W (y) and W (z) is non-negative definite.

The joint survival probabilities become now

S(T ;x, y, z, N) = IE?
{

e−
∑N

i=1

∫ T
0 X

(i)
s ds | X0 = x, Y0 = y, Z0 = z

}
.

In this case the joint survival probability from time t

uε,δ(t,x; y, z, N) = IE?
{

e−
∫ T

t

∑N
i=1 X

(i)
s ds | Xt = x, Yt = y, Zt = z

}
, (19)

solves the partial differential equation

Lε,δuε,δ = 0, (20)
uε,δ(T,x, y, z) = 1
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with the notation

Lε,δ =
∂

∂t
+ L(x,y,z) −

(
N∑

i=1

xi

)
· ,

where L(x,y,z) denotes the infinitesimal generator of the Markov process (Xt, Yt, Zt) under the risk-
neutral measure.

We write the operator Lε,δ in terms of the small parameters (ε, δ) as

Lε,δ =
1
ε
L0 +

1√
ε
L1 + L2 +

√
δM1 + δM2 +

√
δ

ε
M3,

where the operators Lk and Mk are defined by:

L0 = ν2 ∂2

∂y2
+ (m− y)

∂

∂y
, (21)

L1 =
√

2νρY

N∑

i=1

σi(y, z)
∂2

∂xi∂y
, (22)

L2 =
∂

∂t
+

1
2

N∑

i,j=1

cijσi(y, z)σj(y, z)
∂2

∂xi∂xj
+

N∑

i=1

κi(θi − xi)
∂

∂xi
−

(
N∑

i=1

xi

)
· , (23)

M1 = ρZg(z)
N∑

i=1

σi(y, z)
∂2

∂xi∂z
, (24)

M2 =
1
2
g2(z)

∂2

∂z2
+ c(z)

∂

∂z
,

M3 =
√

2νg(z)ρY Z
∂2

∂y∂z
,

Note that

• ε−1L0 is the infinitesimal generator of the Ornstein Uhlenbeck process Y ,

• L1 contains the mixed derivatives due to the correlation between X and Y ,

• L2 is the differential operator corresponding to the unperturbed problem in (3), but evaluated
at the volatilities σi(y, z),

• M1 contains the mixed derivatives due to the correlation between X and Z,

• δM2 is the infinitesimal generator of the process Z,

• M3 contains the mixed derivatives due to the correlation between Y and Z.

We will next present the results of the singular and regular perturbation techniques framework
introduced in [8] and adapted to credit risk to obtain an accurate characterization of the loss distri-
bution in the regime where ε and δ are small. This will enable us to describe how the fluctuations
in the volatility affect the loss distribution and tranche prices.
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4.1 Time-Scale Perturbations

We expand the survival probability uε,δ defined in (19), in the small parameters ε and δ as

uε,δ ∼ ũε,δ = u0 +
√

εu1,0 +
√

δu0,1, (25)

where u1,0 and u0,1 are the first corrections due to fast and slow volatility scales respectively.
The leading order term u0 of the joint survival probability is obtained by solving the problem

(3) with the effective diffusion matrix

[d(z)]ij = dij(z) :=
∫

cijσi(y, z)σj(y, z)Φ(y) dy ,

with Φ being the invariant distribution for the Y process. Since the process Y evolves on the fast
scale its leading order effect is obtained by integration with respect to Φ. The process Z evolves on
a relatively slow scale and at this level of approximation its effect corresponds to just evaluating this
process at its current “frozen” level z. We introduce the effective operator

Le(d(z)) =
∂

∂t
+

1
2

N∑

i,j=1

dij(z)
∂2

∂xi∂xj
+

N∑

i=1

κi(θi − xi)
∂

∂xi
−

(
N∑

i=1

xi

)
· ,

then we have

Definition 1 The leading order term u0 is the survival probability which solves

Le(d(z))u0 = 0, u0(T,x; z) = 1.

As in the constant volatility case of Section 2.3, the solution is given by

u0(t,x; z) = Ac(T − t)
N∏

i=1

Ai(T − t)e−Bi(T−t)xi , (26)

with Bi defined in (4), and

Ac(s) = e
1
2

∑N
i=1

∑N
j 6=i=1(dij(z))

∫ s
0 Bi(ξ)Bj(ξ) dξ.

The last integral is given explicitly in (8).

Next, we obtain u1,0, the correction to the survival probability due to the fast volatility factor
Y . We start by introducing the operator

A1,0 =
〈L1L−1

0 (L2 − 〈L2〉)
〉
,

which will be given explicitly below and where the triangular brackets represent integration with
respect to the invariant distribution for the Y process.

Definition 2 The function u1,0(t,x, z) solves the inhomogeneous problem

Le(d(z))u1,0 = A1,0u0,

u1,0(T,x; z) = 0.
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Thus, u1,0 solves a linear equation with the effective operator Le(d(z)), but now the problem involves
a source term A1,0u0, defined in terms of the leading order survival probability u0, and with a zero
terminal condition.

We consider next the correction u0,1 due to the slow volatility factor. In this case we introduce
the operator

A0,1 = −〈M1〉 ,
and obtain:

Definition 3 The function u0,1(t,x, z) is the solution of the problem

Le(d(z))u0,1 = A0,1u0, (27)
u0,1(T,x; z) = 0,

which is again a source problem with respect to the operator Le(d(z)) and with a zero terminal
condition.

The PDE problems for the approximation terms given in Definitions 1, 2 and 3 can be motivated
by formal multiscale asymptotics. Similar calculations in the case of equity stochastic volatility
models appear in [8], and the formal asymptotics are identical albeit with different definitions of
the operators Lk and Mk. In the present case, L2 is associated with a multi-dimensional diffusion
process, which does not present major difficulties compared with the single-dimensional equity case
in [8]. The unboundedness of the X(i) raises some technical issues, which were addressed in the
one-dimensional case in [1]. A precise accuracy result is given at the end of this section.

We next obtain an expression for ũε,δ and start by introducing the symmetric matrix Ψ(y, z)
satisfying

L0Ψi1,i2 = ci1,i2σi1(y, z)σi2(y, z)− di1,i2(z) ,

and the coefficients

V ε
3 (z, i1, i2, i3) = −√ε

ρY ν√
2

〈
σi3

∂Ψi1i2

∂y

〉
.

Using the definitions in (21) - (23) one then obtains that the scaled operator
√

εA1,0 can be written

√
εA1,0 = −

N∑

i1,i2,i3=1

V ε
3 (z, i1, i2, i3)

∂3

∂xi1∂xi2∂xi3

.

We make the ansatz
√

εu1,0(t,x; z) = D(T − t)u0(t,x; z), which leads to the ODE for D:

−D′ =
N∑

i1,i2,i3=1

V ε
3 (z, i1, i2, i3)Bi1Bi2Bi3 , D(0) = 0,

using the expressions (5) and (7) for the survival probability in the constant volatility case. Therefore,
we compute the form for the correction due to fast volatility fluctuations

√
εu1,0 =




N∑

i1,i2,i3=1

V ε
3 (z, i1, i2, i3)

∫ T

0
Bi1(s)Bi2(s)Bi3(s) ds


u0 . (28)

Thus, the correction depends on the underlying model structure in a complicated way, but only the
effective market group parameters V ε

3 (·) are needed to compute the fast time scale correction u1,0.
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Using next the definition (24) we find that the (scaled) operator
√

δA0,1 in the source term of
the u0,1 problem (27) can be written

√
δA0,1 = −

√
δ 〈M1〉 = −

N∑

i=1

V δ
1 (z, i)

∂2

∂z∂xi
,

where we introduced the coefficients

V δ
1 (z, i) =

√
δ g(z)ρZ 〈σi〉 .

It then follows, again using the expressions (5) and (7), that

√
δu0,1 =

(
1
2

N∑

i1=1

V δ
1 (z, i1)

N∑

i2=1

N∑

i3=1

d
dz

(di1i2)
∫ T

0
Bi1(v)

∫ v

0
Bi1(s)Bi2(s) ds dv

)
u0 . (29)

Note that the effective market parameters V ε
3 and V δ

1 depend on the underlying model in a compli-
cated way as explained above. However, this particular dependence will not be needed in applying
the asymptotic theory since these market group parameters rather than the full underlying model
will be calibrated to market data.

We end this section with an accuracy result for our approximation (25).

Theorem 4.1 For any fixed t < T , x ∈ IRN and y, z ∈ IR,
∣∣∣uε,δ(t,x, y, z)−

(
u0(t,x, z) +

√
ε u1,0(t,x, z) +

√
δ u0,1(t,x, z)

)∣∣∣ = O(ε + δ),

where uε,δ is the solution of the original problem (20), and u0,
√

ε u1,0 and
√

δ u0,1 are given by (26),
(28) and (29) respectively.

Sketch of Proof: One of the difficulties is that the potential (−∑
i xi) in (20) is unbounded from

above since the processes X(i) are unbounded from below. As in [1] (in the one-dimensional case),
the transformation

uε,δ(t,x, y, z) = M ε,δ(t, y, z)
N∏

i=1

e−Bi(T−t)xi

reduces to a Feynman-Kac equation for M with a bounded potential in (y, z), bounded time-
dependent coefficients, and smooth terminal condition M ε,δ(T, y, z) = 1. The rest of the proof
follows readily from the proof of accuracy given in [7, Chapter 5] with the fast factor, and general-
ized to fast and slow factors in [8].

4.2 Stochastic Volatility Effects in the Symmetric Case

We consider the simplified form for the asymptotic survival probabilities in the symmetric case
considered in Section 4.2, with stochastic volatilties σ

(i)
t ≡ σ(Yt, Zt). One readily computes that in

this case

S(T ; (x, · · · , x), y, z, n) = uε,δ(0; (x, · · · , x), y, z, n) ∼ ũε,δ(0; (x, · · · , x), z, n) (30)

=
(
1 + Dε(T ; z, n) + Dδ(T ; z, n)

)
e−n[θ∞(z)(T−B(T ))+[1+(n−1)ρX ]σ̄2(z)B2(T )/(4κ)+xB(T )]
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where

σ̄2(z) =
〈
σ(·, z)2

〉
, (31)

Dε(T ; z, n) = v3(z)n2(1 + (n− 1)ρX)B(3)(T ) , (32)
Dδ(T ; z, n) = v1(z)n2(1 + (n− 1)ρX)B̃(3)(T ) , (33)

B(3)(T ) =
∫ T

0
B3(s) ds ,

B̃(3)(T ) =
∫ T

0
B(s)B(2)(s) ds

v1(z) =

√
δ

2
g(z)ρZ 〈σ(·, z)〉 ∂

∂z

〈
σ2(·, z)

〉
,

v3(z) = −√ε
ρY ν√

2

〈
σ(·, z)

∂Ψ(·, z)
∂y

〉
,

with here Ψ being a solution to the Poisson equation in the y-variable:

L0Ψ = σ2(y, z)− 〈
σ2(·, z)

〉
.

Note that θ∞ is computed as in (11), but evaluated with σ = σ̄(z):

θ∞(z) = θ − [1 + (n− 1)ρX ]
σ̄2(z)
2κ2

.

Therefore, using the notation introduced in (14), we have

S(T ;x, z, n) ∼
(
1 + n3ρX

(
v3(z)B(3)(T ) + v1(z)B̃(3)(T )

))
e−nd1(T,x,z)+n2d̃2(T,z) , (34)

with

d̃2(T, x, z) = d2(T, x, z) + (1− ρX)
(
v3(z)B(3)(T ) + v1(z)B̃(3)(T )

)
, (35)

where d1 and d2 are computed as in (15) and (16):

d1(T, x, z) = θT + (x− θ)B(T )− 1
2
(1− ρX)σ̄(z)2B(2)(T ) ,

d2(T, z) =
1
2
ρX σ̄(z)2B(2)(T ) ,

B(2)(T ) =
∫ T

0
B2(s) ds .

By the remarks following equation (14), we easily compute the loss distribution that follows from
(34) in the case ρX = 0. That is, we compute it by (17) with

p̃n(x′) =
(

N
n

) n∑

j=0

(
n
j

)
e−x′(N+j−n)(−1)j (36)

=
(

N
n

)
(1− e−x′)ne−(N−n)x′ , (37)

12



and d2 replaced by d̃2. In the general case with ρX 6= 0 we obtain the loss distribution by the
generalization of (17):

pn = IE

{
p̃n(d1 +

√
2d̃2 Z) +

(
ρX(v3B

(3) + v1B̃
(3))

)
p̃
′′′
n (d1 +

√
2d̃2 Z)

}
, (38)

where Z is an N (0, 1) random variable. Note that

N∑

n=0

p̃
′′′
n (x) =

d3

dx3

N∑

n=0

p̃n(x) = 0 ,

so that indeed
∑N

n=0 pn = 1. We remark however that outside of the domain of validity of the
approximation we may have pn < 0. Thus, when applying the approximation the vi’s must be
chosen small enough so that indeed the computed pn’s define a distribution. In the modeling above
the vi’s are O(

√
δ,
√

ε) and are therefore small. From the representation (38) we see that the effect
of the stochastic volatility in the uncorrelated case with ρX = 0 is a modification of the hazard
rate, to the order we consider. While the combined effect of correlation and stochastic volatility is
qualitatively different and gives a correction to the binomial shape. We can also observe that the
effects of the slow and fast volatility scales are qualitatively similar, giving the computed correction a
canonical character, it gives the structure of the correction under a large class of underlying models.
This will be further reinforced by our analysis below.

We next continue the numerical example introduced in Section 3.2. We choose the parameters
as

θ = .03 , κ = .5 , σ = .02 , x = .03 ,

and we let the time to maturity T = 5 and the number of names N = 125. The short rate is chosen to
be fixed at 3% and the recovery is 40% as before. Here and below, when we show numerical examples
they are based on the asymptotic approximations of the type (38). Our analysis has shown that
name correlation can be generated in various ways. Either by directly correlating the innovations or
Brownian motions driving the hazard rates of the names or alternatively by introducing time scale
effects in the volatility. We remark though that the time evolution of the loss distribution depends
somewhat on how the correlation is generated. In Figure 2, we illustrate the relative strong effect
that combined name correlation and stochastic volatility has, here with ρX = .01 and v3 = 3 · 10−4.
We let v1 = 0, as the influence of this parameter is similar to that of v3. Note in particular the
relative strong effect on the senior tranches and that in this case the shape of the loss distribution
is affected, however, the equity tranches are relatively less affected.

4.3 Name Correlation via Fluctuations in Hazard Rate Level

In the modeling above we assumed that the mean reversion level of the name hazard rates, the
θ parameter, was constant. We next examine the effects of time variations in this parameter by
generalizing the model in (18) as

dX
(i)
t = κ

(
θ(Y (2)

t )−X
(i)
t

)
dt + σ(Y (1)

t ) dW
(i)
t ,

for 1 ≤ i ≤ N where the W (j)’s are correlated Brownian motions as in (2). Note that here we
consider only the case with a symmetric model and fast scale time fluctuations in the parameters.
The general case can be analyzed with a similar approach. The fast processes are modeled by

dY
(j)
t =

1
ε
(mj − Y

(j)
t )dt +

νj

√
2√

ε
dW

(j,y)
t , for j ∈ {1, 2} .

13
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Figure 2: Loss distribution (left) and tranche prices (right) without and with strong stochastic
volatility.

and we assume the correlations

d
〈
W (i),W (j,y)

〉
t

= ρYj dt , for 1 ≤ i ≤ N and j ∈ {1, 2} , (39)

which can be decomposed in terms of independent Brownian motions (W̃ (0)
t , W̃

(j,y)
t ) as follows:

W
(j,y)
t =

√
1− ρyj W̃

(j,y)
t +√

ρyj W̃
(0)
t ,

ρyj = ρYj/
√

ρX .

Thus, we assume that there is one short time scale associated with the market, the time scale
characterized by ε.

In (25) we now only have the correction due to the fast scale variation

uε ∼ ũε = u0 +
√

εu1,0 .

The functions u0 and u1,0 solves again the problems in Definition 1 and Definition 2 respectively,
upon the replacements

L0 7→
2∑

j=1

(
ν2

j

∂2

∂yj
2

+ (mj − yj)
∂

∂yj

)
+
√

ρy1ρy2ν1ν2
∂2

∂y1∂y2
,

L1 7→
2∑

j=1

√
2νjρYjσ(y1)

N∑

i=1

∂2

∂xi∂yj
,

L2 7→ ∂

∂t
+

σ2(y1)
2

N∑

i,j=1

cij
∂2

∂xi∂xj
+

N∑

i=1

κ(θ(y2)− xi)
∂

∂xi
−

(
N∑

i=1

xi

)
· .

It then follows that the expression (30) for the asymptotic loss distribution becomes:

S(T ; x, n) = uε(0; (x, · · · , x), y1, y2, n) ∼ ũε(0;x, n)

= (1 + Dε(T ; n) + Dε
θ(T ; n)) e−n[θ̄∞(T−B(T ))+[1+(n−1)ρX ]σ̄2B2(T )/(4κ)+xB(T )] ,
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with now

σ̄2 =
〈
σ2(·)〉

1
,

θ̄ = 〈θ(·)〉2 ,

θ̄∞(z) = θ̄ − [1 + (n− 1)ρX ]
σ̄2

2κ2
,

where 〈·〉i denotes integration with respect to the invariant distribution for Y (i), i ∈ {1, 2}. Moreover,
Dε is defined as in (32), but without the z dependence:

Dε(T ;n) = v3n
2(1 + (n− 1)ρX)B(3)(T ) ,

v3 = −√ε
ρY ν1√

2

〈
σ(·)∂Ψ(·)

∂y

〉

1

,

L0,1Ψ = σ2(y)− 〈
σ2(·)〉

1
,

with L0,1 being the infinitesimal generator for Y1. The correction, Dε
θ, due to fluctuations in the

parameter θ is given by:

Dε
θ(T ;n) = v2n

2B(2)(T ) ,

v2 = −
√

2ερY2κν2

〈
σ(y1)

∂Ψ2(y2)
∂y

〉

1,2

,

L0,2Ψ2 = θ(y)− 〈θ(·)〉2 ,

with L0,2 being the infinitesimal generator for Y (2) and 〈·〉1,2 denoting integration with respect to
the joint invariant distribution for Y (1) and Y (2).

Observe that the form of the joint survival probability is as in (30), which confirms the canonical
structure of the correction to the survival probability due to multiscale parameter fluctuations. It
also follows that we can use the same procedure as the one described in Section 4.2 for computing
the loss distribution and associated tranche prices. In the present case we can write

S(T ; x, n) ∼ ũε(0;x, n)

=
(
1 + c1n

2B(2)(T ) + (c2n
2 + c3n

3)B(3)(T )
)

S0(T ; x, n) ,

S0(T ;x, n) = e−n[θ̄∞(T−B(T ))+[1+(n−1)ρX ]σ̄2B2(T )/(4κ)+xB(T )] ,

with c2 and c3 calibration parameters of magnitude O(
√

ε). Note that the form of the correction
in (30) is identical with respect to the form in n, but slightly different in the temporal dependence.
We continue in the next section by briefly discussing the case with a stochastic short rate and show
that then we also get corrections terms that are O(1) and O(n).

4.4 Short Rate Term Structure Effects

Consider the case were the short rate is stochastic, also modeled as a Vasicek process under the risk
neutral measure:

dX
(i)
t = κ

(
θ(Y (2))−X

(i)
t

)
dt + σ(Y (1)) dW

(i)
t ,

drt = κ
(
θr(Y (4))− rt

)
dt + σr(Y (3)) dW r

t .
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We again assume a symmetric model with the time scales defined by 1/κ and 1/ε so that the fast
scales are all modeled by:

dY
(j)
t =

1
ε
(mj − Y

(j)
t )dt +

νj

√
2√

ε
dW

(j,y)
t

with the symmetric correlations of the same form as above:

d
〈
W (i),W (j,y)

〉
t

= ρYj dt , for 1 ≤ i ≤ N , 1 ≤ j ≤ 4 ,

d
〈
W r,W (j,y)

〉
t

= ρr,Yj dt , for 1 ≤ j ≤ 4 ,

d
〈
W (i),W (j)

〉
t

= ρX dt , for i 6= j , d
〈
W (i),W r

〉
t

= ρr dt , for 1 ≤ i ≤ N .

In this case, the quantity of interest that we need to compute in order to price the CDO is:

q(r)(T ; x, n) = IE?
{

e−
∫ T
0 (r(s)+X

(1)
s +···+X

(n)
s ) ds | X(1)

0 = x, · · · , X
(n)
0 = x, r(0) = r0

}

the expectation under the risk neutral measure of the discounted joint survival probabilities. This
expression is of the same form as in (6). By generalization of the multiscale analysis we then easily
find the asymptotic approximation

q(r)(T ; x, n) ∼
(
1 + (c0 + c1n + c2n

2 + c3n
3)B(3)(T )

)
S

(r)
0 (T ; x, n) ,

S
(r)
0 (T ;x, n) = e−n[θ̄∞(T−B(T ))+[1+(n−1)ρX ]σ̄2B2(T )/(4κ)+xB(T )]

× e−[θ̄r,∞(T−B(T ))+[1+nρr]σ̄2
rB2(T )/(4κ)+r0B(T )] ,

with ci, i ∈ {0, · · · , 3} calibration parameters of magnitude O(
√

ε) and

σ̄2
r = 〈σ2

r (·)〉3 ,

θ̄r,∞ = 〈θr(·)〉4 − [1 + nρr]
σ̄2

r

2κ2
.

Therefore, when we introduce a multiscale short rate we find that the calculation of the CDO prices
is modified in two ways: i) the correction for the survival probabilities involve now O(1) and O(n)
terms as announced above, ii) the discounting factor is modified as:

e−rT 7→ e−[θ̄r,∞(T−B(T ))+[1+nρr]σ̄2
rB2(T )/(4κ)+r0B(T )] .

We finish this section with a numerical example illustrating short scale fluctuation effects, shown
in Figure 3. The parameters are chosen as in the constant parameter case of Figure 2. In addition
we choose σr = .1, κr = .25, c0 = −.05 and c1 = −.0007 to illustrate how multiscale short rate
fluctuations may affect the tranches. Note that with these parameters the loss distribution is not
much affected. However, term structure effects influence relatively strongly the mezzanine tranches.
This mechanism is somewhat complementary to the modification seen in the previous examples.

5 Name Heterogeneity

We return now to a non-symmetric model and describe how we can effectively compute the CDO
price in this situation. We consider the case with one volatility factor:

dX
(i)
t = κ(θi −X

(i)
t )dt + vif(Yt) dW

(i)
t ,
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Figure 3: Loss distribution and tranche prices without and with short rate stochastic volatility
effects.

for 1 ≤ i ≤ N and with vi ad θi constants. Moreover, the W (j)’s are correlated Brownian motions
as in (2) and

dYt =
1
ε
(m− Yt)dt +

ν
√

2√
ε

dW
(y)
t ,

with again the symmetric correlations:

d
〈
W (i),W (y)

〉
t

= ρY dt , for 1 ≤ i ≤ N ,

d
〈
W (i),W (j)

〉
t

= ρX dt , for i 6= j .

Thus, we assume that the market is characterized by the two time constants 1/κ and 1/ε, moreover,
that the volatilities dependence on the fast factor is via the common term f(Y ). Therefore, in terms
of their time scale contents the names are symmetric. We shall see below that this means that
we can compute the CDO prices effectively via conditioning on, and subsequent integration with
respect to, one Gaussian random variable. In the case that there are several time constants, several
κ’s characterizing the market, the CDO can be computed via conditioning with respect to several
Gaussian random variables as we describe below.

The approximation for the joint survival probability can now be expressed by:

S(T ;x, n) ∼

1 + v3


(1− ρX)

n∑

i=1

σ̄i

n∑

i=1

σ̄2
i + ρX

(
n∑

i=1

σ̄i

)3

B(3)(T )




× Ãc(T )
n∏

i=1

Ãi(T )e−B(T )xi , (40)
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where

Ãi(T ) = e−θiκB(1)(s)+ 1
2
σ̄2

i (1−ρX)B(2)(T ) ,

Ãc(T ) = e(
∑n

i=1 σ̄i)2(ρXB(2)(T )/2) ,

σ̄2
i = v2

i 〈f2(·)〉 ,

B(k)(T ) =
∫ T

0
Bk(s) ds .

In order to compute the CDO price, we need the loss distribution pn(T ;x, N):

pn(T ;x, N) = IP ? {(#names defaulted at time T ) = n | X0 = xi} .

Consider first the case in which the names are independent:

S(T ;x, n) =
n∏

i=1

Si(T ;xi) .

In this case we can compute the loss distribution via the recursive algorithm described in [12]. In
this procedure the loss distribution for n names is easily computed from the loss distribution of n−1
names due to independence, and so on. The procedure is O(n2).

We now comment on how this procedure can be used to compute the loss distribution associated
with the survival probabilities in (6). First, we discuss the case without stochastic volatility, but
with correlation. Then we can write

S(T ;x, n) = IE

{
n∏

i=1

eZ
∑n

i=1 σi

√
ρXB(2)(T )Ãi(T )e−B(T )xi

}

= IE

{
n∏

i=1

q̃i(T ;xi)

}
,

where the expectation is with respect to the standard Gaussian random variable Z and we assume
ρX ≥ 0. The integration is therefore over cases corresponding to independent names, the situation
in which the CDO price can be computed effectively by the iterative algorithm in [12]. Note that,
as above, we constrain the Gaussian random variables so that 0 ≤ q̃i ≤ 1.

In Figure 4, we illustrate the effects of correlation in between the names and of hazard rate
heterogeneity. We choose here ρX = .3, and we weight the first ten names’ intensities by a factor of
five, we keep the next fifty with with weight one, and the last 65 with weights 0.2. The parameters are
otherwise chosen as above. The result is shown by the solid line. The case without name correlation
is shown by the dash-crossed line. The dashed line corresponds to replacing the heterogeneous
hazard rate by its average. Note that this gives a very different loss distribution in this case with
grouping of the hazard rate.

Now consider the case with both correlation and stochastic volatility. In order to extend the
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Figure 4: Loss distribution and tranche prices without and with correlation and heterogeneity effects.

calculation of the loss distribution to this case we use expansions of the form:

√
ε

(
n∑

i=1

σ̄i

n∑

i=1

σ̄2
i

)
=

(
eε3/8(

∑n
i=1 σ̄2

i ) − 1
)
×

{
eε1/8(

∑n
i=1 σ̄i) (41)

−eε1/4/2(
∑n

i=1 σ̄i)2

−
(
eε1/4(

∑n
i=1 σ̄i)2

− 1
)
×

(
eε1/8(

∑n
i=1 σ̄i) − eε1/4/2(

∑n
i=1 σ̄i)2)}

+O(ε7/8)

√
ε

(
n∑

i=1

σ̄i

)3

=
(
eε3/8(

∑n
i=1 σ̄i)2

− 1
)
×

{
eε1/8(

∑n
i=1 σ̄i) (42)

−eε1/4/2(
∑n

i=1 σ̄i)2

−
(
eε1/4(

∑n
i=1 σ̄i)2

− 1
)
×

(
eε1/8(

∑n
i=1 σ̄i) − eε1/4/2(

∑n
i=1 σ̄i)2)}

+O(ε7/8) .

From (40) it then follows that we can express the loss distribution as a sum of terms of the form:

S(T ;x, n) =
K∑

k=1

akIE

{
n∏

i=1

e−c1,i,k(T )+Zc2,k(T )σ̄i−B(T )xi

}
, (43)

with c1 > 0 and c2 being O(1) and having O(
√

ε) corrections due to stochastic volatility. Note that
we have the normalization

K∑

k=1

ak = 1.

We can therefore again obtain the loss distribution via integration with respect to one Gaussian
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random variable over independent cases. This follows explicitly since using (43) we can write

pn(T ;x, N) = IP ? {(#names defaulted at time T ) = n}

= IE?

{ ∑

s∈Sn

(∏

i∈sc

e−
∫ T
0 X

(i)
t dt

∏

i∈s

(
1− e−

∫ T
0 X

(i)
t dt

))
| X0 = x

}

= IE?





∑

s∈S̃

cn(s)
∏

i∈s

e−
∫ T
0 X

(i)
t dt | X0 = x





∼
∑

s∈S̃

cn(s)
K∑

k=1

akIE

{∏

i∈s

e−c1,i,k(T )+Zc2,k(T )σ̄i−B(T )xi

}

=
K∑

k=1

akIE





∑

s∈S̃

cn(s)
∏

i∈s

e−c1,i,k(T )+Zc2,k(T )σ̄i−B(T )xi



 =

K∑

k=1

akIE {p̃n(T ; Z,x, N)}

=
∫

p̃n(T ; Z,x, N) dµK(Z) ,

with Sn being the collection of distinct subsets of size n of {1, · · · , N}, S̃ being all the distinct subsets
or S̃ = S1 ∪ · · · ∪ SN and with sc being the complement set of s. Observe that p̃n again can be
computed effectively by the algorithm of the independent case as described in [12]. Moreover, µK is a
signed measure with unit total mass. Indeed the loss distribution calculated by the above algorithm
will therefore also have unit total mass. We remark that the possibility that the distribution can go
negative can be dealt with via the framework set forth in [11].

We finally remark on the case with many time scales, that is with many different κi’s. Note that
we then can write

log
(
Ãc(T )

)
=

ρX

2

n∑

i,j=1

σ̄j σ̄i

∫ T

0
B(s; κi)B(s;κj) ds

=
ρX

2

n∑

i,j=1

σ̄j σ̄i

(
T

κiκj
−B(T ;κi)−B(T ;κj) + B(T ; κi + κj)

)
, , (44)

with B(t;κ) = (1− e−κt)/κ. Assume that there are at most K distinct time scales κ1, · · · , κK . We
denote by Aij the summands in (44). Then the matrix A = (Aij) is symmetric non-negative definite
and has rank at most K so that in terms of the corresponding eigenvalue factorization we have

A =
K∑

i=1

λiv(i)
(
v(i)

)T
.

Using this fact we express

S(T ;x, n) = IE





n∏

i=1

K∏

j=1

e
√

2λjZj
∑n

i=1 v
(j)
i Si(T ; xi)





= IE





n∏

i=1

K∏

j=1

e
√

2λjZjv
(j)
i Si(T ; xi)



 ,

where the expectation is with respect to the independent standard Gaussian random variables Zi.
We remark that the spectrum A decays as {(κi + κj)−1}, which typically has extremely fast decay.
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Thus, in constructing a numerical approximation for a CDO with high relative accuracy, we need
only integrate with respect to a few eigenvalues.

We can decompose the terms in Dε similarly so that the CDO price in the case with many
time scales, different κi’s, can be obtained via integration with respect to a set of Gaussian random
variables both in the case with and without stochastic volatility. In the case with stochastic volatility
we integrate with respect to at most K2 Gaussian random variables. This follows since we can write

{
σ̄iσ̄

2
j

∫ T

0
B(s; κi)B(s;κj)2 ds

}N

i,j=1

=
K∑

i=1

σ̃iui(vi)T ,

{
σ̄iσ̄j σ̄k

∫ T

0
B(s; κi)B(s; κj)B(s; κk) ds

}N

i,j=1

=
K2∑

i=1

λ̃i,kṽi(ṽi)T ,

and then use decompositions as in (41) and (42).
The integration over the Gaussian random variables is again over cases corresponding to inde-

pendent names, the situation in which the CDO price can be computed effectively by the iterative
algorithm in [12]. As remarked above, if K is large, one can typically obtain high relative accuracy
using only a small part of the spectrum of the coupling matrices.

We finish this section with a numerical example. In Figures 5, we show the case when the
stochastic volatility parameter v3 = .001, vi = 2 + 2 exp(−i/120) and ρX = 0. Note how the
heterogeneity affects the loss distribution tail as shown in Figure 5. The parameters are chosen so
that the loss distribution is almost zero before a small tail mode generated by implicit correlations.
This gives a relatively large correction of the most senior tranche as shown in the the bottom right
graph. We remark that if we replace vi by its simple average then there is no correction in this
tranche price.
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Figure 5: Stochastic volatility and name heterogeneity effects.

6 Conclusions

The results show that much progress can be made with multiscale stochastic volatility asymptotic
approximations, even when built around a simple Vasicek-based model for stochastic intensities,
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by providing additional correlation through potentially large and rapid volatility excursions. Gen-
eralizing this approach for other popular intensity models such as CIR or expOU, while keeping
the computational tractability, is an important challenge, which is work in progress. However, the
Vasicek analysis provides insights into the relative roles of the model parameters, and their effects
on loss distributions CDO tranche spreads. For example, the name-name correlation affects strongly
the equity tranche. Uncertainty in the short rate affects relatively strongest the mezzanine tranches,
while stochastic volatility in hazard gives a strong correction to senior tranches. Calibration to real
data is an essential next step, which should be facilitated by explicit approximations computed here.
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