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Abstract

We consider a class of dynamic portfolio optimization problems that allow for models of return
predictability, transaction costs, and stochastic volatility. Determining the dynamic optimal portfolio in
this general setting is almost always intractable. We propose a multiscale asymptotic expansion when the
volatility process is characterized by its time scales of fluctuation. The analysis of the nonlinear Hamilton-
Jacobi-Bellman PDE is a singular perturbation problem when volatility is fast mean-reverting; and it is a
regular perturbation when the volatility is slowly varying. These analyses can be combined for multifactor
multiscale stochastic volatility model. We present formal derivations of asymptotic approximations and
demonstrate how the proposed algorithms improve our Profit&Loss using Monte Carlo simulations.

1 Introduction

Dynamic portfolio optimization provides institutional investors in active asset management a framework for
determining optimal investment strategies. This central and essential problem has a long history dating back
to Mossin (1968), Samuelson (1969), and Merton (1969, 1971). In his seminal paper, Merton (1971) derives
explicit solutions for the continuous-time portfolio optimization problem. In this classical setting, the stocks
are modeled as geometric Brownian motions (with constant volatilities), and the objective is to maximize
the expected utility of terminal wealth by allocating investment capital between risky stocks and a riskless
money-market account. Under the constant relative risk aversion (CRRA) utility, Merton shows that the
optimal control is a fixed mix strategy.

While this work has brought forth important structural insights, its restrictive assumptions about investor
objectives and market dynamics (necessary for exact analytical solutions) have prevented more widespread
applications to practical trading algorithms. Following this seminal paper, there has been a significant liter-
ature aiming to relax its assumptions and to incorporate the impact of various frictions, such as transaction
costs and stochastic volatility, on the optimal portfolio choice.

A tractable alternative is to formulate the dynamic portfolio optimization problem as a linear-quadratic
control. Gârleanu and Pedersen (2013) derive a closed-form optimal dynamic portfolio policy for a model
with linear dynamics for return predictors, quadratic transaction costs, and quadratic penalty terms for
risk. However, the explicit solution depends sensitively on the quadratic cost structure with linear dynamics.
The goal of this article is to study the dynamic portfolio optimization problem allowing for more realistic
market dynamics without sacrificing model tractability. Specifically, our model captures a number of com-
mon features of practical interest, while maintaining tractability by viewing the more flexible model as a
perturbation around the well-understood constant volatility problem.

Return predictability. The usual goals of hedge fund managers and proprietary traders are to predict
future security returns and trade to profit from their predictions. Such predictions are not limited to
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simple unconditional bullish or bearish forecasts of future returns, but often involve predictions on short
and long-term expected returns using a factor-based approach such as momentum and mean-reversion.
Different factors often have different predicting strengths and mean-reversion speeds.

Transaction costs. Dynamic portfolio optimization often involves frequent turnover and hence significant
transaction costs. Such trading costs can arise from sources ranging from the bid-offer spread or exe-
cution commissions to price impact, where the manager’s own trading affects the subsequent evolution
of prices. Intuitively, the investor would like to keep his portfolio close to the “optimal” portfolio in
the absence of transaction costs; however, due to transaction costs, it may not be optimal to trade all
the way to the target all the time.

Stochastic volatility. Stochastic volatility has been recognized as an important factor of asset price mod-
eling because it is seen as an explanation of a number of well-known empirical findings such as volatility
smile and volatility clustering. The need for multifactor modeling of the volatility process is alluded
to by Chacko and Viceira (2005); they observe that vastly different estimates of the mean-reversion
speed of volatility can be obtained by using high and low frequency data.

In this paper, our central innovation is to propose a framework for the dynamic trading problems allowing
for many features relevant for practical trading algorithms described above. Our formulation maintains
the tractability of the Gârleanu and Pedersen problem by analyzing the dynamic trading problem under
stochastic volatility under the lens of multiscale asymptotics. We further demonstrate that our formulation
provides explicit correction terms to the constant volatility strategy which can be efficiently computed for
a large class of volatility models of practical interest; moreover, through Monte-Carlo simulations, we show
how the proposed algorithms improve the trading profit&loss.

Specifically, our dynamic portfolio optimization problem is analytically tractable. In many stochastic
volatility models of practical interest (e.g. Heston, exponential Ornstein-Uhlenbeck, and the 3/2-model),
the correction terms to the constant volatility strategies can be explicitly given. Moreover, the correction
terms give rise to economically sensible trading strategies. We find that under fast-scale stochastic volatility,
the investor should optimally deleverage his portfolio when the current volatility level is higher than the
long-term average, regardless of the return-volatility correlation. On the other hand, the return-volatility
correlation plays a more important role under the slow-scale stochastic volatility. When the correlation
between the volatility and return factors is positive, the investor optimally decreases his trading rate as he
anticipates a higher return estimate is accompanied by a higher volatility. Moreover, we demonstrate that the
effect of slow-scale stochastic volatility is more significant than the fast-scale volatility in our infinite-horizon
optimal trading problem. In fact, the leading order correction in the fast-scale volatility expansion vanishes
identically and one has compute the second order expansion to consider the principal effect of fast-scale
volatility.

1.1 Literature review

Our paper is related to three different strands of literature: the literature of dynamic portfolio choice with
return predictability and transaction costs, the modeling of price impact in algorithmic trading, and the use
of asymptotic approximation in the presence of multiscale stochastic volatility.

First, we consider the literature on dynamic portfolio choice. The vast body of work begins with the
seminal paper of Merton (1971). Following this paper, there has been a significant literature aiming to
incorporate various frictions, such as transaction costs, stochastic volatility, and partial information, on the
dynamic portfolio optimization problem. Transaction costs were first introduced into the Merton portfolio
problem by Magill and Constantinides (1976) and later further investigated by Dumas and Luciano (1991).
Liu and Loewenstein (2002) study the optimal trading strategy for a CRRA investor in the presence of
transaction costs and obtain closed-form solutions when the finite horizon is uncertain. Bichuch and Sircar
(2014) analyze the problem using asymptotic approximations and find approximations to the optimal policy
and the optimal long-term growth rate.
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There is also significant literature on portfolio optimization that incorporates return predictability (see,
e.g., Campbell and Viceira (1996)). Balduzzi and Lynch (1999, 2000) illustrate the impact of return pre-
dictability and transaction costs on the utility costs and the optimal rebalancing rule by discretizing the sate
space of the dynamic program. Wachter (2002) solves, in closed form, the optimal portfolio choice problem
for an investor with utility over consumption under mean-reverting returns without transaction costs.

Several authors have also considered the portfolio problems under more realistic market dynamics such
as stochastic interest rates or stochastic volatility. For the case of stochastic interest rates the reader is
referred to Korn and Kraft (2002). Kraft (2005), Boguslavskaya and Muravey (2015) consider a variation of
the Merton problem within the framework of the Heston model and finite time horizon. Chacko and Viceira
(2005) consider a similar problem with a different specification of the market price of risk and a slightly
different stochastic volatility model; they also note the need for multifactor volatility model to adequately
capture the persistence and variability characteristics of the volatility process that are most relevant to
long-term investors. Fouque et al. (2013) build on this empirical observation and study the Merton portfolio
optimization problem in the presence of multiscale stochastic volatility using asymptotic approximations.

Moreover, there is also an emerging body of literature on partial information and expert opinions. Fouque
et al. (2014) analyze the Merton problem when the growth rate is an unobserved Gaussian process. By
applying the Kalman filter on observations of the stock price, they track the level of the growth rate and
determine the optimal portfolio maximizing expected terminal utility. Frey et al. (2012) investigate optimal
portfolio strategies in a market where the drift is driven by an unobserved Markov chain. Information on the
state of this chain is obtained from stock prices and expert opinions in the form of signals at random discrete
time points. Using hidden Markov model filtering results and Malliavin calculus, Sass and Haussmann
(2004) numerically determine the optimal strategy under a multi-stock market model where prices satisfy
a stochastic differential equation with instantaneous rates of return modeled as a continuous time Markov
chain with finitely many states.

Gârleanu and Pedersen (2013) achieve a closed-form solution for a model with linear dynamics for return
predictors, quadratic functions for transaction costs, and quadratic penalty terms for risk. Glasserman
and Xu (2013) develop a linear-quadratic formulation for portfolio optimization that offers robustness to
modeling errors or mis-specifications. Moallemi and Saglam (2012) allow for more flexible models with
trading constraints and risk considerations, but at the expense of restricting to the class of linear rebalancing
policies. In similar spirit, Passerini and Vazquez (2015) extend the model of Gârleanu and Pedersen (2013)
to include linear trading costs and using both limit and market orders. They find that the presence of
linear costs induces a “no-trading” zone when using market orders, and a corresponding “market-making”
zone when using limit orders. The more complex models are not analytically tractable, and Passerini and
Vazquez propose a heuristic “recipe” that approximates the value function by dropping certain terms in the
Hamilton-Jacobi-Bellman (HJB) equation.

Second, there is a large body of work on the modeling of price impact in algorithmic trading. The typical
problem studied in this literature is the so-called “optimal execution problem.” This arises when an investor
holding a large number of shares wants to liquidate his position over a given horizon. Rapid selling of the
stock may depress the stock price, while order slicing may add to the uncertainty in the sale price. This
tradeoff between expected execution cost and risk is first formulated by Almgren and Chriss in a couple of
seminal papers (Almgren and Chriss, 1999, 2001). Under the assumptions that execution costs are linear
in the trading rate and the choice of risk criterion is the quadratic variation, Almgren and Chriss derive a
closed-form analytical solution to the optimal execution problem.

The Almgren and Chriss model has then been generalized in various directions. A number of authors
have investigated the optimal execution problem with respect to different risk criteria. For example, Schied
and Schöneborn (2009) consider the maximization of expected utility of the proceeds of an asset sale; while
Gatheral and Schied (2011) quantify the risk associated with a liquidation strategy as the time-averaged
value-at-risk (VaR) and provide a closed-form solution to the optimal execution problem. More recently,
limit order book dynamics has been incorporated into the optimal execution problem. This leads to the
concept of transient price impact, that is, price impact that decays over time. Obizhaeva and Wang (2013)
proposed one of the first models for linear transient price impact. This model has been generalized by
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Gatheral et al. (2012) and Alfonsi et al. (2012). For a recent survey of the market impact models used in
algorithmic order execution, we refer to Gatheral and Schied (2013).

Third, there is also a literature on the use of asymptotic approximation in the presence of multiscale
stochastic volatility. This approximation technique has attracted considerable interest recently in derivative
pricing and optimal investment problems. As detailed in the recent book of Fouque et al. (2011), singular and
regular perturbation methods have been developed over a number of years to provide effective approximations
for the linear option pricing problems.

More recently, asymptotic analysis has been extended to simplify a number of nonlinear problems. Jons-
son and Sircar (2002a,b) apply singular perturbation to the partial hedging problem and optimal investment
problem, both for fast mean-reverting stochastic volatility. Fouque et al. (2013) extend the results for the
nonlinear Merton problem for general utility functions using multiscale stochastic volatility asymptotics.
While the basic solution approach is similar, we stress that our work differs from these papers in several crit-
ical ways. First and foremost, transaction costs are not taken into account in the aforementioned literature;
and we believe that the explicit modeling of transaction costs is crucial for a practical trading algorithm to
keep turnover under control. Second, we consider a mean-variance optimization problem with an infinite
trading horizon, which is more popular among industry practitioners. Finally, as opposed to the asymptotic
expansion in Fouque et al. (2013), we compute explicitly up to the second order correction in the fast-scale
stochastic volatility.

Summary In the table below we summarize the models for dynamic trading in the literature. Type
refers to continuous or discrete-time model; (g)BM stands for (geometric) Brownian motion; SV stands for
stochastic volatility; pred. stands for predictability; proportional refers to proportional transaction costs.

Table 1: Dynamic trading models: problems, models and solution approaches.
Type Price dynamics Trading friction Objective Solution

Merton (1971) Continuous gBM None Utility Analytic
Liu and Loewenstein (2002) Continuous gBM proportional Utility Analytic
Bichuch and Sircar (2014) Continuous gBM+SV proportional Utility Asymptotic
Kraft (2005) Continuous gBM+Heston None Utility Analytic
Chacko and Viceira (2005) Continuous gBM+3/2 None Utility Analytic
Fouque et al. (2013) Continuous gBM+SV None Utility Asymptotic
Fouque et al. (2014) Continuous gBM+pred. None Utility Asymptotic
Gârleanu and Pedersen (2009, 2013) Continuous/discrete BM+pred. Quadratic Mean-variance Analytic
Moallemi and Saglam (2012) Discrete BM+pred. Quadratic Mean-variance linear rebalancing rules
Passerini and Vazquez (2015) Continuous BM+pred. Linear-quadratic Mean-variance Approximate
This paper Continuous BM+pred.+SV Quadratic Mean-variance Asymptotic

Some qualitative effects of stochastic volatility mean-reversion on the optimal trading strateiges are
discussed in the recent working paper Gârleanu and Pedersen (2014).

1.2 Organization and Results

In Section 2 we introduce the Gârleanu and Pedersen (2013) model in discrete time. This section serves to
provide some structural intuitions of the optimal trading problem. Section 3 introduces the continuous-time
model with multiscale stochastic volatility. We derive the HJB equation for the optimal portfolio problem and
give the analytical solution in the special case of constant volatility. To keep the presentation manageable, we
focus on the analysis of the two factors separately. We begin in Section 4 with the case of fast mean-reverting
stochastic volatility, which leads to a singular perturbation problem for the associated HJB PDE. In Section
5, we analyze the case of slowly fluctuating volatility, which leads to a regular perturbation problem. Section
6 discusses how the fast and slow results can be combined for approximations under multiscale stochastic
volatility. In Section 7, we illustrate our results with numerical examples. Section 8 concludes and suggests
directions of extension.
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2 Introduction in discrete time

The goal of this section is to use discrete-time dynamic programming to illustrate how transaction costs
influence investment decisions. In their seminal paper, Gârleanu and Pedersen (2013) examine a dynamic,
transaction-cost-sensitive version of the Markowitz portfolio optimization problem (1968; 1952) with multiple
stocks and multiple return predictors, examining how the portfolio should dynamically be adjusted as new
information arrives. For expositional purposes, we will focus on the special case when there is just a single
stock and a single return predictor.

Denote by qt the investor’s position in this stock at time t. The excess return is given by rt+1 =
Pt+1 − (1 + rf )Pt, where Pt is stock price at time t and rf is the risk-free rate. We suppose that at each
time t, the investor has an estimate of the stock’s anticipated return xt, so that

rt+1 = xt + ε̂t+1,

where ε̂ is white noise with mean zero and variance σ2. We assume mean-reverting dynamics for xt:

xt+1 − xt = −ϕxt + εt,

where ε is an independent white noise with mean zero and variance Ω.
We assume quadratic transaction costs: a trade of size ∆q incurs transaction costs 1

2K(∆q)2 for some
constant K > 0. The interpretation is that trades move the market transiently by an amount linear in the
trade size ∆q.

2.1 Investor’s problem and dynamic programming

At time 0, starting with position q−1 of stock and return estimate x0 for the coming period’s return, the
investor chooses q0 to maximize the discounted lifetime risk-adjusted return less transaction cost, i.e.

V (q−1, x0) = max
q0,q1,...

E

[ ∞∑
t=0

(1− ρ)t+1
(
rt+1qt −

γ

2
σ2q2t

)
− (1− ρ)t

2
(∆qt)

2
K

]
,

where the constant γ is a risk aversion parameter and ρ is the discount rate. The principle of dynamic
programming states that

V (q−1, x0) = max
q0

{
−1

2
(∆q0)

2
K + (1− ρ)

(
q0x0 −

γ

2
σ2q20

)
+ (1− ρ)E [V (q0, x1)]

}
. (1)

This is a linear-quadratic stochastic control problem, so it is natural to use the linear-quadratic ansatz

V (q, x) = −1

2
Aqqq

2 +Aqxqx+
1

2
Axxx

2 +A0 (2)

for some constants Aqq, Aqx, Axx, A0. To find these constants and the optimal investment policy, we substi-
tute the ansatz (2) into the dynamic programming equation (1). The left hand side reads

−1

2
Aqqq

2
−1 +Aqxq−1x0 +

1

2
Axxx

2
0 +A0;

while the right hand side is a quadratic polynomial in q0:

max
q0

{
− 1

2
q20
(
K + (1− ρ)γσ2 + (1− ρ)Aqq

)
+ q0 (x0(1− ρ)(1− ϕ)Aqx + x0(1− ρ) +Kq−1)

+

(
1

2
(1− ρ)Axx

(
x20(1− ϕ)2 + Ω2

)
+A0(1− ρ)− 1

2
Kq2−1

)}
.
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Writing this as − 1
2q

2
0P + q0Q+R we see that q0 = P/Q and the maximum is

1

2

Q2

P
+R,

and matching coefficients determines the values of Aqq, Aqx, Axx, and A0.

2.2 Interpretation of the optimal policy

Differentiating the dynamic programming equation (1) with respect to q−1 gives

−Aqqq−1 +Aqxx0 = −(q−1 − q0)K. (3)

To interpret this relation, let q∗ maximize the value function for given x0, i.e.

q∗ = arg max
q

V (q, x0) =
Aqxx0
Aqq

.

At first one might expect q0 = q∗; but this is not true due to market frictions: if q−1 is far from q∗, the
investor would incur large transaction costs to do that trade. Instead, by rearranging (3) we obtain

q0 = q−1

(
1− Aqq

K

)
+
Aqq
K

q∗.

Although the “target amount” is q∗, due to transaction costs it is not optimal to trade all the way there –
instead the investor goes to a choice just part way between q−1 and q∗. Note that one can see, using the
explicit formula for Aqq, that 0 < Aqq/K < 1.

3 Continuous-time model

We now return to the continuous-time model of dynamic portfolio optimization problems with return pre-
dictability, transaction costs, and stochastic volatility. For expositional purposes, we will consider a single
asset with price Pt and a single return predictor xt. The dynamics of the price is given by

dPt = αt dt+ σ(Yt, Zt) dBt,

where Bt is a standard Brownian motion. Without loss of generality, we will decompose the drift αt into a
constant ᾱ and intraday component xt with zero long-term mean: αt := ᾱ+ xt. We will model the signal xt
with an Ornstein-Uhlenbeck process,

dxt = −κxt dt+
√
η dW

(0)
t . (4)

3.1 Multiscale stochastic volatility

We work under the multiscale stochastic volatility framework used in Fouque et al. (2003, 2013) for option
pricing and portfolio optimization, where there is one fast volatility factor, and one slow. Here, the volatility
is a function σ of a fast factor Y and a slow factor Z: σ(Yt, Zt). The volatility-driving factors (Y, Z) are
described by:

dYt =
1

ε
b(Yt) dt+

1√
ε
a(Yt) dW

(1)
t ,

dZt = δc(Yt) dt+
√
δg(Yt) dW

(2)
t ,

(5)
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where
(
W

(0)
t ,W

(1)
t ,W

(2)
t

)
are standard Brownian motions on a filtered probability space (Ω,F , (F)t ,P)

with instantaneous correlation as follows:

d〈W (0),W (i)〉t = ρi dt, i = 1, 2, d〈W (1),W (2)〉t = ρ12 dt,

where |ρ1| < 1, |ρ2| < 1, |ρ12| < 1, and 1 + ρ1ρ2ρ12 − ρ21 − ρ22 − ρ212 > 0, in order to ensure positive definite-
ness of the covariance matrix of the three Brownian motions. We also assume that the Brownian motions(
W

(0)
t ,W

(1)
t ,W

(2)
t

)
are independent of Bt. The model is described by the coefficients ᾱ, κ, η, σ, a, b, c, g.

The parameters ε and δ, when small, characterize the fast and slow variation of Y and Z volatility factors
respectively.

We assume that the process Yt = Y
(1)
t/ε in distribution, where Y (1) is an ergodic process with unique

invariant distribution Φ, independent of ε. Moreover, we assume that Zt = Z
(1)
δt in distribution, where Z(1)

is a diffusion process with drift and diffusion coefficients c and g respectively. We do not need any ergodicity
assumptions on Z(1) for the slow scale asymptotics in the limit δ ↓ 0.

3.2 Market friction

Trading is costly in our model, and the transaction cost (TC) associated with trading dqt shares within a
time interval dt is

TC(ut) = Ku2t , dqt = ut dt.

where qt is his position at time t, so that ut is the rate of trading. The level of transaction cost is parameterized
by some positive constant K > 0. The interpretation is that the transaction price of the asset is above the
unaffected price process when ut > 0; and the difference is proportional to the rate of trading.

Remark 3.1. Gârleanu and Pedersen (2013) further take K to be proportional to the risk σ2 which simplifies
some of the formula in the case of multiple assets, but it is not necessary for their analysis, and consequently
nor for our asymptotic analysis here.

Remark 3.2. Gârleanu and Pedersen (2013) also consider persistent transaction costs and obtain explicit
solutions. We do not incorporate this for simplicity but the anslysis could be extended to that case by
increasing the dimension of the problem to include the persistent factor.

3.3 Hamilton-Jacobi-Bellman equation

The investor’s objective is to choose the dynamic trading strategy (ut)t to maximize the present value of all
future expected excess returns, penalized for risks and trading costs,

max
u

Et
∫ ∞
t

e−ρ(s−t)
(
qsαs −

γ

2
σ(Ys, Zs)

2q2s −
K

2
u2s

)
ds,

where the constant γ is a risk aversion parameter. We define the value function

v(q, x, y, z) = sup
u

Eq,x,y,z
∫ ∞
0

e−ρt
(
qt(ᾱ+ xt)−

γ

2
σ(Yt, Zt)

2q2t −
K

2
u2t

)
dt,

where we have adopted the notation

Eq,x,y,z[·] = E [ ·| q0 = q, x0 = x, Y0 = y, Z0 = z] ,

and the supremum is taken over admissible strategies that are Ft-progressively measurable, square-integrable

(i.e.,
∫ T
0
u2tdt <∞ a.s. for all T > 0), and such that (4) and (5) has a unique strong solution on [0,∞).
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For simplicity of exposition and without loss of generality, we will take ᾱ = 0 throughout.1 The usual
dynamic programming principle leads to the HJB equation

0 = sup
u

{
qx− γ

2
σ2(y, z)q2 − 1

2
Ku2 − ρv + uvq − κxvx +

1

2
ηvxx

+
1

ε
L0v + δM2v +

1√
ε
ρ1
√
ηa(y)vxy +

√
δρ2
√
ηg(z)vxz +

√
δ

ε
ρ12a(y)g(z)vyz

}
,

(6)

where L0 and M2 are, respectively, the infinitesimal generators of the process Y (1) and Z(1):

L0 =
1

2
a(y)2

∂2

∂y2
+ b(y)

∂

∂y
, M2 =

1

2
g(z)2

∂2

∂z2
+ c(z)

∂

∂z
.

Plugging in the optimal trading rate

u∗ =
1

K
vq, (7)

we obtain

0 = qx− γ

2
σ2(y, z)q2 +

1

2K
v2q − ρv − κxvx +

1

2
ηvxx +

1

ε
L0v + δM2v

+
1√
ε
ρ1
√
ηa(y)vxy +

√
δρ2
√
ηg(z)vxz +

√
δ

ε
ρ12a(y)g(z)vyz.

(8)

We note that (8) is a nonlinear PDE which is not easily solved either analytically or numerically. Our
approach is to view this problem as a perturbation around the special case of constant volatility problem
studied by Gârleanu and Pedersen (2009, 2013).

3.4 Constant volatility solution

In the case of constant volatility σ, the value function v does not depend on the volatility factors y and z.
The HJB equation simplifies to

0 = qx− γ

2
σ2q2 +

1

2K
v2q − ρv − κxvx +

1

2
ηvxx. (9)

Gârleanu and Pedersen (2009) provide a closed-form solution

v(q, x) = −1

2
Aqqq

2 +Aqxqx+
1

2
Axxx

2 +A0,

where

Aqq =
K

2

(√
ρ2 + 4γ

σ2

K
− ρ

)
, Aqx =

(
κ+ ρ+

Aqq
K

)−1
,

Axx =
A2
qx

K(2κ+ ρ)
, A0 =

η

2ρ
Axx.

We will denote by GP(q, x;σ2) the constant volatility solution. The optimal trading rate is given by

u∗(q, x) =
1

K
(−Aqqq +Aqxx) .

1We note that the case of nonzero ᾱ can be analyzed analogously, though with more cumbersome formulas which do not
shed light on the structure of the optimal trading problem.
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Remark 3.3. The optimal trading rate can be written as

u∗(q, x) = rGP
(
aimGPt − q

)
, (10)

with

rGP =
1

2

(√
ρ2 + 4γ

σ2

K
− ρ

)
, aimGPt =

Aqx
Aqq

xt. (11)

In words, the optimal portfolio qt tracks aimt with speed r. The tracking speed decreases with the transaction
cost K and increases with the risk-aversion coefficient γ. The target portfolio shrinks to zero as variance σ2

increases.

4 Fast Mean-Reverting Stochastic Volatility

We first analyze the optimal trading problem under fast mean-reverting stochastic volatility. We have the
following dynamics for a stock or index price process P :

dPt = xt dt+ σ(Yt) dBt,

dxt = −κxt dt+
√
η dW

(0)
t ,

dYt =
1

ε
b(Yt) dt+

1√
ε
a(Yt) dW

(1)
t ,

(12)

where W (0) and W (1) are Brownian motions on a filtered probability space (Ω,F , (Ft)t,P) with instantaneous
correlation coefficient between volatility and stock return shocks ρ1 ∈ (−1, 1).

The investor chooses his optimal trading strategy to maximize the present value of the future stream of
expected excess returns, penalized for risk and trading costs:

max
(ut)t≥0

E
∫ ∞
0

e−ρt
(
qtxt −

γ

2
σ(Yt)

2q2t −
K

2
u2t

)
dt.

We define the value function

vε(q, x, y) = sup
u

Eq,x,y
{∫ ∞

0

e−ρt
(
qtxt −

γ

2
σ(Yt)

2q2t −
K

2
u2t

)
dt

}
,

where the supremum is taken over admissible strategies that are Ft-progressively measurable. The associated
HJB equation PDE for vε is

0 = qx− γ

2
σ2(y)q2 +

1

2K

(
vεq
)2 − ρvε − κxvεx +

1

2
ηvεxx +

1

ε
L0v

ε + ρ1

√
η

ε
a(y)vεxy, (13)

which is simply (8) without the z-dependence. Analytically or numerically solving the nonlinear PDE (13) is
a difficult problem. In the limit ε ↓ 0, it is a singular perturbation problem, and our approach is to construct
an asymptotic approximation of the solution.

4.1 Expansion of the value function

We look for an asymptotic expansion of the value function of the form

vε(q, x, y) = v(0)(q, x, y) +
√
εv(1)(q, x, y) + εv(2)(q, x, y) + ε3/2v(3)(q, x, y) · · · .

Inserting this expansion into (13), and collecting terms in successive powers of ε, we obtain at the highest
order ε−1:

L0v
(0) = 0.

9



Since L0 takes derivatives in y, this equation is satisfied with v(0)(q, x) independent of y. With this choice,

we have v
(0)
y = 0, so expanding the nonlinear term in (13) up to order ε gives:

(
vεq
)2

=
(
v(0)q

)2
+ 2
√
εv(0)q v(1)q + ε

((
v(1)q

)2
+ 2v(0)q v(2)q

)
+ · · · .

Therefore, at the next order ε−1/2 in the expansion of the PDE, there is no contribution from the nonlinear
term, and we have

L0v
(1) + ρ1

√
ηa(y)v(0)xy = 0.

With our choice v(0)(q, x), we obtain simply L0v
(1) = 0. Again, we satisfy this equation with v(1) = v(1)(q, x),

independent of y.
Then, collecting the order one terms leads to:

L0v
(2) + qx− γ

2
σ2(y)q2 +

1

2K

(
v(0)q

)2
− ρv(0) − κxv(0)x +

1

2
ηv(0)xx + ρ1

√
ηa(y)v(1)xy = 0. (14)

4.2 Zeroth order term v(0)

Equation (14) is a Poisson equation for v(2) whose solvability condition (Fredholm Alternative) requires that〈
qx− γ

2
σ2(y)q2 +

1

2K

(
v(0)q

)2
− ρv(0) − κxv(0)x +

1

2
ηv(0)xx

〉
= 0,

where 〈·〉 is defined by the unique invariant distribution Φ of the ergodic process Y (1):

〈g〉 =

∫
g(y)Φ(dy),

for any smooth function g. Using that v(0)(q, x) is independent of y, the solvability condition simplifies to

qx− γ

2
〈σ2〉q2 +

1

2K

(
v(0)q

)2
− ρv(0) − κxv(0)x +

1

2
ηv(0)xx = 0. (15)

Notice that (15) is the nonlinear PDE (9) for the optimal portfolio problem with constant volatility
√
〈σ2〉,

and so,
v(0)(q, x) = GP(q, x; 〈σ2〉). (16)

4.3 First order term v(1)

Combining Equations (14) and (15), we can write

L0v
(2) = g, (17)

where g(y) = γ
2

(
σ2(y)− 〈σ2〉

)
q2. The solution of the Poisson equation (17) can be expressed as

v(2) = −
∫ ∞
0

Ptg(y) dt+ C(q, x), (18)

where C(q, x) is some “constant” of integration in y, and the transition semigroup Pt is defined by its action
on bounded measurable functions g:

Ptg(y) = E
{
g(Y

(1)
t )

∣∣∣Y (1)
0 = y

}
.

See, for instance, Fouque et al. (2011, Section 3.2).
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Continuing, at order
√
ε in the expansion of the PDE, we have

1

K
v(0)q v(1)q − ρv(1) − κxv(1)x +

1

2
ηv(1)xx + L0v

(3) + ρ1
√
ηa(y)v(2)xy = 0. (19)

Equation (19) is a Poisson equation for v(3) whose solvability condition is

1

K
v(0)q v(1)q − ρv(1) − κxv(1)x +

1

2
ηv(1)xx = 0. (20)

Observe that (20) is a linear homogeneous PDE for v(1), we can choose v(1) = 0 identically. With this choice,
we have L0v

(3) = 0. Again, we satisfy this equation with v(3) = v(3)(q, x), independent of y.

4.4 Second order term v(2)

At order ε in the expansion of the PDE, we have

1

2K

(
v(1)q

)2
+

1

K
v(0)q v(2)q − ρv(2) − κxv(2)x +

1

2
ηv(2)xx + L0v

(4) + ρ1
√
ηa(y)v(3)xy = 0.

The solvability condition gives

0 =
1

K
v(0)q Cq − ρC − κxCx +

1

2
ηCxx.

This is a linear equation without source term, we can choose C to be identically zero. Therefore, from (18)
we see that the leading order correction to the value function is given by

v(2)(q, y) = −γ
2
q2
∫ ∞
0

Pt
(
σ2(y)− 〈σ2〉

)
dt =: −1

2
q2ϕ(y). (21)

Example 1. Suppose that σ2(y) = y and the volatility factor Y
(1)
t is the Cox-Ingersoll-Ross (1985) process,

that is
b(y) = θ(µ− y), a(y) = σ̂

√
y. (22)

Applying the transition semigroup Pt on the function g gives

Ptg(y) = E
[
g(Y

(1)
t )

∣∣∣Y (1)
0 = y

]
=
γ

2
E
[
Y

(1)
t − µ

∣∣∣Y (1)
0 = y

]
q2

=
γ

2
e−θt(y − µ)q2.

Then Equation (18) immediately gives

v(2) = − γ

2θ
(y − µ)q2.

One can readily check that the above does indeed solve the HJB equation (17).

Example 2. As an alternative example, let us consider the exponential Ornstein-Uhlenbeck stochastic
volatility model (Masoliver and Perelló, 2006). In this case we have σ(y) = mey and the volatility factor

Y
(1)
t is the Ornstein-Uhlenbeck process, that is

b(y) = −θy, a(y) = σ̂.

Applying the transition semigroup Pt on the function g gives

Ptg(y) = E
[
g(Y

(1)
t )

∣∣∣Y (1)
0 = y

]
=
γ

2
q2m2ek

2/α
(
e2ye

−αt− k2α e
−2αt

− 1
)
.

11



There does not appear to be a closed-form expression for the time-integral of the function Ptg(y), but we
can compute explicitly the leading order correction when the volatility factor fluctuates around its mean
level

v(2) = −γ
2
q2m2ek

2/α

∫ ∞
0

(
e2ye

−αt− k2α e
−2αt

− 1
)
dt

≈ − γ

4α
q2m2ek

2/α

(
4yΓ

(
1

2
,
k

α2

)
−
[
γ̂ + Γ

(
0,
k2

α

)
+ log

(
k2

α

)])
,

where γ̂ ≈ 0.5772 is the Euler-Mascheroni constant and Γ is the incomplete gamma function

Γ(a, z) =

∫ ∞
z

ta−1e−t dt.

4.5 Optimal Portfolio

We now analyze and interpret how the principal expansion terms v(0) and v(2) for the value function can be
used in the expression for the optimal portfolio u∗ in (7), which leads to an approximate feedback policy of
the form

u∗(q, x, y) = u(0)(q, x, y) + εu(2)(q, x, y) + · · · . (23)

The zeroth order trading rate is independent of y:

u(0)(q, x) =
1

K
(Aqxx−Aqqq) . (24)

This is simply the Gârleanu and Pedersen (2009) constant volatility strategy evaluated at the long-term
variance 〈σ2〉.

Differentiating (21) gives the principal correction to the optimal trading rate:

u(2)(q, y) = − q

K
ϕ(y). (25)

In the case where the volatility factor is driven by a Cox-Ingersoll-Ross process (see Example 1), the expres-
sion simplifies to

u(2)(q, y) = − γ

θK
q (y − µ) . (26)

Notice that u(2) and q have opposite signs when σ2(y) > 〈σ2〉. The economic interpretation is that the
investor should optimally deleverage his portfolio when the current volatility level is higher than the long-
term average.

Remark 4.1. As in Remark 3.3 for the constant volatility case, we can write the optimal trading rate in
the “aim-speed” representation

u∗(q, x) = r (aimt − q) .

From (23), (24) and (25), we obtain

r = rGP + ε
ϕ(y)

K
,

aimt =
Aqx

Aqq + εϕ(y)
x = aimGPt

(
1− εϕ(y)

Aqq
+ · · ·

)
,

(27)

where (rGP , aimGPt ) were introduced in Remark 3.3. We observe that both the aim portfolio and the tracking
speed are affected under fast-scale stochastic volatility.
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(a) Target portfolio aimt.
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(b) Tracking speed r.

Figure 1: Target portfolio aimt and optimal tracking speed r in the fast scale volatility model (22), under the
“aim-speed” representation (10). Parameters used are ρ = 0.2, κ = 1, γ = 0.5, θ = 1, µ = 0.5, x = 1, ε = 1.

Example 1 (Continued). In the case of a fast CIR volatility factor, we can derive explicitly

r = rGP + ε
γ

θK
(y − µ) ,

aimt = aimGPt

(
1− ε γ

θAqq
(y − µ)

)
.

In words, the optimal tracking speed r increases with the short-term volatility factor, while this effect is
dampened by higher transaction cost K or lower risk-aversion coefficient γ; the size of the target portfolio is
also reduced when the current volatility is above its long-term average. Figure 1 illustrates the dependence
of the target portfolio aimt and the tracking speed r on the transaction cost K.

5 Slow scale volatility asymptotics

We now perform an asymptotic analysis under the assumption that stochastic volatility is slowly fluctuating.
The model reads

dPt = xt dt+ σ(Zt) dBt,

dxt = −κxt dt+
√
η dW

(0)
t ,

dZt = δc(Zt) dt+
√
δg(Zt) dW

(2)
t ,

where W (0) and W (2) are Brownian motions with instantaneous correlation coefficient between volatility and
stock return shocks ρ2 ∈ (−1, 1), and δ is the small time-scale parameter for expansion. The HJB equation
for the value function

vδ(q, x, z) = sup
u

Eq,x,z
{∫ ∞

0

e−ρt
(
qtxt −

γ

2
σ(Zt)

2q2t −
K

2
u2t

)
dt

}
,

is

0 = qx− γ

2
σ2(z)q2 +

1

2K

(
vδq
)2 − ρvδ − κxvδx +

1

2
ηvδxx + δM2v

δ +
√
δρ2
√
ηg(z)vδxz, (28)

which is simply (8) with the y-dependence removed.
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5.1 Slow scale expansion

We look for expansion of the value function of the form

vδ(q, x, y) = v(0)(q, x, z) +
√
δv(1)(q, x, z) + δv(2)(q, x, z) + δ3/2v(3)(q, x, z) + · · · . (29)

Then it follows by setting δ = 0 that v(0) solves

0 = qx− γ

2
σ2(z)q2 +

1

2K

(
v(0)q

)2
− ρv(0) − κxv(0)x +

1

2
ηv(0)xx .

Therefore, the principal term is the Gârleanu and Pedersen value function explicitly given by GP(q, x, σ2(z)).
As with the fast factor zeroth order approximation to the value function given in (16), the zeroth order
approximation in the slow factor model is the constant volatility value function, but with σ2(z), the current
volatility, instead of the averaged quantity 〈σ2〉.

5.2 Slow scale value function correction

Taking the order
√
δ term after inserting the expansion (29) into the PDE (28) leads to

0 =
1

K
v(0)q v(1)q − ρv(1) − κxv(1)x +

1

2
ηv(1)xx + ρ2

√
ηg(z)v(0)xz . (30)

With a linear ansatz
v(1)(q, x, z) = Bq(z)q +Bx(z)x,

we can write down the solution to the HJB equation

Bq(z) =
ρ2
√
ηg(z)A′qx(z)

ρ+Aqq(z)/K
, Bx(z) =

ρ2
√
ηg(z)A′xx(z) +Aqx(z)Bq(z)/K

ρ+ κ
, (31)

where Aqx(z) and Axx(z) are the corresponding coefficients in GP(q, x, σ2(z)).

5.3 Optimal trading strategy

The optimal trading strategy in feedback form is given by

u∗(q, x, z) =
1

K
(Aqx(z)x−Aqq(z)q) +

1

K

√
δBq(z).

It follows from a straight-forward calculation that Bq and ρ2 have opposite signs, provided that the function
σ is monotonically increasing in the volatility factor Z. When the correlation ρ2 between the volatility and
return factors is positive, the investor optimally decreases his trading rate as he anticipates a higher return
estimate is accompanied by a higher volatility. Conversely, if the return-volatility correlation ρ2 is negative,
the investor optimally increases his trading rate u.

Remark 5.1. The optimal tracking speed r in the representation (10) in not affected in the case of slow
volatility factor; the target portfolio, however, is given by

aimt = aimGPt +
√
δ
Bq(z)

Aqq(z)
+ · · · .

In the case of negative correlation ρ2, the investor optimally increases the leverage for positive signal xt, this
is because positive return shock is correlated with lower volatility, and a higher target portfolio (than aimGPt )
captures this potential gain. The investor, however, deleverages the portfolio for negative signal xt since
the target portfolio is a short position on the stock, a negative return shock is correlated to higher volatility
and hence higher risk. The two effects work against each other and the investor optimally shinks the target
position closer to zero. The case of positive correlation ρ2 is analyzed analogously.
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6 Multiscale stochastic volatility

We return to the two-factor multiscale volatility model (5), introduced in Section 3, where there is one
fast volatility, and one slow. We show that the separate fast and slow expansions to first order essentially
combine, but with slight modification of the averaged parameters involved.

Under our simplifying assumption of zero expected stock return ᾱ, the stock price process follows

dPt = xt dt+ σ(Yt, Zt) dBt,

dxt = −κxt dt+
√
η dW

(0)
t ,

dYt =
1

ε
b(Yt) dt+

1√
ε
a(Yt) dW

(1)
t ,

dZt = δc(Zt) dt+
√
δg(Zt) dW

(2)
t .

The value function

vε,δ(q, x, y, z) = sup
u

Eq,x,y,z
{∫ ∞

0

e−ρt
(
qtxt −

γ

2
σ(Yt, Zt)

2q2t −
K

2
u2t

)
dt

}
,

has the associated HJB equation

0 = qx− γ

2
σ2(y, z)q2 +

1

2K

(
vε,δq
)2 − ρvε,δ − κxvε,δx +

1

2
ηvε,δxx +

1

ε
L0v

ε,δ

+ δM2v
ε,δ + ρ1

√
η

ε
a(y)vε,δxy +

√
δρ2
√
ηg(z)vε,δxz + ρ12

√
δ

ε
a(y)g(z)vε,δyz .

(32)

The optimal strategy in feedback form is given by

u∗(q, x, y, z) =
1

K
vε,δq . (33)

6.1 Combined expansion in slow and fast scales

For expositional purposes, we focus on the leading order corrections to the value function from the fast and
slow scale volatilities. Appendix A presents the full second order asymptotic expansion to the multiscale
stochastic volatility problem. First we construct an expansion in powers of

√
δ:

vε,δ = vε,0 +
√
δvε,1 + δvε,2 + · · · , (34)

so that vε,0 is obtained by setting δ = 0 in the equation for vε,δ:

0 = qx− γ

2
σ2(y, z)q2 − 1

2K

(
vε,0q

)2 − ρvε,0 + uvε,0q − κxvε,0x +
1

2
ηvε,0xx +

1

ε
L0v

ε,0 + ρ1

√
η

ε
a(y)vε,0xy . (35)

This is the same HJB problem (13) as for the value function vε except that the volatility depends on the
current level z of the slow volatility factor, which enters as a parameter in the PDE (35). It is clear that
when we construct an expansion for vε,0 in powers of

√
ε:

vε,0 = v(0) +
√
εv(1,0) + εv(2,0) + · · · ,

we will obtain, as in Section 4, that v(0) is the Gârleanu and Pedersen (2009) value function with constant
volatility σ̄2(z):

v(0)(q, x, z) = GP(q, x; σ̄2(z)), (36)

where σ̄2(z) = 〈σ2(·, z)〉. That is, the variance is squared-averaged over the fast factor with respect to its
invariant distribution, and evaluated at the current level of slow factor.
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Following Section 4, the correction term v(1,0) is identically zero and v(2,0) is given by

v(2,0) = −γ
2
q2
∫ ∞
0

Pt
(
σ2(y, z)− σ̄2(z)

)
dt =: −1

2
q2ϕ(y, z). (37)

Next we return to the slow scale expansion (34) and extract the order
√
δ terms in (32) to obtain the

following equation for vε,1:

0 =
1

K
vε,0q vε,1q −ρvε,1−κxvε,1x +

1

2
ηvε,1xx +

1

ε
L0v

ε,1+ρ1

√
η

ε
a(y)vε,1xy +ρ2

√
ηg(z)vε,0xz +

1√
ε
ρ12a(y)g(z)vε,0yz . (38)

We look for an expansion
vε,1 = v(0,1) +

√
εv(1,1) + εv(2,1) + · · · , (39)

where we are only interested here in the first term which will give the principal slow scale correction to the
value function.

The order ε−1 terms in (38) give L0v
(0,1) = 0 and we take v(0,1) = v(0,1)(q, x, z) independent of y. At

order ε−1/2, we have L0v
(1,1) = 0 and so again v(1,1) = v(1,1)(q, x, z). At order one:

0 =
1

K
v(0)q v(0,1)q − ρv(0,1) − κxv(0,1)x +

1

2
ηv(0,1)xx + L0v

(2,1)

+ ρ1
√
ηa(y)v(1,1)xy + ρ2

√
ηg(z)v(0)xz + ρ12a(y)g(z)v(1,0)yz .

(40)

Viewed as a Poisson equation for v(2,1), this yields the following solvability condition for v(0,1):

0 =
1

K
v(0)q v(0,1)q − ρv(0,1) − κxv(0,1)x +

1

2
ηv(0,1)xx + ρ2

√
ηg(z)v(0)xz .

This is the same PDE problem (30) as for the slow scale correction in Section 5, except with σ(z) replaced
by σ̄(z). We conclude that v(0,1)(q, x, z) = Bq(z)q +Bx(z)x, with

Bq(z) =
ρ2
√
ηg(z)A′qx(z)

ρ+Aqq(z)/K
, Bx(z) =

ρ2
√
ηg(z)A′xx(z) +Aqx(z)Bq(z)/K

ρ+ κ
, (41)

where Aqx(z) and Axx(z) are the corresponding coefficients in GP(q, x, σ̄2(z)).
In summary, the leading-order multiscale correction is given by

vε,δ(q, x, y, z) = GP(q, x; σ̄2(z))− ε

2
q2ϕ(y, z) +

√
δ (Bq(z)q +Bx(z)x) + · · · . (42)

In Appendix A, we present the full second order asymptotic expansion; the results are conveniently summa-
rized in Table 2.

O(1) O(
√
ε) O(ε)

O(1) GP(q, x; σ̄2(z)) 0 v(2,0) = (37)

O(
√
δ) v(0,1) = (41) v(1,1) = (49)

O(δ) v(0,2) = (52)

Table 2: Summary of the full second order asymptotic expansion to the multiscale stochastic volatility
problem (32).

16



6.2 Multiscale optimal portfolio

The optimal portfolio up to orders ε and
√
δ for the multiscale model is obtained by inserting the value

function approximation (42) into the optimal strategy feedback function (33), which leads to

uε,δ =
1

K
(Aqx(z)x−Aqq(z)q)−

εq

K
ϕ(y, z) +

√
δ

K
Bq(z) + · · · , (43)

where

Aqq(z) =
K

2

(√
ρ2 + 4γ

σ̄(z)2

K
− ρ

)
, Aqx(z) =

(
κ+ ρ+

Aqq(z)

K

)−1
,

and

Bq(z) =
ρ2
√
ηg(z)A′qx(z)

ρ+Aqq(z)/K
.

The formula (43) for the approximate optimal trading rate up to order ε and
√
δ highlights the contribution

from the volatility factor-returns correlations. The principal (zero order) strategy

u(0)(q, x, z) =
1

K
(Aqx(z)x−Aqq(z)q)

is a moving Gârleanu and Pedersen strategy with respect to the slow factor Z, as in the slow-only case
(Section 5).

Remark 6.1. Both the aim and tracking speed are affected by multiscale stochastic volatility in representation
(10). Indeed, we have

r = rGP + ε
ϕ(y, z)

K
+ · · · ,

aimt =
Aqx(z)x+

√
δBq(z)

Aqq(z) + εϕ(y, z)
+ · · · =

(
aimGPt +

√
δ
Bq(z)

Aqq(z)

)(
1− εϕ(y, z)

Aqq(z)
+ · · ·

)
.

(44)

7 Examples & numerical solutions

We present numerical examples to demonstrate that the asymptotic approximation can be computed ef-
ficiently under a wide variety of models of practical interest. Then we demonstrate how the proposed
algorithms improve our Profit&Loss using Monte-Carlo simulations.

7.1 Heston stochastic volatility model

Kraft (2005) considered the one-factor stochastic volatility model in which the volatility factor Zt is a CIR
process:

σ(z) = z1/2, c(z) = m− z, g(z) = β
√
z,

that is

dPt = xt dt+
√
Zt dBt,

dxt = −κxt dt+
√
η dW

(0)
t ,

dZt = δ(m− Zt) dt+
√
δβ
√
Zt dW

(2)
t .

(45)

We assume the standard Feller condition β2 < 2m, which we note does not involve the time scale parameter
δ.

In Figure 2, we show the value function over a range of the time scale parameter δ, for three different
values of the volatility factor. The leading-order correction v(1) to the value function is proportional to

√
δ
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and ρ2. When the correlation between the slow volatility and stock return shocks is positive, the principal
impact of stochastic volatility is lowering of the value function. Intuitively, when the stock return xt goes
up, the optimal stock holding qt also goes up; but in the case of positive correlation ρ2, this is also followed
by an increase in uncertainty, causing the investor to be more conservative and reduce leverage. Figure 3
shows the principal effect of a slow-scale stochastic volatility on the optimal trading rate u.

z 
m

2

z  m

z  2m

0.2 0.4 0.6 0.8 1.0
0.5

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

v1

Figure 2: Value functions in the slow scale volatility model (45) for a range of δ, for three different values of
the volatility factor. Parameters used are ρ = 0.2, γ = 1,m = 0.5, β = 0.25,K = 1, ρ2 = 0.5, η = 0.5, κ = 1.

u(0)

u(0)+ δ u(1)

0.2 0.4 0.6 0.8 1.0
z

0.5

0.6

0.7

0.8

u

Figure 3: Optimal trading rate u in the slow scale volatility model (45). Parameters used are as in Figure 2
and δ = 0.5.

7.2 Chacko and Viceira (2005) model

As another example, we illustrate our approximation with a model considered in Chacko and Viceira (2005):

σ(z) = z−1/2, c(z) = m− z, g(z) = β
√
z,

that is

dPt = xt dt+

√
1

Zt
dBt,

dxt = −κxt dt+
√
η dW

(0)
t ,

dZt =
1

ε
(m− Zt) dt+

1√
ε
β
√
Zt dW

(1)
t .

(46)
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(a) Optimal trading rate u.
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Figure 4: Optimal trading rate u in the fast scale volatility model (46). Parameters used are as in Figure 2.

Equation (21) applied to the current setting gives the leading order correction to the optimal trading rate
in the presence of fast-scale stochastic volatility. Chou and Lin (2006) show that the probability transition
density of the CIR process is

pt(x, y) =
2

β2 (1− e−t)
exp

[
2 (x+ yet)

β2 (1− et)

](
yet

x

)ν/2
Iν

(
− 4

√
xyet

β2 (1− et)

)
, ν =

2m

β2
− 1,

where Iν is the modified Bessel function of the first kind of index ν. With this we can compute the expected
variance at time t

Ptσ
2(y) =

ζte
−yµt

q
1F1(q, 1 + q, yµt), 〈σ2〉 =

2

2m− β2
, (47)

where

ζt =
2

β2(1− e−t)
, µt = ζte

−t, q =
2m

β2
− 1,

and 1F1 (·, ·, ·) is the Kummer confluent hypergeometric function. The correction to the optimal control
under the fast-scale Chacko and Viceira volatility process can be computed with a single numerical integral:

u(2)(q, y) = − q

K
ϕ(y) = − γ

K
q

∫ ∞
0

Pt
(
σ2(y)− 〈σ2〉

)
dt.

As shown in Figure 4, the correction term u(2) is nonlinear in y, in contrast to the Heston model in Example
1.

7.3 Monte Carlo simulation

We have tested our trading strategy using a Monte Carlo simulation under the fast and slow-scale optimal
trading algorithm described in Section 4. We simulate the Heston stochastic volatility model of Example 1
using the 3-stage Rossler Stochastic Runge-Kutta scheme. Figure 5 demonstrates the gain in P&L using the
optimal trading strategy (26) over the constant volatility Gârleanu and Pedersen strategy.

For the fast-scale stochastic volatility, we compare our proposed strategy (26) with the zeroth order
Gârleanu and Pedersen constant volatility strategy. With parameters ρ = 0.2, γ = 5,m = 0.5, β =

√
0.5,K =

1, ρ1 = 0.5, η = 0.5, κ = 1, ε = 0.25, we record a gain in P&L of 23.91 bps. See Figure 5 for the distribution
of the difference in P&L between the proposed strategy (26) and the Gârleanu and Pedersen strategy.

In the case of slow-scale stochastic volatility, we compare the propsed leading-order correction to the
optimal trading rate with the Gârleanu and Pedersen (2009) strategy with the current volatility σ(Zt). The
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Figure 5: Gain in P&L in the fast and slow-scale stochastic volatility model. Left panel: distribution of
the difference in P&L between the proposed strategy and the Gârleanu and Pedersen strategy; parameters
chosen are γ = 5, β =

√
0.5, ρ1 = 0.5, ε = 0.25. Right panel: gain in P&L in the slow-scale Heston

stochastic volatility model for different starting value of the volatility factor Z0; parameters chosen are
γ = 1, β = 0.25, ρ2 = 0.5,

√
δ = 0.25. Other parameters are as in Figure 2.

gain in P&L depends on the initial value of volatility factor Z0. Table 7.3 demonstrates the gain in P&L of
the proposed trading strategies under the slow-scale Heston stochastic volatility model for different starting
value of the volatility factor Z0. We note that the proposed algorithm provides an improvement on the
trading P&L for all starting values Z0; while the gain in P&L is most significant when the initial volatility
factor Z0 is below its long-term level m.

Table 3: Gain in P&L in the slow-scale Heston stochastic volatility model; parameters chosen are γ = 1, β =
0.25, ρ2 = 0.5,

√
δ = 0.25. Other parameters are as in Figure 2.

Z0 mean (bps) std error (bps)

0.1 40.157 15.497
0.2 29.617 9.750
0.3 10.560 6.826
0.4 10.928 5.242
0.5 7.005 4.061
0.6 7.686 3.298
0.7 5.183 2.686
0.8 0.637 2.339
0.9 3.705 2.041

8 Conclusion

The impact of stochastic volatility on the problem of dynamic trading can be studied and quantified through
asymptotic approximation, which are tractable to compute. We have derived the first two terms of the
approximations for the Gârleanu and Pedersen (2009, 2013) value function, when volatility is driven by a
single fast or slow factor, and Section 6 shows how these can be combined to incorporate both long and
short time scales of volatility fluctuations. Using numerical examples and Monte-Carlo simulations, we
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have demonstrated that our proposed strategies is efficient to compute and they offer improvement in the
Profit&Loss when the volatility process is characterized by its time scales of fluctuation.

There are a number of directions where similar techniques may play an effective role and we mention a
few.

1. The impact of stochastic liquidity on the optimal portfolio, first formulated by Almgren (2012) in
continuous time and later extended by Cheridito and Sepin (2014) in discrete time, is clearly of interest
and a challenge. We refer to Gatheral and Schied (2013) for modern developments and background.
The joint asymptotics to study the impact on portfolio choice of friction from both stochastic liquidity
and stochastic volatility will be considered in a future paper.

2. In the present paper, the trading signals are considered observable. In practice, they are often observed
with high signal-to-noise ratio. It is therefore important to quantify the impact of partial observations
on the optimal trading behavior. In similar spirit to the Black and Litterman (1991) model, one
can incorporate investors’ views on upcoming performance are incorporated along with any degree of
uncertainty that the investor may have in these views. The treatment of optimal trading with partial
observations and intermittent insertion of expert opinions is the subject of an upcoming paper.

A Full second order asymptotics

In this appendix we provide the full second order asymptotic expansion to the multiscale stochastic volatility
model in Section 6. At order ε1/2 of equation (38), we have

0 =
1

K
v(0)q v(1,1)q − ρv(1,1) − κxv(1,1)x +

1

2
ηv(1,1)xx + L0v

(3,1) + ρ12a(y)g(z)v(2,0)yz .

When viewed as a Poisson equation for v(3,1), this gives the solvability condition for v(1,1):

0 =
1

K
v(0)q v(1,1)q − ρv(1,1) − κxv(1,1)x +

1

2
ηv(1,1)xx +G(z)q2, (48)

where the source term G is given by

G(z) = −1

2
ρ12g(z)

〈
a(y)

∂2

∂y∂z
ϕ(y, z)

〉
.

The equation (48) can be solved using a quadratic ansatz

v(1,1)(q, x, z) =
1

2
Cqq(z)q

2 + Cqx(z)qx+
1

2
Cxx(z)x2 + C0(z), (49)

where

Cqq(z) =
G(z)

Aqq(z)
K + ρ

2

, Cqx(z) =
Aqx(z)Cqq(z)
Aqq(z)
K + ρ+ κ

, Cxx(z) =
Aqx(z)
K Cqx(z)

κ+ ρ/2
, C0(z) =

η

2ρ
Cxx(z).

Returning to the slow scale expansion (34), we extract the order δ term in (32) to obtain the following
equation for vε,2:

0 =
1

2K

((
vε,1q

)2
+ 2vε,0q vε,2q

)
− ρvε,2 − κxvε,2x +

1

2
ηvε,2xx +

1

ε
L0v

ε,2

+M2v
ε,0 + ρ1

√
η

ε
a(y)vε,2xy + ρ2

√
ηg(z)vε,1xz +

1√
ε
ρ12a(y)g(z)vε,1yz .

(50)
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The order ε−1 terms in (50) give L0v
(0,2) = 0 and we take v(0,2) = v(0,2)(q, x, z) independent of y. At order

ε−1/2, we have L0v
(1,2) = 0 and so again v(1,2) = v(1,2)(q, x, z). At order one:

0 =
1

2K

(
v(0,1)q

)2
+

1

K
v(0)q v(0,2)q − ρv(0,2) − κxv(0,2)x +

1

2
ηv(0,2)xx + L0v

(2,2) +M2v
(0) + ρ2

√
ηg(z)v(0,1)xz . (51)

When viewed as a Poisson equation for v(2,2), this yields the following solvability condition for v(0,2):

0 =
1

2K

(
v(0,1)q

)2
+

1

K
v(0)q v(0,2)q − ρv(0,2) − κxv(0,2)x +

1

2
ηv(0,2)xx +M2v

(0) + ρ2
√
ηg(z)v(0,1)xz .

This can again be solved using a linear-quadratic ansatz

v(0,2)(q, x, z) =
1

2
Dqq(z)q

2 +Dqx(z)qx+
1

2
Dxx(z)x2 +D0(z), (52)

where

Dqq(z) = − M2Aqq(z)

ρ+ 2
KAqq(z)

, Dqx(z) =
M2Aqx(z) + 1

KAqx(z)Dqq(z)
1
KAqq(z) + ρ+ κ

,

Dxx(z) =
1
KAqx(z)Dqx(z) + 1

2M2Axx(z)

κ+ ρ/2
, D0(z) =

1

ρ

(
H(z) +

1

2
ηDxx(z)

)
,

(53)

and

H(z) =
1

2K
Bq(z)

2 +M2A0(z) + ρ2
√
ηg(z)B′x(z).
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