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Abstract

Motivated by dramatic and unpredictable technological advances in energy production (for
instance drilling and extraction of shale oil), we extend Cournot models of competition to
incorporate research and development (R&D) that can lead to (stochastic) drops in production
costs. Our model combines features of patent racing with dynamic market structure, capturing
the interplay between the immediate competition in terms of production rates and the long-term
competition in R&D. The resulting Markov Nash equilibrium is found from a sequence of one-
step static games arising between R&D successes, and several numerical examples and extensive
analysis of the emerging comparative statics are presented. Analyzing the relationship between
current market dominance and the level of R&D investments, we find that market leaders
tend to invest more, which in some sense makes oligopoly dynamically unstable. We show
that anticipated market transitions have long-term impact; for example the potential of future
monopoly can spur R&D investment now, even if the firm is presently uncompetitive and not
actively producing. We also show that, surprisingly, random innovations have an ambiguous
effect on R&D. This feature, which is driven by the Cournot framework, contrasts with the
common situation whereby uncertainty lowers innovation and delays R&D investments. Finally,
we demonstrate that increased competition may actually increase efforts to innovate through
higher desire to achieve dominance. This would match the anecdotal evidence that the threat
of market entrants forces incumbents to maintain high R&D.
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JEL Codes: D43, O32, C73, L13

1 Introduction

In the past decade, major advances in deep-sea offshore oil, tanker technology, and especially shale
oil have fundamentally altered the oil market, marginalizing traditional producers and elevating new
players. These effects can be ascribed to dramatically lower production costs of these technologies.
A recent article in the New York Times quotes that “the break-even price for operating in 75
percent of the shale oil fields a year ago was $75 a barrel, but that is now down to roughly $60
because of innovation and lower service company costs... the break-even cost could go as low as
$50 before long.” [Krauss, 2015] The alluded innovations are uncertain and unpredictable – witness

∗Department of Statistics and Applied Probability, University of California Santa Barbara, South Hall, Santa
Barbara, CA 93106-3110; ludkovski@pstat.ucsb.edu. We thank Mark Duggan for research assistance, Rene Aid and
Hans Tuenter for helpful discussions. We also thank participants at the Banff Workshop on New Directions in
Financial Mathematics and Mathematical Economics (July 2014) and IPAM Workshop on Commodity Markets and
their Financialization (May 2015) for their feedback.
†ORFE Department, Princeton University, Sherrerd Hall, Princeton, NJ, 08544; sircar@princeton.edu. Work

partially supported by NSF grant DMS-1211906.

1



the disruptive power of shale production which was a sudden development unanticipated even 15
years ago. Conversely, consider the story of arctic oil production which remains minimal even after
decades of exploration due to unforeseen challenges. Moreover, technical progress is not a one-time
event, but a series of changes representing accumulation of knowledge stock and corresponding
technology advances, all requiring sustained investments in research and development.

Motivated by these economic realities, in this paper we investigate dynamic stochastic Research
& Development (R&D) games. The underlying framework of a non-cooperative oligopoly is a
popular tool for describing commodity market equilibrium and is to be understood broadly, for
example via various producer types in the oil market (conventional sweet crude, offshore oil, oil
sands, shale oil, etc.) The dynamic aspect arises due to the two time scales for competition
between producers. In the short term, firms compete on quantity, interacting through the aggregate
supply-demand equilibrium. In the long term, firms also compete on innovation through generating
structural competitive advantages. As described above for the crude oil market, one way to gain
advantage is to improve efficiency through lower extraction costs.

To capture game effects which are present on both time scales we consider a Cournot market
model with the producers endogenously improving their production costs. More precisely, we
describe technological advances as a controlled point process, where the timing of innovation events
is influenced by the investment in R&D. Consequently, progress is stochastically dependent on the
research effort but is totally unpredictable otherwise. Innovation gains are assumed to be permanent
and private, generating a durable competitive advantage to the innovator. The discrete nature of
innovation implies that the market evolves through a sequence of technology stages. This setup also
decouples the instantaneous equilibrium, equivalent to a static Cournot game, from the long-term
cost competition that is described through dynamic-programming-type recursions.

1.1 Contributions

Our dynamic R&D game provides a link between models of stochastic innovation/patent races and
of Cournot markets. Integrating both aspects in a single game theoretic framework gives insights
into the interplay between joint optimization of production and R&D. Notably, the developed model
endogenizes the market structure, making the number of active producers time-varying, so as to
allow an endogenous transition between, say, duopoly and monopoly. Thus, we are able to capture
the aforementioned history of oil production whereby some technologies dynamically enter and
leave the market (e.g. the recent entry of shale production and the resulting effective suspension
of deep-sea exploration). Endogenous market structure is only possible in a multi-stage setup and
highlights the dynamism of our framework.

Our analysis yields several novel insights and features. First, we analyze the relationship be-
tween current market dominance and the level of R&D investments. We find that market leaders
tend to invest more, which in some sense makes oligopoly dynamically unstable. Second, we show
that anticipated market transitions have long-term impact; for example the potential of future
monopoly can spur R&D investment now, even if the firm is presently uncompetitive and not ac-
tively producing. Third, we provide results and extensive discussion on the role of stochasticity
in R&D. The fact that innovations are fundamentally uncertain in our model implies that there is
always a range of scenarios for the future competition conditions. Surprisingly we show that ran-
dom innovations have an ambiguous effect on R&D. This feature, which is driven by the Cournot
framework, contrasts with the common situation whereby uncertainty lowers innovation and delays
R&D investments. Fourth, we investigate the role of competition in R&D. We demonstrate that
increased competition may actually increase efforts to innovate through higher desire to achieve
dominance. This would match the anecdotal evidence that the threat of market entrants forces
incumbents to maintain high R&D.
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On the modeling front, our setup is mathematically tractable, directly building on top of the
classical theory of Cournot competition. As such, we are able to use insights from static games to
shed light on features of the dynamic model. In particular, we analyze the relationship between the
static dependence of profits on costs and the dynamic R&D investments. Furthermore, our model
is also highly flexible, and can be easily modified to consider further interactions between players
in the R&D space, including R&D spill-overs, exogenous technical shocks or complementarity be-
tween R&D and production expenditures. This adds a new dimension to the standard Cournot
competition based solely on quantity. Lastly, the multi-stage aspect of R&D innovations allows for
straightforward numerical implementation, breaking down the stochastic differential game into a
sequence of simple (nonlinear) optimization problems.

As explained, our main motivation comes from commodity markets where Cournot oligopoly
models are well-established. Nevertheless, our model is broadly applicable since any sustained
economic growth requires ongoing productivity gains. Thus, the associated technological progress
and the resources allocated to it are a crucial ingredient in generic economic growth models. As
detailed below, our framework can therefore be transferred to other settings, for example dynamic
races between consumer technology firms (the Apple vs. Samsung archetype) or multi-stage patent
races.

1.2 Related Frameworks

The main ingredients of our model are (i) Cournot competition, (ii) endogenous R&D effort with
stochastic innovation, and (iii) continuous-time dynamic framework. The precise combination of
these building blocks appears here for the first time, but there are several substantial bodies of
relevant research.

First, there is a large strand of literature studying the monopolist’s (or social planner’s) prob-
lem of profit maximization under endogenous technological progress. This is usually done with a
Ramsey-type economic growth model that combines the production and R&D activities within a
single framework. Historically, this analysis originated in the study of exhaustible resource extrac-
tion [Kamien and Schwartz, 1978, Pindyck, 1980]. In endogenous growth models, R&D is used to
increase the knowledge stock, which in turn raises production efficiency. See for example Goulder
and Schneider [1999], Lafforgue [2008], Grimaud et al. [2011]. One recent key topic involves R&D
to develop a renewable energy backstop to guard against exhaustibility of conventional fossil fuels
[Tsur and Zemel, 2003]. Our model can be seen as a game-theoretic expansion of these ideas.
Rivalry considerations add a new dimension to investing in R&D, because the value of R&D is
inextricably tied to the size of competition which in turn is driven by innovations.

In terms of the R&D innovations model, our setup is closest to the work of Lafforgue [2008].
Lafforgue considered a central planner framework that features a single consumption good and a
representative consumer. Producing the consumption good requires labor and has an efficiency
parameter B(t). Lafforgue assumed that B(t) can be sequentially improved through R&D expen-
ditures. As below, Lafforgue [2008] represents R&D innovations as a controlled counting process
where each innovation increases B(t) by a factor of 1 + b. In addition, Lafforgue [2008] assumes an
exhaustible resource with stock X(t) that is required for production, and a perfect substitutability
between production and R&D labor. By postulating specific analytic forms of the corresponding
dynamics, production and utility functions, an explicit analytic solution is then obtained to the
stochastic optimization problem. Our model can be seen as the generalization of this setup to
the multiple-agent game setting. With multiple agents, the central planner perspective no longer
applies, and new dynamic features (most notably different game regimes in terms of player partic-
ipation) emerge. The increased complexity does rule out analytic solutions.

From the control perspectives, all the above models can be first classified as deterministic or
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stochastic, and second as using continuous, singular or impulse (stopping) controls. In the context
of R&D development, because innovations are typically indivisible or lumpy, the common stochastic
source is Poissonian (in contrast, for capacity expansion or for modeling demand fluctuation, Brow-
nian shocks are usually used). In our model below, we also use Poissonian shocks but work with
continuous controls, which allows us to leverage the tractable framework of piecewise-deterministic
control [Davis, 1993].

Moving beyond central-planner models, R&D has been viewed in the context of patent races,
see e.g. the survey by Reinganum [1989]. In the classical patent race players compete to receive a
single prize by making R&D investments that stochastically determine the winner. Starting from
the basic one-shot framework of Reinganum [1983], multi-stage extensions have been analyzed in
Grossman and Shapiro [1987], Harris and Vickers [1987], Judd [2003] and Doraszelski [2003]. With
multiple stages, asymmetry between agents become central to the analysis. The typical outcome is
of “increasing dominance” —the current leader that is closest to the prize also puts in more effort,
which is essentially driven by the increased probability of collecting the prize, the so-called “pure
progress effect”. The above models assume only a single reward that is fully appropriated by the
winner; in contrast we embed a patent race within a competitive market framework. The latter
makes the R&D race less of a zero-sum and moreover introduces further effects due to dynamic
market structure.

Alternatively, R&D race can be viewed as a timing game, where sustained R&D efforts are
replaced with a one-shot investment. Starting with the seminal work of Fudenberg and Tirole [1985],
there has been ongoing interest in such preemption games that generalize the real options setting to
multiple agents. Stochastic game models under a variety of uncertainty models (fluctuating demand,
exogenous or endogenous technology shocks, duopoly or oligopoly, etc.) have been considered, see
Weeds [2002], Huisman and Kort [2004], Femminis and Martini [2011] or the recent review in
Azevedo and Paxson [2014]. A major topic in this research is to determine the market structure.
However, because the games are one-shot (the only action is the timing of investment) this market
structure is essentially static a priori. In contrast, below we work with a genuinely dynamic setting
where agent strategies are ongoing and adaptive and where the different game stages allow for
percolation of different equilibrium types over time. Stopping-time games are both simpler (since
strategies can be typically summarized in terms of a simple threshold-exercise rule) and more
complex (allowing for e.g. both sequential and simultaneous exercise) than a dynamic game.

Better technology confers first-mover advantage and hence is naturally linked to leader-follower
games. A notable reference is Fölster and Trofimov [1997] who considered an oligopoly where each
of n firms maximizes R&D effort a(t) that stochastically determines the random first innovator
who temporarily collects extra profits. While Folster and Trofimov have a similar “quality ladder”
for cost reduction within a Cournot market, their model is effectively one-stage in our notation and
hence has (an endogenous) static market structure.

Lastly, while the model herein is intrinsically stochastic, it bears resemblance to deterministic
models of R&D races, such as the discrete-stage frameworks of Fudenberg et al. [1983] or the
continuous-time differential game of Cellini and Lambertini [2009]. The main difference is that a
deterministic model leaves little place for asymmetry since equilibrium is fully determined by the
initial condition. Thus, typically only the completely symmetric case is interesting, which is known
as ε-preemption [Fudenberg et al., 1983]. In turn, symmetry destroys much of the game aspect:
for example in Cellini and Lambertini [2009] the completely symmetric equilibrium is analytically
identical to classical optimization. In our model the uncertainty plays a fundamental role since it
allows for varied dynamic market structures.

To sum up, our work is at the intersection of three research streams. First, we extend the ongoing
stochastic innovations model of Lafforgue [2008] to the game setting. Rivalry consideration are
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crucial since they modify market structure and induce additional strategic considerations. Second,
we combine the multi-stage patent races [Grossman and Shapiro, 1987, Judd, 2003] with a Cournot
market. Third, we extend the one-shot stochastic games of Fölster and Trofimov [1997] to the
dynamic setting. New dynamic effects include anticipation of blockading and possibility to analyze
the time-profile of R&D across no-longer symmetric players.

The rest of the paper is organized as follows. Section 2 develops the dynamic Cournot market
model we employ, in particular describing technology ladders capturing cost improvements. Section
3 constructs a Markov Nash equilibrium for the above model by leveraging the local structure of
static Cournot market and the Poissonian innovation process. The resulting endogenized technical
progress and respective market structure are investigated in Section 4 for the unilateral R&D case,
and in Section 5 for the bilateral R&D. Section 7 addresses several extensions of the basic model,
including partial substitutability, spillovers and deterministic R&D. Section 8 concludes, while the
Appendix contains proofs of several key lemmas.

2 Cournot Oligopoly with Technology Innovation

We consider a Cournot oligopoly with L ≥ 2 players or producers. (The monopoly case L = 1
also obeys the properties below, but in this paper we are primarily concerned with markets where
there is competition.) The players compete in a single market by choosing their production rates
qi. Equilibrium emerges based on a demand curve D(·) and aggregate supply

Q = q1 + . . .+ qL.

Thus, the market clearing price P received by each producer is determined according to

P = D−1(Q).

Note that the above assumes perfectly substitutable goods from different producers. This choice
is to simplify the presentation and is not essential to the analysis that follows; see Section 7.2 for
discussion of differentiated markets.

To maintain finite market capacity and avoid other technical difficulties, the next assumption
imposes regularity on the relationship between P and Q.

Assumption 1. Q 7→ P (Q) is twice continuously differentiable with P ′(Q) < 0 everywhere, and
there exists η <∞, such that P (η) = 0. Moreover, QP (Q) is bounded from above.

The upper limit η is called the saturation point – total production Q is guaranteed to stay below
η, otherwise prices will collapse to zero. The next further assumption restricts the convexity of
the price function P (Q) and will be used in the sequel to explicitly describe the Cournot oligopoly
equilibrium. Define

ρ(Q) :=
−QP ′′(Q)

P ′(Q)

to be the relative prudence of the price function.

Assumption 2. The price function P (Q) satisfies supQ∈(0,η) ρ(Q) =: ρ̄ < 2.

Notation: we use the generic subscript i, j to denote a particular player i = 1, . . . , L; the multi-
index −i = {1, 2, . . . , i − 1, i + 1, . . . , L} denotes all players except i. In particular, the aggregate
supply consists of player i’s production and the rest, Q = qi + Q−i. When L = 2 we use j 6= i to
denote the other player, so that Q = qi + qj .
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Players are differentiated according to their production costs Ci ≥ 0, which linearly enter into
their profit rate

πi = qi · (P (Q)− Ci). (1)

In the short-term, players optimize πi by establishing a Nash equilibrium in terms of production
rates qi; interactions are solely through the clearing price P (Q). In the long-term players have
the ability to lower their production costs through Research and Development activities. Thus,
Ci = Ci(t) may change over time; lower costs will translate into higher profits πi in (1).

We assume that technology changes are abrupt and possible stages are summarized by a tech-
nology ladder

Ci := {ci(n), n = 1, . . . , }, ci(n) ≥ ci(n+ 1) ≥ . . . ≥ 0. (2)

At any given date t, Ci(t) ∈ Ci is discrete, and can be encoded via the corresponding stage n. The
ladder Ci may contain either finite or infinite number of stages and is fixed a priori. Note that
costs are required to stay non-negative, so Ci ranges in the finite interval [0, ci(1)]. Also the ladder
is fixed for all time in our models to enable us to construct a time stationary solution. In general,
it is possible to treat randomly evolving or time-dependent ladders if one is willing to incorporate
more state variables into the game functions.

Two illustrative examples are

• Linear progress ci(n) = 1− µn, n = 1, 2, . . . , b1/µc;

• Exponential progress ci(n) = exp(−µn), n ∈ N.

The first case corresponds to a fixed absolute improvement in costs and has a finite number of stages
to keep ci positive; the second case to a percentage improvement of µ% with each new technology
advance. Both examples start with ci(0) = 1 and approach 0 as n grows. As we show below, under
mild assumptions this also makes Ci effectively finite, as far as the game is concerned.

2.1 Technology Innovation Process

The role of R&D is to induce progress by moving up to higher stages of technology along the
ladder in (2). For simplicity, we assume that each technical innovation moves the corresponding
producer i one step up the ladder, lowering her costs from ci(n) to ci(n + 1). See Judd [2003]
for more general descriptions. Let Ni(t) ∈ N be the index of technological progress of player i at
epoch t, so that Ci(t) = ci(Ni(t)). The overall state of progress is then summarized by the state
vector N(t) ≡ (N1(t), . . . , NL(t)) ∈ NL. Technical progress is uncertain, i.e. (N(t)) is a stochastic
process.

As explained, innovations are “lumpy” or discrete, i.e. t 7→ Ni(t) is piecewise constant in time,
and can be thought of as a counting process. To endogenize R&D investments we link the hazard
rate λi(t) of Ni with the R&D effort levels ai(t) that are continuously controlled by the players.
Denote by a(t) the profile of R&D efforts. We postulate

λi(t) = λ̄ai(t) (3)

so that λi(·) is linear in effort. The scaling constant λ̄ modulates the overall speed of innovation,
see Section 6. Since the measurement units of effort are arbitrary, the linear link in (3) is effectively
without loss of generality. However, note that (3) implies that innovation for player i is independent
of either the behavior of other players, or their present technological state N(t). In Section 7.4 we
discuss a more general version of (3) that allows for various spillover effects.

R&D expenditures are costly: effort at level ai carries a running cost Ri(ai) to player i. In line
with the concept of diminishing returns, we assume
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Assumption 3. The R&D cost function a 7→ Ri(a) is differentiable, convex, with Ri(0) = 0 and
lima→∞R′i(a) = +∞.

Convex costs guarantee that efforts remain finite which in turn ensures that Ni is well-defined
(i.e. does not explode). We define τni := inf{t : Ni(t) ≥ n} to be the time that player i achieves
innovation stage n. The above assumptions imply that P(τni < τn+1

i < ∞, ∀n) = 1, so that
instantaneous innovations are ruled out, and N is a bona fide multi-dimensional counting process.

Remark 1. An alternative rephrasing of our model harking back to Kamien and Schwartz [1978] is
based on the idea that innovation is brought about through cumulating knowledge stock. Given a
and starting with (3), define Λi(t) :=

∫ t
0 λi(s)ds to be the cumulative knowledge investment. Let

I1, I2, . . ., be a sequence of random variables with unit exponential increments, Ik+1−Ik ∼ Exp(1),
that are independent of Λi. Define Ñi(t) = sup{k : Ik ≤ Λi(t)}. Then Ñi is equivalent to our
model of the innovation process Ni. Thus, growing knowledge randomly triggers the occurrence of
an innovation (note that Ik’s have the same distribution as the arrival times of a standard Poisson
process) and the conditional probability of successful technological change P(Ni(t) > k|Λi(t)) is a
strictly increasing and known function of Λi(t). There is also extensive literature [Reinganum, 1989,
Doraszelski, 2003] on knowledge accumulation races, in particular allowing for further features such
as learning-by-doing, knowledge decay, etc. Here we stick to the “Markov” knowledge frameworks
which summarize progress in terms of the technology state N .

A set of strategies is thus described by the 2L-dimensional process (q,a) which specifies for each
player her continuous production rate qi(t) ≥ 0 and her continuous effort level ai(t) ≥ 0. Overall, q
drives the instantaneous profit streams received by the players, while a modulates the technological
innovations summarized by N . Similar to N , (q,a) will be dynamic and can be chosen by players
to adapt to the randomly evolving market state N(t).

2.2 R&D Game Formulation

Since Ni(t) is stochastic, future production costs and hence profits are uncertain. Players evaluate
their expected total discounted future profits via the performance measure

Ji(n; q,a) := E
[∫ ∞

0
e−ρit

[
qi(t) (P (Q(t))− ci(Ni(t)))−Ri(ai(t))

]
dt
∣∣∣N(0) = n

]
, (4)

where ρi > 0 is the intertemporal discount factor of player i. The expectation in (4) is with respect
to the random shocks embedded in (N(t)), and Ji is a function of the strategy profile (q,a), and
the initial conditions Ni(0) = ni, i = 1, . . . , L.

The above model (4) yields a dynamic stochastic noncooperative game with players aiming to
maximize Ji and interacting through the joint price received P (Q(t)). To describe the resulting
equilibrium we rely on the notion of Markov perfect Nash equilibrium (see, for instance, [Vives,
2001]), so that all strategies are functions of the main state N(t). Hence, given N(t) = n, each
player looks for an action (qi(t), ai(t)) which maximizes her net present value Ji treating the other
players as fixed. Note that qi is only used for the immediate Cournot market equilibrium, while ai
controls the intertemporal transitions in N .

Since lower costs are associated with higher profits (see Section 2.4), players have an incentive to
invest in R&D. However, the stochastic nature of R&D and Cournot effects make these investments
ambiguous. First, innovation success is not guaranteed, so players must average over the potential
future scenarios. Second, like in classical patent races, simultaneous R&D investments by the
players produce random “winners”, so that the role of the technology leader is not fixed. Third,
changing production costs Ci(t) affect the market structure and in particular the number of players
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actively producing. As a result, R&D introduces phase transitions (e.g. from oligopoly to monopoly
or vice-versa) making the respective impacts on profits nonsmooth.

Remark 2. Above we take R&D effort as sustained, i.e continuous in time. A complementary view
is linked to the concept of capacity expansion and views a(t) as instantaneous control. In that
case, ai(t) is series of actions and can be modeled via the framework of multiple optimal stopping,
e.g. Dahlgren and Leung [2015]. See Goyal and Netessine [2007] for models of oligopolistic capacity
expansion (e.g. between competing real estate developers).

2.3 Mathematical Details

To formalize the concept of equilibrium under a strategy profile we briefly recall the construction
of controlled point processes necessary to describe the component-wise dynamics of N [Bremaud,
1981]. Let Ω be the space of L-dimensional counting process paths, i.e. all piecewise-constant,
increasing, right-continuous paths ω = (ω(t)), t ∈ R+, ω(t) ∈ NL satisfying ωi(t) − ωi(t−) = 0 or
1 for all t. Define the canonical processes Ni(t;ω) = ωi(t), and let (Ft) be the natural filtration of
the aggregated (N(t)), Ft := σ(N(s) : s ≤ t), with F = F∞. Every measure P on (Ω,F , (Ft)) is
described through its compensator process (Λ(t)). We restrict attention to absolutely continuous
and bounded compensators which implies the existence of a hazard rate process λi satisfying Λi(t) =∫ t

0 λi(s) ds for each i = 1, . . . , L. The above assumption means that t 7→ Ni(t)−
∫ t

0 λi(s) ds is a (Ft)-
martingale and the behavior of Ni is completely specified through λi(t). Moreover, it implies that
given λ1(t), . . . , λL(t), the different components Ni’s are conditionally independent. The conditional
independence of Ni’s means that there is no interaction between innovation processes beyond the
hazard rates.

The above construction allows to assign rigorous meaning to (3) for any (Ft)-adapted R&D
strategy profile a. We similarly consider (Ft)-adapted production strategies q. Finally, after
specifying the initial condition N0 = n, this allows to assign a rigorous meaning to the probability
measure Pn that appears in (4) (for example this can be done using a change-of-measure technique
starting from a reference measure P0, see Bremaud [1981]).

2.4 Effect of Production Costs in Static Cournot Games

To explain the effects of R&D under dynamic equilibria, we briefly recall the role of production
costs in static Cournot games. Consider a static Cournot game with one-shot payoff

πi = qi(P (qi +Q−i)− ci), for player i = 1, 2, . . . , L.

Each player chooses a nonnegative production level qi, competing solely through the aggregate
production Q =

∑
i qi. The game will be indexed by the cost profile c = (c1, . . . , cL) where,

without loss of generality, we order the players by increasing production costs c1 ≤ c2 ≤ · · · , and
define for any ` ≤ L,

B` = c1 + · · ·+ c`. (5)

We first recall the corresponding equilibrium theory from Harris et al. [2010]. See also the text-
book treatment of Cournot games in Vives [2001]. Under a Nash equilibrium q∗(c) ≡ (q∗1, . . . , q

∗
L)

we expect the candidate production rates to satisfy the first order conditions

∂πi
∂qi

∣∣∣
qi=q∗i

= 0 ⇔ q∗i ·
∂P (q∗i +Q∗−i)

∂qi
+ P (Q∗) = ci. (6)

However, the constraint q∗i ≥ 0 may be binding, so that the number of players actively participating
in the equilibrium (i.e. those with q∗i > 0 strictly positive) is to be determined. Moreover, existence
and uniqueness of the above equilibrium must be determined. Players that have q∗i = 0 are said to
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be blockaded— they are not producing and collect zero profits. Because players are sorted in terms
of their production costs, the active set {i : q∗i > 0} is of the form i = 1, 2, . . . , `∗ for some `∗ ≤ L.

Under Assumption 2, the next Proposition from Harris et al. [2010] explicitly characterizes the
resulting unique Nash equilibrium.

Proposition 1. [Harris et al., 2010, Lemma 2.3]. For ` = 1, 2, . . . , L, let

f`(Q) = QP ′(Q) + `P (Q),

and let Q` be the unique solution in (0, η) of f`(Q`) = B`, where we defined B` in (5). Take
Q∗ = max{Q` : 1 ≤ ` ≤ L}. Then the unique Nash equilibrium production rates are

q∗i (c) = max

{
P (Q∗)− ci
−P ′(Q∗)

, 0

}
, (7)

and the number of players producing in equilibrium is `∗ = min{` : Q∗ = Q`}. Moreover the
aggregate production is exactly Q∗:

Q∗ = Q∗(c) =
L∑
i=1

q∗i (c).

Proposition 1 completely characterizes the production controls for players with asymmetric but
fixed costs. Note that it relies strongly on Assumption 2 which is a sufficient condition to guarantee
existence of equilibrium; if ρ̄ > 2, there might be no equilibrium.

In the model below we will let c change and so it is important to understand the comparative
statics on

π∗i (c) = q∗i (c) (Q∗(c)− ci) . (8)

We assume that we are in the “normal” case whence a decrease in player-i costs ci raises her
production and profit, and lowers the production and profits of the other players. The general
link is based on the stability of the equilibrium which in turn is tied to the shape of the best-
response curves q∗i (Q) in (6). We refer to [Vives, 2001, Section 4.3] for a discussion of this problem,
including examples where higher costs increase production for all players. As a summary we have
the following

Proposition 2. Suppose that P ′(Q∗) + q∗i P
′′(Q∗) ≤ 0 ∀i in the equilibrium q∗. Then

∂π∗i
∂ci

< 0 and
∂π∗i
∂cj

> 0, for all i, j.

Constant Prudence Price Functions

A typical parametric family of price functions is given by the constant-prudence ρ(Q) ≡ ρ inverse
demand curves

P (Q) =


η

1− ρ

(
1−

(
Q

η

)1−ρ
)

ρ 6= 1;

η(log η − logQ) if ρ = 1.

(9)

As before, η is the choke price. For such price functions we can explicitly describe the unique Nash
equilibrium and the impact of the production costs on profits. In this case Assumption 2 is not
necessary for existence of equilibrium and we can take ρ such that ρ < L+ 1.
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Proposition 3. [Harris et al., 2010, Proposition 2.9]. Assume the price function P (Q) is in the
constant prudence family (9), with ρ < L+ 1. Then there is a unique Nash equilibrium given by

q∗i (c) =

(
Q∗

η

)ρ
max(P̄ − ci, 0) (10)

with

P̄ = min
1≤`≤L

B` + η

`+ 1− ρ
, and Q∗ =


η

(
1− (1− ρ)

P̄

η

) 1
1−ρ

ρ 6= 1;

η exp

(
− P̄
η

)
ρ = 1,

(11)

and we recall from (5) that B` is the sum of the costs of the first ` players. The number of active
players is `∗ = max{` : η +B`−1 − (`− ρ)c` > 0}. The corresponding profit is

π∗i (c) = q∗i (c)(P̄ − ci).

The next lemma also shows that the constant-prudence family enjoys the intuitive comparative
statics in c. Its proof is given in the Appendix.

Lemma 1. Suppose the price function P (Q) has a constant relative prudence ρ(Q) ≡ ρ < 2. Then
when `∗ ≤ L players i = 1, 2, . . . , `∗ are active in equilibrium we have

∂q∗i
∂cj

=



1

P ′(Q∗)

`∗ − (1− q∗i
Q∗ )ρ

`∗ + 1− ρ

 if j = i < `∗;

1

P ′(Q∗)

−1 +
q∗i
Q∗ ρ

`∗ + 1− ρ

 if j 6= i < `∗;

0 otherwise.

(12)

Therefore, for i, j < `∗, we have that
∂q∗i
∂ci

< 0 and
∂q∗i
∂cj

> 0.

Lemma 1 connects cost sensitivity to the fraction of total production attributable to player i,
q∗i
Q∗ . We recall from Harris et al. [2010] that this quantity is given by :

q∗i
Q∗

=
P (Q∗)− ci∑L

j=1(P (Q∗)− cj)
.

Therefore, fixing Q∗, players that have a higher production rate q∗i or a lower cost ci are more
sensitive to both their own costs and competitor costs. Thus, current market leaders (in terms of
market share) are also the ones that have the strongest (static) incentive to engage in R&D.

In the rest of the paper, we analyze the dynamic game introduced in Section 2.2.

3 Dynamic Equilibrium

As our notion of equilibrium we focus on Markov subgame perfect equilibrium (MPE) [Vives, 2001]
which employs the concept of Nash equilibrium in a dynamic setting. In short, MPE assumes that
equilibrium strategies are in closed-loop feedback form, so that qi(t) = qi(N(t)), ai(t) = ai(N(t)).
Thus, players base their decisions on the aggregate market state, without any further randomization

10



or deviation. As explained in Section 2.3, N is a counting process, i.e. t 7→ N(t) is piecewise
constant. It follows that so are the feedback equilibrium controls. This allows to decompose the
global game into a sequence of static games indexed by n.

Beyond the feedback structure, the set of admissible strategies is locally specified through the
restriction (qi, ai)(n) ∈ Ai(n). In our main setup we assume that production and R&D are fully
independent so that any non-negative controls are admissible, Ai(n) = R2

+ ∀n. This corresponds
to the economic reality of R&D effort financed by capital [Kamien and Schwartz, 1978]. In other
words, when choosing R&D levels, the only consideration is the total expected innovation gain
vis-a-vis the expected revenues; the corresponding expenditures are financed by borrowing against
future earnings as needed. In the context of a competitive Cournot market, capital-financed R&D
seems reasonable since companies are generally able to adaptively expand or shrink their business
lines independently. An alternative assumption of labor-consuming R&D [Lafforgue, 2008] that
generates complementarity between qi and ai is discussed in Section 7.3. Coupling production and
R&D expenditures makes Ai a strict subset of the positive quadrant.

Below we explicitly construct a MPE by developing first-order-condition equations for (q̄, a∗)(n).
(We have used the notation q̄ for the equilibrium production in the dynamic game to distinguish
from the Nash equilibrium production functions q∗i in the static game of Section 2.4). For typo-
graphical convenience we focus on the duopoly setup L = 2, writing out explicitly n = (n1, n2)
and labeling the players as P1, P2. We also write P (qi, qj) = P (qi + qj) = P (Q). The extension
to oligopoly is straightforward and requires only typographical substitution, and similarly for the
monopoly case L = 1.

Suppose that q̄i(n), a∗i (n), i = 1, 2,n ∈ N2 are an MPE strategy profile. We denote the
corresponding game functions by

vi(n1, n2) = En1,n2

[∫ ∞
0

e−ρit
[
q̄i(N(t))

(
P (q̄i(N(t)), q̄j(N(t)))− ci(Ni(t))

)
−Ri(a∗i (N(t)))

]
dt

]
.

(13)

Next, we define the global set of admissible controls

Ai := {(qi, ai) : (qi, ai)(n) ∈ Ai(n) ∀n ∈ N2}.

The equilibrium condition implies that

vi(n1, n2) = sup
(qi,ai)∈Ai

En1,n2

[∫ ∞
0

e−ρit
[
qi(N(t))

(
P (qi(N(t)), q̄j(N(t)))− ci(Ni(t))

)
−Ri(ai(t))

]
dt

]
.

(14)

Even though the other player’s costs Cj(t) do not appear in the above equation, we stress that
q̄j depends on N∗j (t), so anticipating the innovations of player j is crucial for selecting the best
strategy for player i.

Fix N(0) = (n1, n2) and let σ1, σ2 denote the first technology advance times of P1 and P2
respectively (if ai ≡ 0 then σi = +∞ with probability 1). Then on the random interval [0, σ),
where σ := σ1 ∧ σ2 both N1 and N2 are constant. The Markov property and subgame perfection
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imply that

vi(n1, n2) = E
[∫ σ

0
e−ρit[q̄i(N(t))(P (q̄i(N(t)), q̄j(N(t)))− ci(ni))−Ri(a∗i (N(t)))] dt

+e−ρiσ
∫ ∞
σ

e−ρi(t−σ)[q̄i(N(t))(P (q̄i(N(t)), q̄j(N(t)))− ci(Ni(t)))−Ri(a∗i (t))]dt
]

= E
[∫ σ

0
e−ρit[q̄i(n)(P (q̄i(n), q̄j(n))− ci(ni))−Ri(a∗i (n))]dt (15)

+ e−ρiσ1{σ=σ1}vi(n1 + 1, n2) + e−ρiσ1{σ=σ2}vi(n1, n2 + 1)
]
,

where the last equality follows because Ni(s) = ni is constant for s ≤ σ for all i, so that the
feedback control a∗i (s) = a∗i is also constant. Therefore, the hazard rate of Ni is constant on [0, σ)
and the equilibrium condition reduces to

vi(n1, n2) = sup
(qi,ai)∈Ai(n1,n2)

E
[∫ σ

0
e−ρit[qi(P (qi, q̄j(n))− ci(ni))−Ri(ai)] dt

+ e−ρiσ1{σ=σ1}vi(n1 + 1, n2) + e−ρiσ1{σ=σ2}vi(n1, n2 + 1)
]
, (16)

where the supremum is now over non-negative constants qi, ai. Furthermore, (taking λi = λ̄ai)
constant hazard rates imply that P(σ > s) = P(σ1 > s, σ2 > s) = e−λ̄(a1+a2)s so σ has an
exponential distribution and

E[e−ρiσ1{σ=σ1}] = E[e−ρiσ
1 |σ1 < σ2]P(σ1 < σ2)

=
a1

a1 + a2 + ρi/λ̄
.

Similarly,

E
[∫ σ

0
e−ρisds

]
= E

[
1− e−ρiσ

ρi

]
=

1

λ̄a1 + λ̄a2 + ρi
.

Plugging the above into (16), and similarly writing out the optimization problem for v2(n1, n2) we
end this Section with the following equilibrium construction.

Proposition 4. Suppose that for each (n1, n2) ∈ N2 we have value functions vi(n1, n2), i = 1, 2
that satisfy the two-dimensional optimization system

v1(n1, n2) = sup
(q1,a1)∈A1(n1,n2)

1

λ̄a1 + λ̄a∗2 + ρ1

{
q1(P (q1, q̄2)− c1(n1))−R1(a1)

+ λ̄a1v1(n1 + 1, n2) + λ̄a∗2v1(n1, n2 + 1)
}

;

v2(n1, n2) = sup
(q2,a2)∈A2(n1,n2)

1

λ̄a∗1 + λ̄a2 + ρ2

{
q2(P (q̄1, q2)− c2(n2))−R2(a2)

+ λ̄a∗1v2(n1 + 1, n2) + λ̄a2v2(n1, n2 + 1)
}
,

(17)

with the maximizers q̄i ≡ q̄i(n1, n2), a∗i ≡ a∗i (n1, n2). Then (q̄,a∗) form a MPE strategy profile with
corresponding game values vi(n).
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Remark 3. One can straightforwardly generalize the model in terms of the underlying point pro-
cesses Ni. In particular, we may remove the assumption that Ni is increasing and/or has jumps
of size 1 only. Economically, this corresponds to the possibility that multiple technology stages
can be traversed at once, or that technology gains can be lost over time (in the sense of increasing
production costs). The latter situation would be realistic for energy production where cheap con-
ventional sources may become exhausted over time (think coal) leading to upward shocks in Ci(t).
Assuming that the jump distribution of Ni is independent of (qi, ai) and identical across i = 1, 2,
this generalization consists of replacing (17) with

v1(n1, n2) = sup
a1,q1

1

λ̄a1 + λ̄a∗2 + ρ1

{
{q1(P (q1, q̄2, )− c1(n1))} −R1(a1)]

+ λ̄a1

∑
k

pkv1(n1 + k, n2) + λ̄a∗2
∑
k

pkv1(n1, n2 + k)
}
, (18)

where pk := P(∆Ni = k|∆Ni 6= 0), k ∈ Z is the (integer) jump distribution for technology stage
changes.

3.1 Equilibrium Production

We proceed to solve the system (17) in the case where the controls are not coupled, Ai(n) = R2
+∀n.

This decouples the optimization problems for qi, ai in (17). We also observe that the first term in
each supremum captures the instantaneous Cournot competition and contains only qi, while the
other two terms represent the market shifts due to potential innovations and are related to ai.

Given current cost profile c(n), equilibrium production is determined as in the static case.
Indeed, production rates only affect the immediate profits πi(c(n)) and hence can be optimized
pointwise in time (recall that we restrict to Markov feedback strategies). Thus, q∗i (n) can be
determined from Lemma 1 for the static Cournot oligopoly after re-labeling the players in increasing
order of their costs.

In the examples below we focus on the linear price function which has zero relative prudence,
ρ = 0. In that case, the following Corollary follows immediately from Proposition 3 and Lemma 1.

Corollary 1. Suppose P (Q) = η − Q (i.e. ρ = 0 in Corollary 3). Then recalling the notation
B` =

∑`
k=1 ck, we have

q∗i (c) = max(P̄ − ci, 0) and π∗i (c) = q∗i (c)2, where P̄ (c) = min

{
B` + η

`+ 1
: 1 ≤ ` ≤ L

}
.

Moreover, with `∗ = max{` : η +B`−1 − `c` > 0}, we have

∂q∗i
∂ci

= − `∗

`∗ + 1
and

∂q∗i
∂cj

=
1

`∗ + 1
.

Explicitly, the duopoly production rates are given by the solution of the static game with costs
c(n):

q̄i(n) = q∗i (c(n)) =


η + cj(nj)− 2ci(ni)

3
if
η + cj(nj)

2
≥ ci(ni) ≥ 2cj(nj)− η;

η − ci(ni)
2

if η + ci(ni) < 2cj(nj);

0 if η + cj(nj) < 2ci(ni).

(19)

The first case is the duopoly equilibrium, in the second case player i has a monopoly and in the last
case player j has a monopoly. Under monopoly, one player has the market all to herself, choosing
the monopoly optimal level q∗i = (η − ci)/2. Figure 1 illustrates the resulting duopoly “wedge” as
a function of costs c = (c1, c2), (and when η = 1).
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Figure 1: Type of Game Equilibrium in a Cournot Duopoly with linear demand P (Q) = 1−Q.

3.2 Equilibrium R&D Effort

In contrast, the R&D effort level ai enters (17) in a highly nonlinear fashion. Indeed, ai appears
both in the numerator and denominator of the equations. Fixing a∗j , the first-order optimality
conditions for ai are obtained by differentiating (17) with respect to ai. To find the equilibrium
level (a∗1, a

∗
2) then requires solving the resulting system of two nonlinear equations.

More precisely, recalling the notation π∗i (c(n)) for the revenue from production as in (8), and
fixing a∗j , set

Ji(a, a
∗
j ;n) := E

[1− e−ρiσ

ρi
(π∗i (c(n))−Ri(a))+e−ρiσ{1{σ=σ1}vi(n1+1, n2)+1{σ=σ2}vi(n1, n2+1)}

]
.

(20)

Then a∗i (n) = arg supa≥0 Ji(a, a
∗
j ;n). As with production rates, R&D efforts cannot be negative.

If the marginal cost of R&D R′i(a) is bounded away from zero, it is possible that the equilibrium
R&D effort is zero. Indeed, fixing i = 1 for concreteness,

∂

∂a1
J1(a1)

∣∣∣
a1=0

=
1

λ̄a∗2 + ρ1

[
−R′1(0) + λ̄v1(n1 + 1, n2)− π∗1(c(n)) + λ̄a∗2v1(n1, n2 + 1)

a∗2 + ρ1/λ̄

]
.

Since depending on model parameters v1(n) and π∗1(c(n)) can be arbitrarily close to zero, it is
clear that if R′1(0) > 0 then the above expression may be negative and hence a∗1(n) = 0. In that
case, player 1 would invest nothing in R&D and only player 2 innovates, leading to P(σ = σ2) = 1.
Similarly, it is also possible that a∗1 = a∗2 = 0 in which case technologies of both players remain
forever frozen. With constant production costs, the corresponding Nash equilibrium for q reduces
to a stationary Cournot game with cost profile c(n), which is equivalent to the one-shot static
market.

Existence of an equilibrium pair (a∗1, a
∗
2) is resolved through the usual method of analyzing the

invertibility of the best-response functions, see Grossman and Shapiro [1987], Judd [2003].

3.3 Solving for the Equilibrium Strategies

Once the current equilibrium strategies a∗i (n1, n2), q̄i(n1, n2) are determined, the overall system
(17) can be viewed as a double array of nonlinear optimization problems, coupled within each
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other and indexed by n. The standard paradigm of dynamic programming could then be invoked
to solve iteratively “backwards” in n for the vi’s. Indeed, given vi(n1 + 1, n2), vi(n1, n2 + 1) one
can determine vi(n1, n2) so that starting with some terminal conditions vi(N1, ·), vi(·, N2) one may
iteratively solve for the full double array of game values. This gives a well-defined numerical recipe
for any finite technology ladder Ci. The next Lemma shows that the finiteness assumption is not
too restrictive.

Lemma 2. Suppose that λi = λ̄ai and R′i(0) > 0. Then the dynamic game can be reduced to a
finite-stage one, i.e. for ni’s large enough for all i, ai(n) = 0. Conversely, if R′i(0) = 0 and the
ladder Ci is strictly decreasing then a∗i (n) > 0 for all n.

The proof is given in Appendix B. Because the technology ladders are monotone and Ci(t) ≥ 0,
the production costs live in a bounded interval. Hence, if the number of stages is unbounded, there
must be at least one accumulation point ci for the ladder Ci. Consequently, after sufficiently many
innovations, ci(n) will be very close to ci and the potential for gain becomes arbitrarily small. If the
marginal cost of R&D is strictly positive then R&D efforts will strictly dominate any innovation
profits and R&D is shutdown. Conversely, if R′i(0) = 0, then for small enough level of R&D effort,
the R&D gains (which are asymptotically linear in ai) dominate the negligible R&D expenditures.

Lemma 2 highlights the crucial role of R′i(0). If R′i(0) = 0 then ai(n) > 0 for all n, since the
marginal cost of effort is negligible for a sufficiently small. Consequently R&D is always employed
and the game never ends (unless the technology ladder is finite). On the other hand, if R′(0) > 0,
then eventually the marginal cost of R&D strictly dominates any resulting gains and further R&D
becomes economically non-feasible. Thus, there must be absorbing game stages, where the players
endogenously forgo R&D. We believe the latter situation is both more realistic economically, and
also computationally easier, permitting to employ backward recursion to find game values. Games
with infinite stages create technical difficulties in defining an equilibrium strategy. Motivated by
this discussion, we henceforth focus on the case

R(a) =
1

2
a2 + κa, (21)

which combines features of the classical quadratic cost structure and the strictly positive marginal
cost controlled by the parameter κ = R′(0).

The proof of Lemma 2 implies the following:

Corollary 2. In the linear duopoly model with the lower bound on costs ci = 0, a sufficient condition
to guarantee a1(n) = 0 is

|π∗1(0, c2(n2))− π∗1(c1(n1), 0)| ≤ ρ2R′1(0).

In particular if max(c1(n1), c2(n2)) ≤ min(ρ2
1R′1(0), ρ2

2R′2(0)) then a(n) = 0 and the resulting game
stage features no R&D.

If a(n) ≡ 0 then the resulting market is equivalent to a static Cournot game with cost profile

c(n). In particular, we immediately obtain vi(n) =
π∗i (c(n))

ρi
. Taking n big enough to satisfy the

conditions of Lemma 2 allows to use the above as boundary condition for the backward recursion
on the lattice n ⊂ N2 for (17). Note that when solving for a(n) it is possible that a(n) = 0 emerges
as the solution even in an “interior” game stage, which however poses no numerical concerns.
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3.4 Game Evolution

For the remainder of the paper we work with a fixed MPE profile (q,a) and drop the corresponding
∗’ and over-bar. The discrete nature of the state N implies that the global game is partitioned into
stages, with innovation epochs characterizing transitions among different stages. The piecewise-
constant behavior of N moreover makes each stage equivalent to a stationary Cournot game with
state-dependent payoffs. Namely, at each stage players compete in a static Cournot market while
also engaging in R&D that will eventually move them to a new stage. Until R&D comes to fruition,
players solve the local problem; as soon as there is an innovation by a “winning” player at time σ,
a new optimization problem is considered in turn. The fact that the controls in the constructed
MPE are a function of N(t) imply the following

Proposition 5. The technology state variable N is a state-dependent Markov chain on N2. Given
the current stage (n1, n2), the sojourn time in this state has a memoryless Exponential distribution
with mean 1

a1(n)+a2(n) and the next transition is to (n1 + 1, n2) (resp. (n1, n2 + 1)) with probability
a1(n)

a1(n)+a2(n) (resp. a2(n)
a1(n)+a2(n) ).

Thus, the global evolution is characterized by patching together the local equilibria described
by q,a. One can generate time-scenarios of the dynamic Cournot market as follows. Given n, we
draw two independent Exponential r.v.’s σi ∼ Exp(λ̄ai(n1, n2)), i = 1, 2 and take σ = σ1 ∧ σ2. We
also solve for q(n) using (19). This yields the game solution on [0, σ) and based on the relationship
between σ1 and σ2 the next game stage N(σ) = (n1 +1{σ1<σ2}, n2 +1{σ2<σ1}). After transitioning,
the new production rates q(N(σ)) are updated and the above process is repeated with fresh draws
for σi. By Lemma 2, this chain will reach an absorbing state (where a = 0) with probability 1, so
that all other states are transient and the above algorithm is guaranteed to terminate.

Remark 4. The local structure of the Cournot games that arise allows further indexing of game
parameters by n. For example, for a realistic calibration it would be reasonable to assume that
the R&D costs depend on the current technology, i.e. R(a) = R(a;n). Similarly, one can also
index the discount factors or the demand curves by n and retain the Markov structure for dynamic
programming.

Remark 5. We have focused in this section on the duopoly competition (L = 2) to illustrate the
effects of competition in a presentable way. Two extreme cases are also of interest: the monopoly
case L = 1 and the limit L =∞. In the next section, we analyze the case where only one player can
innovate, but interacts with a second player through Cournot competition. This is contrasted with
the case of two innovators in Section 5, specifically the discussion at the end of that section. This
gives some insight into the effect of the number of players that are involved in R&D. In adding more
players, choices have to be made as to what their costs of production are if comparisons are to be
made, and perhaps only the symmetric situation of adding more identical players makes sense for
comparison, where here we are very much interested in heterogeneous situations, even if the players
differ only in their initial costs. Analyzing a dynamic game where players may enter over time
as their costs drop is interesting too, but requires a separate work. For instance, a case without
innovation where players enter as others use up an exhaustible resource is studied in Ledvina and
Sircar [2012].

The limit L→∞ of a large number of players relates to much current research in (continuum)
mean field games. These can be tractable in some situations, but again require a separate and
mathematically involved analysis which is beyond the scope here. We refer to Chan and Sircar
[2014], Chan and Sircar [2015] and Guéant et al. [2011] for recent developments in mean field
games and Cournot competition.
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4 Unilateral R&D

We begin our illustrations with a toy model wherein only a single player (for concreteness P1) can
engage in R&D. This can be viewed as a special case where the second player is constrained to
a2 ≡ 0. Since C2(t) ≡ c2 is now fixed, the stochastic state is the one-dimensional (N1(t)) and the
system (17) reduces to a coupled array of optimization problems for vectors rather than matrices.
Unilateral R&D can be visualized as a horizontal movement in the diagram of Figure 1, from right
to left at the given level c2. Note that interpreting equilibrium earnings of player 1 as a generic
technology-dependent reward function, the model with a single innovator is abstractly equivalent
to incorporating intermediate rewards into the multi-stage racing game studied by Judd [2003].

For the remainder of this section we fix c2 and drop it from arguments of all relevant functions.
Also for concreteness we take the linear inverse demand curve P (Q) = η − Q from Corollary 1,
yielding

π∗i (c(n)) = (q∗i ((c1(n), c2)))2 .

By Lemma 2, without loss of generality the technology of P1 has a finite number of stages n̄. At
the ultimate stage, no more R&D research is possible for either player and we face the static-cost
Cournot market with game values

v1(n̄) =
π∗1(c1(n̄), c2)

ρ1
, v2(n̄) =

π∗2(c1(n̄), c2)

ρ2
.

The rest of the game values are determined via the system of difference equations (obtained by
setting a2 ≡ 0 in (17))

v1(n) = sup
a≥0

1

λ̄a+ ρ1

{
π∗1(c1(n), c2) + λ̄av1(n+ 1)−R1(a)

}
. (22)

The above is a nonlinear equation for a1(n) with v1(n+ 1) entering as a coefficient. For instance,
assuming quadratic costs of (21), a1(n) is the root of the quadratic from the first-order-condition
equation

−ρ1λ̄v1(n+ 1) + (a+ κ)(λ̄a+ ρ1) + λ̄(π∗1(c1(n), c2)− (a2/2 + κa)) = 0.

The game values for player 2 are similarly determined from

v2(n) =
1

λ̄a1(n) + ρ2

{
π∗2(c1(n), c2)2 + λ̄a1(n)v2(n+ 1)

}
.

Globally, (22) can give rise to three market structures based on the cases in (19): P1 monopoly,
P2 monopoly, and duopoly. In particular, for η/2 < c2 < η, as player 1 innovates all three structures
arise dynamically. Indeed, as C1 is reduced, the market moves from old-generation monopoly by
player 2, to duopoly, and finally to new-generation monopoly of player 1. The phase transitions
take place at C1 = η+c2

2 and C1 = 2c2−η, respectively, cf. Figure 1. (If c2 < η/2, P1 never achieves
monopoly.)

Figure 2 illustrates this solution in the case of a linear technology ladder c1(n) = 1 − µn and
P (Q) = 1−Q. We show three investment curves n 7→ a1(n) for different costs of the other player
c2. In scenario (a), c2 = 0.7 which represents weak competition; in particular once c1(n) ≤ 0.4, P2
is blockaded and P1 has monopoly. In scenario (b), c2 = 0.4 is proxy for moderate competition;
scenario (c) c2 = 0 illustrates strong competition since c2 ≤ c1(n) for all n. In both of the latter
cases P2 always produces and is never blockaded. In all three cases we also have that for c1(n)
large (n small), P1 is blockaded, q∗1(c1(n), c2) = 0. These stages are illustrated with filled symbols
in Figure 2 (for example in case (a), q∗1(c1(n), c2) = 0 for n ≤ 7).
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Figure 2: Effort curves for unilateral R&D in a Cournot duopoly. The technology ladder is c1(n) =
1− 0.02n, n = 0, . . . , 50 with effort costs R(a) = a2/2 + 0.3a, ρ1 = 0.01 and P (Q) = 1−Q. Filled
symbols indicate stages where q∗1(c1(n), c2) = 0.

4.1 Value of R&D

With unilateral R&D the Markov chain N is a birth process (Markov counting process), and
the game evolution simply proceeds sequentially through stages (c1(1), c2), (c1(2), c2), . . . . Denote
by 0 = τ0, τ1, τ2, . . . the respective transition times to the next technology stage. The τk’s are
determined by the effort levels a1(n), namely τn − τn−1 ∼ Exp(λ̄a1(n)), so that E[τn − τn−1] =
(λ̄an)−1. We can express the value of player 1 via

v1(1) = E0

[∫ τ1

0
e−ρ1s(π∗1(c1(1), c2)−R(a1(1))) ds+

∫ τ2

τ1

e−ρ1s(π∗1(c1(2), c2)−R(a1(2))) ds

+

∫ τ3

τ2

e−ρ1s(π∗1(c1(3), c2)−R(a1(3))) ds+ . . .+

∫ ∞
τ n̄

e−ρ1sπ∗1(c1(n̄), c2)ds
]

=

{
n̄−1∑
n=1

(π∗1(c1(n), c2)−R(a1(n)))

ρ1
E0

[
e−ρ1τn−1 − e−ρ1τn

]}
+
π∗1(c1(n̄), c2)

ρ1
E0[e−ρ1τ n̄ ]

=

n̄+1∑
n=1

{π∗1(c1(n), c2)−R(a1(n))} ·

 1

λ̄a1(n) + ρ1

n−1∏
j=1

(
λ̄a1(j)

λ̄a1(j) + ρ1

) , (23)

where the last equality is based on the expansion e−ρ1τn = e−ρ1τ1
e−ρ1(τ2−τ1) · · · e−ρ1(τn−τn−1) and

the moment generating function of Exponential random variables. The above formula links the
stagewise payoff rates π∗1(c1(n), c2) and R&D rates a1(n) to the game value of player 1.

This view also highlights the value of R&D. Compared to the base scenario of zero R&D
investment, the gap

G1(n) = v1(n)−
∫ ∞

0
e−ρ1sπ∗1(c1(n), c2) ds = v1(n)− π∗1(c1(n), c2)

ρ1
(24)

precisely captures the NPV of R&D investments. Note that G1(n) = 0 is equivalent to a1(n) = 0
and represents the end of the technology ladder. We find, cf. right panel of Figure 3, that the
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structure of n 7→ G1(n) is closely related to the investment curve n 7→ a1(n) and has an inverted-U
shape. For n small, R&D gains are small since current revenues are still low (i.e. discounting makes
the NPV minimal). For n large, all the technology gains are nearly exhausted so necessarily G1(n)
is also small. Thus, G1(n) is maximized in the middle stages which is also when the R&D effort is
strongest.

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Technology Stage n

Pr
of

it 
se

ns
itiv

ity

Duopoly P1 Monopoly

1.00 0.80 0.60 0.40 0.20 0.00

P1 Costs c1(n)

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●
●

●
●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

0
1

2
3

4
5

6

Technology Stage n
R&

D 
G

ap
 G

1(n
)

1.00 0.80 0.60 0.40 0.20 0.00

P1 Costs c1(n)

Figure 3: Left: sensitivity of instantaneous profit to production costs −∂π(c1, c2)/∂c1. P2 costs

are fixed at c2 = 0.7. Right: gap G1(n) = v1(n)− π1(n)
ρ1

between the NPV from optimal R&D and
NPV from zero R&D. Linear monopoly model with parameters as in Figure 2.

4.2 Dynamic Market Structure

In this section we investigate how the two facets of our model – R&D efforts a∗1 and production rates
q̄1 interact across game stages, in particular in terms of the resulting Cournot market structure.
The dependence of a∗1(n) on n can be inferred from (23). For simplicity, assume the linear ladder
c1(n) = 1 − µn. In that case, the immediate gain from a technology advance is proportional to
∂π∗1/∂c1 which, by Corollary 1, is

∂π∗1
∂c1

∣∣∣
c1=c1(n)

= −2
`(n)

`(n) + 1
q∗1(c1(n), c2). (25)

While production q∗1 is increasing in n, the number of active players `(n) switches midway from
duopoly to a monopoly, generating a downward jump in ∂π∗1/∂c1 (cf. left panel of Figure 3). This
occurs because a monopolist is less sensitive to lowering costs than a duopoly player. Consequently,
the link between n and a∗1(n) is driven by two competing effects: the finite horizon effect (costs
cannot be decreased below c) and the cost-sensitivity effect (equation (25)).

When C1 is large (n small), P1 is the outsider and the low revenues lead to low R&D investment.
Moreover, the cost-sensitivity effect dominates (since low costs are yet too far into the future) and
a∗1(n) is increasing in n. As C1 decreases (n increases), P1 catches up to P2 in terms of production
costs and R&D investment rises, peaking roughly when c1(n) = c2. In the end stages (n large),
c1(n) is already very low and the potential for future technology gains diminishes. As a result,
the horizon effect dominates, causing R&D investment to slow down and making a∗1(n) downward
sloping. Ultimately, a∗1(n̄) = 0 and the game terminates. Thus, over time, R&D investment
goes through a boom-and-bust or inverted-U pattern. Such investment patterns were observed as
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early as Kamien and Schwartz [1978], though in their work it was due to the exhaustibility of the
underlying production resource, whose depletion eventually makes R&D worthless.

Next, we discuss the impact of R&D on the production rates. As indicated by Lemma 1, lower
production costs C1 increase q̄1 and Q. R&D naturally crowds out player 2 whose production
q̄2 declines, creating a substitution effect whereby increased production from player 1 is partially
offset by decreased output of player 2. It follows that the price Pt = η − q̄1(N(t)) − q̄2(N(t)) is
non-increasing over time. Moreover, this price decline accelerates once player 1 achieves monopoly,
since in monopoly the above substitution effect goes away.

The inverted U-shape of the investment curve is broadly similar across all three scenarios in
Figure 2, though several variations appear. Notably, scenario (a) features a double boom-and-bust
pattern. This occurs due to a structural shift in the market as P1 achieves monopoly for n ≥ 0.
The different sensitivity to production costs (monopolist having smaller cost-convexity ∂2π∗1/∂c

2
1)

between a monopolist and a duopolist causes the R&D investment to slightly increase again around
n = 30 after falling for several stages. We also note that c2 7→ a∗1(n; c2) is not monotone— e.g., the
investment curves for c2 = 0.7 and c2 = 0.4 cross. This illustrates the non-monotone relationship
between market competitiveness and R&D investment – while very strong competitors (scenario
(c)) discourage R&D by diminishing future gains, moderate competition can actually spur R&D
as producers try to get an edge. Moreover, the peak of R&D efforts depends strongly on c2 – in
scenario (b) R&D is maximized around stage n = 35, while in scenario (a) it is peaking much earlier
around n = 25.

Figure 2 also demonstrates the nontrivial interaction between market structure and R&D. Recall
that either q̄1(n) = 0 (blockading) or a∗1(n) = 0 (technological stagnation) are possible, leading to
four regimes for the production + R&D controls. All four cases may be observed in Figure 2. First,
the case q̄1(n) = 0 takes place when c1(n) is too big and P1 is blockaded. In that case, P1 receives no
current revenues and hence any respective R&D investment is solely about hoping for future profits.
Those may or may not be enough to justify current effort. To wit, in scenario (a) for n ∈ {5, 6, 7}
we have a∗1(n) > 0 even with q̄1(n) = 0. This is the proverbial “invest now for the better future”
situation. Simultaneously in the same scenario when n ≤ 4, a∗1(n) = 0 = q̄1(n) – the “light in the
end of the tunnel” is too far away so that R&D is not undertaken. Indeed, with n = 4 one needs
at least 4 technology improvements to generate any revenue; the associated revenues are so far into
the future that they are not sufficient to finance the immediate R&D expenditures, cf. (23). As
a result, P1 invests nothing in R&D and will remain forever blockaded, leading to v1(n) = 0 for
n ≤ 4. In contrast for n ≥ 5, only 3 or fewer technology improvements are necessary to break P2’s
monopoly and enter the market and R&D becomes economically worthwhile. A similar situation
happens in scenario (b). However, in scenario (c) we see the opposite effect— at stage n = 27 and
c1(n) = 0.48, q̄1(n) > 0 but a∗1(n) = 0. In other words, even with positive present cashflows, the
expected gain from technology investment is not big enough to justify it. This happens because
P2 is too strong so P1 will continue to have a small market share for the foreseeable future. As a
result, P1 “gives up” on R&D despite being in the market.

4.3 Policy Implications

The above observations could be translated into policy recommendations. We imagine that P2
represents an entrenched incumbent (for example fossil fuel energy generators) and P1 is a new-
technology entrant that policy makers wish to support (eg. a new method for green energy pro-
duction). In an ideal world, the future benefits of P1’s tools would allow to privately finance the
requisite R&D even before the new method is generating any revenues. However, if these gains are
too remote, policy intervention via R&D subsidies might be necessary to get a head start. For ex-
ample, starting at n = 0 and scenario (a), subsidized R&D is needed for the first 4 stages otherwise
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Figure 4: Duopoly R&D race with linear price function P (Q) = 1−Q. Right panel shows the effort
a∗1(n1, n2) and left panel the production rate q̄1(n1, n2). Quadratic costs Ri(a) = a2/2 + 0.1a with
λi(t) = 5ai(t), ρ = 0.1. ci(n) = e−n/8, n ∈ {1, . . . , 25}2.

the new technology will never be developed on its own. However, once n ≥ 5, the subsidy can be
withdrawn and replaced with private financing. One could imagine various tax/equity mechanisms
that recoup these seed investments in the ultimate future n̄ = 50. Scenario (c) shows that such
kick-start subsidies could be needed even if P1 is already in the market but the initial R&D hurdle
is too high (the situation where a∗1(n) = 0, q̄1 > 0). Overall, Figure 2 supports the idea of seed
subsidies that can then be withdrawn once the new technology is sufficiently competitive. Subsidies
are especially attractive if one imagines the government to have lower discount rates compared to
the game players, facilitating long-maturity loans.

5 Bilateral R&D Race

To illustrate a truly dynamic R&D race, we next investigate a duopoly L = 2 with bilateral
R&D strategies a1(t), a2(t). We continue to maintain linear inverse demand P (Q) = η − Q. For
expositional clarity we focus on the symmetric case where the R&D costs R(a), discount factors
ρi ≡ ρ, and technological ladders Ci of both players are identical. Of course, during the evolution
of the game, the players will end up in different stages, making the sub-games non-symmetric. In
terms of the diagram in Figure 1, the games moves from upper-right to lower-left by taking steps
either to the South or West.

Figure 4 shows the optimal feedback controls for a geometric technology ladder ci(n) = exp(−µn)
and quadratic costs (21). Since absolute progress slows down, there is an economically optimal
limit level n̄ such that no R&D takes place beyond stage (n̄, n̄). Based on Lemma 2, we can take
n̄ = −µ−1 log(ρ2κ). After reducing to a finite-stage setting, we can inductively solve for vi(n) over
the resulting square lattice ni ∈ {1, . . . , n̄}, i = 1, 2.

The two panels of Figure 4 show the feedback controls q̄1(n), a∗1(n) of player 1 as a function of
n. By symmetry, the solution for P2 is simply the mirror image q̄2(n1, n2) = q̄1(n2, n1), etc. In
the right panel we plot the equilibrium production rate q̄1(n1, n2) which as expected is maximized
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when n1 is large and n2 is small, i.e. C1 � C2. In the first few stages (n1 < 5), it is possible that P1
is blockaded (q̄1(n1, ·) = 0 in the upper-left corner). In the left panel, we show the corresponding
effort level a∗1(n1, n2). For n1 = 25 = n̄ (right boundary), a∗1(n̄, ·) ≡ 0 no more R&D is undertaken.
Similarly, no R&D is undertaken when n1 � n2 (upper-left corner) in which situation P1 is too
“behind” P2 and is moreover blockaded, making eventual R&D gains too minuscule to be feasible.
However, we note that the region {(n1, n2) : a∗1(n1, n2) = 0} is much smaller than the blockading
region for P1, so that in many game scenarios P1 may be blockaded but innovating, hoping to catch
up to P2 eventually.

Most interestingly, Figure 4 demonstrates that the R&D investment is maximized when n1 is
slightly larger than n2. This is the situation where P1 has a small technological advantage over P2,
whereby she has the highest motivation (and the funds) to increase the gap with her competitor.
In that sense, a symmetric competition N1(t) = N2(t) is unstable, since whichever player is ahead,
is also putting more in R&D than the player that is behind. This feature confirms Lemma 1 which
shows that ceteris paribus a more dominant player is more sensitive to her costs and hence more
incentivized to innovate.

Over time, the R&D race reaches one of the absorbing stages where a∗i (n1, n2) = 0∀i. In the
present example this effectively reduces to limt→∞N(t) = (n̄, n̄) (there is also a small absorbing
region in the extreme case of n1 � n2 which is however extremely unlikely starting from N1(0) =
N2(0)). Figure 5 shows the distribution of (N1(t), N2(t)) over t = 2, 8, 15, 25 based on the initial
condition N(0) = (1, 1). We observe that the duopoly instability causes a rather large spread
(or “variance”) at intermediate times t = 8, 15 where a significant number of sub-stages could be
realized. As t→∞, the game collapses back to the main attractor in the upper-right corner.
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Figure 5: Distribution of (N1(t), N2(t)) in N2 in a duopoly R&D race. All parameters are as in
Figure 4. Each panel shows a 2-D histogram of (N1

t , N
2
t ) based on 500 simulated paths; size of each

gridpoint is proportional to the empirical frequency. The initial condition was N(0) = (1, 1).

Comparing back to the setting of Section 4, the difference between the unilateral and bilateral
settings sheds light on the impact of R&D competition on the competitive behavior of the producers.
From the point of view of P1, if she has the sole access to innovation and engages in unilateral
R&D then she is able to fully reap the resulting benefits; in contrast bilateral R&D competition
necessarily dilutes gains from lower costs as P2 is expected to catch up over time and maintain
competitive pressures. This intuition suggests that the P1 game value ought to be larger under
unilateral R&D than under bilateral R&D, and consequently that her effort should be lower (since
the NPV of R&D is generally less). While the former statement is true, the latter is not. To wit, in
our numerical experiments we found that in some scenarios, fixing P2 production costs at a given
level c2 and comparing the resulting aUn1 (n) (from Section 4) against aBi1 (n) (from this Section), the
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bilateral-R&D effort is higher. In other words, removing R&D competition makes immediate R&D
research less urgent for P1, leading to lower optimal effort. This finding could be connected to the
concept of pre-emption, whereby bilateral R&D forces producers to exert additional effort in order
to stay ahead (or not fall behind) competitors, which in turn further erodes their profitability.

6 Effect of Uncertainty

In the model (4) the only stochastic source are the counting processes Ni controlling technological
advances. It is of interest to understand the impact of the discrete shocks in Ni on the game
structure. In particular, a natural question is whether uncertainty impedes or encourages R&D.
To shed some insight, we consider refinements of the technology ladder C. Namely, starting with a
ladder C, consider a refined ladder C′ which satisfies

c′(2n) = c(n) and c′(2n+ 1) =
c(n) + c(n+ 1)

2
.

To compensate for having more stages, we also double the scaling constant λ̄′ = 2λ̄. Informally,
the refined model represents the situation where R&D discoveries are half the size but occur twice
as frequently (for same amount of effort). Let (N ′(t)) be the counting process in the refined model.
With this setup and keeping ai(t) fixed, we observe that

E[Ni(t)] = E
[
N ′i(t)/2

]
, Var(Ni(t)) = 2Var

(
N ′i(t)/2

)
.

Therefore, using N ′/2 as the measure of technology progress in the refined model, the refined model
has same rate of R&D discoveries, but only half of the corresponding variance.

As the degree of refinement is increased, the variance of R&D innovations converges to zero.
Thus, the above construction offers a way to interpolate between the deterministic model (zero
variance) and the stochastic version analyzed so far. To be precise, consider a continuous decreasing
map f(x) ∈ [0, 1], x ∈ [0, x̄], where x represents the continuous level of “progress”. Innovation may
go on indefinitely, or have some finite bound x̄. The map x 7→ f(x) defines the technology ladder,
e.g. f(x) = exp(−µx). Now for any M ∈ Z, let c(n;M) = f(n/M), n = 1, . . . , which gives rise
to a ladder C(M) with a corresponding scaling Mλ̄. We refer to M as the refinement level. The
case of finite M nests the discrete technology ladders while in the limit M → ∞, one obtains a
deterministic model where progress is completely dependent on the R&D level without any intrinsic
uncertainty. For ease of comparison across different refinement levels, for the remainder of this
Section we re-parameterize both q and a in terms of x, q(x;M) = q(c(n;M)) keeping in mind that
x ∈ {n/M : n = 1, . . . , }.

The impact of uncertainty on the game equilibrium can now be analyzed by the dependence of
the equilibrium strategies on M . Note that q(x) = q(f(x)) only depends on the present costs and
hence is independent of M ; in contrast a(x) is driven by the amount of uncertainty corresponding to
the refinement level. AsM rises, the corresponding dynamic game has more and more stages, so that
players have more opportunities to adjust their feedback-form controls and therefore extract more
value. However, uncertainty also benefits the players because it allows for potentially rapid progress
which is assigned extra weight due to the discounting involved. Indeed, the map τ 7→ exp(−ρτ)
is convex, so that a mean-preserving transformation of τ will affect the corresponding expectation
(cf. (23)) inversely in terms of its variance. The next Lemma shows that the overall impact of M
on game values is as a result ambiguous.

Lemma 3. Consider a technology ladder C(M) and a doubled ladder C(2M). Then v(2M)(x) may be
either bigger or smaller than v(M)(x).
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Figure 6: Comparison of game values v1(·, n2) and effort levels a∗1(·, n2). Bilateral symmetric R&D
game with ρ = 0.1 and R(a) = a2 +0.2a and linear technology progress c1(n) = 1−n/M , λ̄ = 0.4M
for M = 10, 20, 50. We show the results for P1 at the fixed level c2 = 0.7 of P2 costs.

Put another way, less uncertainty lowers the probability of extra profits from rapid progress
but allows more flexibility in R&D investments over time. The above results should be contrasted
with the findings of Lafforgue [2008] in the single-agent setting. Lafforgue finds that uncertainty
unambiguously lowers innovation (and therefore overall utility). This is because the stationary
solution obtained in Lafforgue [2008] eliminates any extra potential gains from favorable innovation
scenarios. In contrast, in our model the additional gains that arise from for example the duopoly-
to-monopoly transition, percolate through the game stages and make the unlikely but potentially
very lucrative rapid innovation paths strategically important. Thus, increased uncertainty can
sometimes benefit the player and make her even more enthusiastic about R&D. (The non-monotone
R&D effort in Figure 2 is again instructive here.)

Figure 6 shows the impact of R&D success volatility in a symmetric bilateral model. We take
the linear ladder f(x) = 1 − µx, x ∈ [0, 1/µ]; in this case refinement is equivalent to taking
c1(n;M) = 1 − n/M , n = 1, . . . ,M and varying M . To illustrate Lemma 3 we observe that as
M changes, both R&D efforts ai(x) and game values vi(x) have ambiguous changes, sometimes
increasing and sometimes decreasing.

6.1 Deterministic Limit

The deterministic case is obtained by taking the formal limit M → ∞, which corresponds to
C(M) → f . The fluid limit of Ni(t)/M yields that the underlying technology state x slides down
the ladder x 7→ f(x) at the speed proportional to ai(t), i.e. dxi(t) = ai(t) dt or equivalently for
Ci(t) = f(xi(t))

dCi(t) = f ′(f−1(Ci(t))) · ai(t) dt.

For presentational clarity, we revisit the deterministic version of the unilateral R&D model,
where only P1 innovates and the technology ladder is linear f(x) = 1− λ̄x, so that

dC1(t)/dt = −λ̄a(t).

Fix c2 and denote by g̃i(c) the value function of player i starting with initial P1 costs C1(0) = c.
To distinguish from the stochastic model, the corresponding controls are denoted ã(c) and q̃(c).
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Taking quadratic R&D costs (21), g̃1 solves the nonlinear ODE

ρ1g̃1(c) = π∗1(c, c2) +
(−λ̄g̃′1(c)− κ)2

+

2
= 0, c ∈ [0, 1], (26)

where π∗1(c, c2) is the equilibrium profit under cost profile (c, c2) (see Lemma 1) and the initial

condition is g̃(0) =
π∗1(0,c2)
ρ1

. Note that g̃1 is decreasing, hence the minus sign in front of g̃′1. The

optimal controls are q̃(c) = q∗1(c, c2) from (19) and ã(c) = (−λ̄g̃′1(c)−κ)+. The relationship in (26)
subsumes the static case ã(c) = q̃(c) = 0 whereby g̃1(c) = 0, and also the case of zero R&D that
implies g̃1(c) = ρ−1

1 π∗1(c, c2) or in differential form ρ1g̃
′
1(c) = ∂

∂cπ
∗
1(c, c2).

Note that at c = 0,
(−λg̃′1(0)−κ)2

+

2 = ρ1g̃1(0) − π∗1(0, c2) = 0, so the boundary condition is
singular (g̃′(0) is undetermined). For a numerical solution we instead use limc↓0 g̃

′
1(c) = −κ/λ̄ which

corresponds to the condition that R&D efforts are smoothly wound down to zero as the ultimate
technology state is approached. As before, one can view ρ−1

1 π∗1(c, c2) ≤ g̃1(c) as an “obstacle” for
g̃1, with ρ1g̃1(c) = π∗1(c, c2) if and only if ã(c) = 0. The gap G(c) := g̃1(c)− ρ−1

1 π∗1(c, c2) represents
the NPV of R&D gains and substituting into (26) is shown to have a quadratic relationship to the
R&D effort level ã(c),

G(c) =
1

2ρ1
ã(c)2. (27)

Relationship (27) sheds light on the link between the right panel of Figure 3 and the effort curves
in Figure 2.

Moreover, recall that the profit function π∗1(c, c2) itself is piecewisely defined in terms of the
three possible market structures (duopoly or monopoly of either producer). As a result, the full
solution for g̃1(c) is defined piecewise over as many as four intervals, with both pre-specified and
free boundaries arising. The ODE (26) clarifies the phase transitions resulting from changes in
market structure. Indeed, formally differentiating (26) we obtain

ρ1g̃
′
1(c) =

∂

∂c
π∗1(c, c2)− λ̄g̃′′1(c) · (−λ̄g̃′1(c)− κ)+.

We now observe that since c 7→ π∗1(c, c2) is continuous, by (26) so is c 7→ g̃′(c) (and hence c 7→ ã(c)).
At the same time, at levels where the market changes from a monopoly to a duopoly and vice-versa,
the cost-sensitivity of profit changes. This implies that g̃′′(c) must be discontinuous, introducing
higher-order discontinuities into g̃1. In particular, because a monopolist is less sensitive to her
costs, at the transition level c = 2c2 − 1, we have

− ∂

∂c
π∗1(c, c2)

∣∣∣
c=(2c2−1)−

< − ∂

∂c
π∗1(c, c2)

∣∣∣
c=(2c2−1)+

,

and this jump may cause the sign of g̃′′(c) to change from negative to positive when transitioning to
P1 monopoly. In other words, the g̃ may go from concave to convex, and ã may go from decreasing
to increasing, generating a kink at c = 2c2 − 1.

Figure 7 illustrates these effects for the case c2 = 0.6. In that case, there are two fixed phase
boundaries at c = 0.8 and c = 0.2 which indicate blockading of P1 and P2 respectively. The Figure
confirms the mentioned double inverted-U relationship for c 7→ ã(c). In particular, there is a kink at
c ' 0.45 (where − ∂

∂cπ
∗
1(c, c2) = ρ1κ/λ̄) which causes R&D to be started with a “jolt”, and another

kink at c = 0.2 = 2c2 − 1 which causes R&D trend to suddenly change from negative to positive.
Economically, the time-trend of current R&D investments is tied to the change in expectations of
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future gains from lowered costs. Thus, as C1(t) drops below 0.3, the gains to P1 from R&D diminish
as she anticipates lower cost-convexity (the downward jump in ∂

∂cπ
∗
1(c, c2) observed in Figure 3)

once in monopoly. As a result, R&D effort is lowered. However, once monopoly is actually achieved,
t 7→ ∂π∗1(Ct, c2)/∂c resumes its growth and the R&D trend is reversed.

Figure 7 also compares the deterministic R&D effort curve ã(c) to the discrete versions a(M)(c)
obtained with a finite M . We observe that while for M = 10 the discretization makes a significant
difference, already with M = 100 stages, the stochastic setting is very close to the deterministic
one. Notably, for c = 0.4 and M = 10, the large uncertainty (and hence potential for quick gains)
makes it optimal to do some R&D, while for M = 100 and the deterministic case, at the same
production cost level c the expected gains are not sufficient to justify investments. This highlights
the extra benefits that uncertainty may offer and shows that correct modeling of uncertainty is an
important aspect of the framework.
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Figure 7: Effect of uncertainty on effort curves. The deterministic technology ladder is c1(x) =
f(x) = 1−λ̄x with λ̄ = 0.01. We also show the discretized cases M = 10, 100 where c1(n) = 1−n/M
and discovery rate is Mλ̄. Effort costs R1(a) = a2/2 + 0.4a, ρ1 = 0.01 and c2 = 0.6.

Remark 6. A related deterministic Cournot duopoly model was studied in Cellini and Lambertini
[2009]. Assuming symmetric firms, and identical initial technologies, it follows that there exists a
symmetric Nash equilibrium. Therefore, the duopoly analytically reduces to a single-agent opti-
mization since qi = q(t) and ai = a(t) for all i, yielding in turn ci(t) = c(t) equal production costs
for all times. Thus, both firms pursue identical production and R&D strategies.

7 Discussion and Extensions

7.1 Comparison to Related Models

We note that the non-negativity constraints qi(n) ≥ 0, ai(n) ≥ 0 are crucial in many of the features
that emerge. Indeed, they lead to different equilibria which due to the coupling between game
stages affect the global strategies of the players. In contrast, in the central planner context of
Lafforgue [2008], the same constraints were never binding so that the single agent was always
producing, consuming and innovating for all times. (In fact the analytic solution obtained in
Lafforgue [2008] is fully stationary, so that the effort allocation is constant in t; in contrast our
controls are fundamentally dependent on current stage N(t).)
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Moreover, the system (22) is similar to the discretized central planner problem of Lafforgue
[2008], except that in the latter paper there is no explicit price or production cost but rather a
production function entering a consumption social benefit (utility) function. Thus, the analogue
of the decreasing production cost c1(n) is taken up by the productivity factor B(t) which grows
proportionally with each innovation. By selecting a Cobb-Douglas production and power utility,
Lafforgue [2008] is able to construct an explicit analytic solution to (22).

7.2 Effect of Competition

Rivalry considerations are central to our game framework. In comparison to the single-agent
monopoly model, competition lowers both profits and demand elasticity. Indeed the monopo-
list can capture the full consumer surplus and is therefore highly sensitive to her production costs,
encouraging R&D. In contrast, so far we assumed perfectly substitutable goods so that in a duopoly
profits are shared in proportion to the current production costs. To interpolate between these two
extremes, we next consider the intermediate case of a differentiated Cournot duopoly with imper-
fect substitution (which goes back at least to [Singh and Vives, 1984]; see also [Ledvina and Sircar,
2012]). Let 0 ≤ γ ≤ 1 be the substitutability fraction. We assume a linear price function with
saturation point η = 1, so that the price obtained by player i is

Pi(qi, Q−i) = 1− qi − γQ−i. (28)

Thus, γ = 1 is perfect substitutability, P (Q) = 1 −Q, and γ = 0 means perfectly complementary
goods, Pi(qi) = 1− qi, so that within their respective markets players act independently as de facto
monopolies.

We first briefly summarize the static equilibrium ignoring R&D. As before, agents choose qi to
maximize πi = qi · (Pi(qi, Q−i)− ci) which leads to the static solution

qStati =
(2− γ) + γcj − 2ci

(4− γ2)
(29)

and revenue πi(c) = (qi(c))2. The R&D equilibrium is achieved exactly as before, solving the same
system (17) but with the latter modified profits πi(c).

Figure 8 presents the numerical solution at a fixed stage (·, n2) using the technology ladder
c(n) = e−0.05n and a range of γ’s. As expected, lower competition (i.e. lower γ) increases game values
and raises production. However, counterintuitively the impact on R&D is ambiguous. Depending
on n2, less competition may either increase or decrease a∗1(n). Moreover, the time profile of R&D
shifts. Less competition induces higher R&D expenditures up-front (when the near-monopolist is
more sensitive to reduced costs), but lower R&D expenditures in the middle and end of progress
(when the duopoly affords additional gains at the expense of player 2). Thus, overall the expected
time to go from say stage 1 to stage n1 need not be monotone in γ. In Figure 8 we see that in
an undifferentiated market (γ = 1), a producer might get completely discouraged when far behind
c1 � c2 and give up on R&D altogether: a∗1(n1) = 0 for n1 small enough. In contrast, with
differentiated goods, the producer is more sensitive to her costs and will engage in R&D even when
c1 ' 1.

7.3 R&D Effort Complementary to Production

In economic growth theory one views labor as the single source of productive capacity which must
then be allocated to different activities. From that perspective, choices about R&D investment and
production level are not independent, being both labor-consuming. The resulting link couples the
optimization problem arising in (17) across the a(t) and q(t) controls. Under strong coupling this
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Figure 8: Comparison of R&D effort levels a∗1(·, n2) in a dynamic bilateral R&D game with differ-
entiated goods. We take an exponential technology ladder ci(n) = exp(−0.05n), n = 1, . . . , 50 with
λ̄ = 10, r = 0.1 and R(a) = a2/2 + 0.1a (players are fully symmetric). The price function is linear
as in (28) and results are shown for γ ∈ {0.4, 0.8, 1}. The latter case is the perfectly substitutable
goods. Throughout we use n2 = 10 (i.e. c2(n2) = 0.61).

link is direct, G(a(t), q(t)) = const, see e.g., Lafforgue [2008]. Under a weak coupling G(a(t), q(t)) ≤
const there is only a constraint which may or may not be binding (e.g. labor could be saved, invested
in other sectors, etc.).

To illustrate the impact of coupling q and a we briefly revisit the linear duopoly case with
unilateral R&D by P1 where we assume that the set of admissible strategies is Ai(n) = {(q, a) :
q+a = A}. Thus, R&D and production are perfect substitutes, and investing in R&D entails lower
production. This generates an intrinsic shadow cost to R&D and hence we take R(a) ≡ 0. In this
scenario, the optimization problems are given by:

v1(n; q1) = sup
q1(t)

En
{∫ ∞

0
e−ρ1tq1(t)[1− q1(t)− q∗2(t)− c1(N(t))] dt

}
= sup

q1∈[0,A]

λ̄[A− q1]

λ̄[A− q1] + ρ1
[(q1(1− q1 − q∗2(n)− c1(n)) + λ̄(A− q)v1(n+ 1)],

where (Nt) with N0 = 0 is the counting process for the number of technology advances of P1 by
time t.

Either of the double constraints 0 ≤ q1(n) ≤ A, may be binding. If q1(n) = 0 then all labor is
devoted to R&D while production is shut-down; if q1(n) = A then all labor is devoted to production
with no R&D. The complementarity between production and R&D introduces additional strategic
effects into the dynamic game. Clearly, R&D becomes more “expensive”, and consequently may be
shut-down sooner (or started later), making more game stages absorbing. Furthermore, a player
may strategically lower production to devote more effort to R&D. As a result, the fixed market
structure transitions (which were fully determined by c(n)) become endogenous. First, it is possible
that q1(n) = 0 even if qStat1 (n) > 0. In other words, there may be a strategic delay by P1 in entering
the market, even if the present costs support a duopoly, in order to devote resources exclusively to
R&D. Second, it is possible in the later stages that q2(n) > 0 even if qStat2 (n) = 0, so that player
2 is allowed to remain in the market even when P1 has costs low enough to become a monopolist.
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This happens because monopolist is very sensitive to her costs and therefore could be willing to
delay her monopoly transition by tolerating “zombie” competition in order to lower production
costs even quicker.

7.4 Spillovers

It may be viewed as unrealistic to assume that the two players compete in a single market (i.e. the
goods produced are perfectly substitutable), yet their technology states are completely independent,
so that technology gains are fully internalized by the innovator. One could patch this concern by
introducing spill-over effects. Spillovers are well-documented empirically and tend to lower R&D
investments and therefore reduce productivity growth. Game-theoretically, spillovers can be viewed
as either raising the innovation rate of competitors in a static set-up, or removing first-mover
advantages after innovation success, see for example [Cellini and Lambertini, 2009, Dawid et al.,
2013].

In our model, one can incorporate both immediate and gradual spill-overs. First, one could allow
for a possibility of joint jumps in the different components of N , i.e. common technology innovation
based on total R&D investment. This would introduce terms of the form v1(n1 + 1, n2 + 1) into
the system (17). Second, one could allow the R&D hazard rates λi to be a general function of a(t),
so that R&D investment of player i not only speeds up innovation of player i but also of other
players j. Third, one could make λi(t) to depend on N(t) to model long-term spill-overs: e.g. if
N2(t) � N1(t), one could imagine that catching up becomes easier for P1 so that λ1(t) increases.
Combining these features one could model duopoly R&D innovation rates as e.g.,

λ1(a1, a2, N1, N2) = b1a1 + b2a2 + b3(N2 −N1)+,

for some constants b1, b2, b3 ∈ R+. Yet another possibility is to couple the players’ R&D costs
(through either crowding out of R&D labor/resources or market synergies) by makingRi(ai) depend
on the full profile of efforts a. Incorporating all these extensions into (17) is straightforward,
requiring just an appropriate modification to the local optimization problems.

8 Conclusion

We have presented a framework for modeling oligopolistic stochastic R&D games. In our set-up
R&D successes are discrete, allowing to explicitly describe the local Markov Nash equilibria and
providing a direct link to the classical static Cournot games. As a result, the market state is
represented as a Markov chain coupling the producers. We show that constructing a dynamic
equilibrium only requires numerically solving a sequence of nonlinear equations which can be done
efficiently in a rather general setting.

Our findings show the multiple nuances of endogenizing market structure. First, we demonstrate
that a variety of markets can coexist in a single model (e.g. investing in R&D but not producing,
producing but not investing, etc.). Second, we find that the phase transitions induced by structural
changes (such as transition to monopoly) generate new dynamic effects, such as non-monotone R&D
trends. Third, we find that the impact of uncertainty is double-edged, lowering flexibility but also
increasing R&D NPV. Thus, the effect of lowering R&D variance is ambiguous both locally (in
terms of immediate R&D effort) and globally (making some states absorbing or not). Fourth, we
find that competition (measured either through the production costs of competitors or degree of
substitutability) also has ambiguous effects on R&D.

The presented model was motivated by the R&D history in the oil (or more generally energy)
market. In that context, a key idea is that of exhaustibility— the running out of reserves because
the underlying resource is non-replenishable. Exhaustibility adds shadow costs to extraction and
introduces a different mechanism for dynamic market structure— see Harris et al. [2010], Ludkovski
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and Sircar [2011], Ledvina and Sircar [2012]. Combining exhaustibility and R&D (which would pro-
vide insights into the empirical cycles of energy exploration and production) requires introduction
of an additional state variable (Xt) for reserves and will be dealt with in a separate work.

Another fruitful research direction is a further study regarding the impact of the number of
players L competing. To handle different market sizes in a unified matter, one can represent the
current market structure in terms of a probability measure µt which keeps track of the cost profile c
via µt = 1

L

∑L
i=1 δci(t). One can then index all other game quantities, such as the profits πi(µt) via

µt. The limiting case L→∞ would connect to the burgeoning literature on mean-field games. See,
for instance, Chan and Sircar [2015] for some results on Cournot mean field games of exhaustible
producers.

Appendices

A Proof of Lemma 1

Proof. If player i is not part of the equilibrium, q∗i = 0, then clearly she’s insensitive to either her
costs or her competitors’ costs. Similarly, if q∗j = 0 then player j is sitting out and hence her costs

cj cannot affect player i,
∂q∗i
∂cj

= 0. It follows that we can restrict attention to the active set of

`∗ players and assume that the corresponding equilibrium is of interior type, q∗i > 0∀i ≤ `∗ (the
case where a player is just on the boundary of the active set can be treated similarly). With that
assumption, differentiating the first-order-conditions defining q∗i in (6) with respect to cj we obtain:

0 =
∂qi
∂cj

P ′(Q∗) + [qiP
′′(Q∗) + P ′(Q∗)] · ∂Q

∂cj
− 1{i=j}. (30)

Adding up the expressions in (6) across i = 1, 2, · · · , ` we obtain

0 =
∑̀
i=1

(
∂qi
∂cj

P ′(Q∗) + [qiP
′′(Q∗) + P ′(Q∗)] · ∂Q

∂cj
− 1{i=j}) (31)

=
∂Q

∂cj
· [P ′(Q) +QP ′′(Q) + `P ′(Q)]− 1.

Using the fact that QP ′′(Q) = −ρP ′(Q) the last equation simplifies to

P ′(Q)
∂Q

∂cj
=

1

[`∗ + 1− ρ]
, (32)

which is independent of cj . In particular we see that total production decreases with respect to
any cj as long as ρ < `∗+ 1. To make sure that this is true even for a monopolist, we require ρ < 2.
Returning to equation (30) and substituting P ′′(Q) = −ρP ′(Q)/Q as well as (32) we obtain

∂qi
∂cj

P ′(Q)− ρqi
Q
P ′(Q)

∂Q

∂cj
+ P ′(Q)

∂Q

∂cj
= 1{i=j}

∂qi
∂cj

P ′(Q) = 1{i=j} −
1− ρ qiQ
`∗ + 1− ρ

.

Solving the last equation for ∂qi
∂cj

in each of the cases i = j and i 6= j yields (12). Note again that

the impact of any other production costs cj on qi is independent of j due to the symmetry imposed
by aggregate production.
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B Proof of Lemma 2

Proof. For concreteness, we consider P1 first. Let c1 ≥ 0 be the largest accumulation point of the
ladder C1. Using the boundedness and monotonicity of the revenues in terms of costs, we have that
for any ε > 0,

|π∗1(c1, c2(n2))− π∗1(c1(n1), c2)| ≤ ερ

for all (n1, n2) large enough. Therefore, since

π∗1(c1, c2(n2))

ρ1
≥ v1(n1, n2) ≥ π∗1(c1(n1), c2)

ρ1
(33)

(which holds since starting at (n1, n2), the left- and right-most numerators express the minimum
and maximum revenue rates possible going forward) we have

|π∗1(c1(n1), c2(n2))− ρ1v1(n1 + 1, n2)| ≤ ε and |v1(n1, n2 + 1)− v1(n1 + 1, n2)| ≤ ε (34)

for all n1 ≥ N1(ε), n2 ≥ N2(ε) as above.
Now fix n1 ≥ N1, n2 ≥ N2 and the corresponding a∗2(n). As notational shorthand we write

π ≡ π∗1(c(n)). We wish to compare the expected reward to P1 from investing in R&D at some
level a1 > 0 at the current stage, i.e. J1(a1) from (20), vis-a-vis zero R&D investment, J1(0). In
particular, we want to show that the latter is advantageous, i.e. J1(0) − J1(a1) ≥ 0. Plugging in
a1 = 0 into (20) yields J1(0)− J1(a1) =

1

a∗2 + ρ1
[π + a∗2v1(n1, n2 + 1)]− 1

a1 + a∗2 + ρ1
{π − ρ1R1(a1) + a1v1(n1 + 1, n2) + a∗2v1(n1, n2 + 1)}

= {π + a2v1(n1, n2 + 1)}{ 1

a∗2 + ρ1
− 1

a1 + a∗2 + ρ1
}+

ρ1

a1 + a∗2 + ρ1
R1(a1)− a1

a1 + a∗2 + ρ1
v1(n1 + 1, n2)

≥ {π + a∗2v1(n1, n2 + 1)} a1

(a1 + a∗2 + ρ1)(a∗2 + ρ1)
+

ρ1a1

a1 + a∗2 + ρ1
R′1(0)− a1

a1 + a∗2 + ρ1
v1(n1 + 1, n2)

=
a1

a1 + a∗2 + ρ1

{
π − ρ1v1(n1 + 1, n2)

a∗2 + ρ1
+ ρ1R′1(0) +

a∗2(v1(n1, n2 + 1)− v1(n1 + 1, n2))

a∗2 + ρ1

}
, (35)

where the inequality is based on the convexity of R1(a), R1(a1) ≥ a1R′1(0). Now both the first and
last terms (that measure respectively the gain from a R&D success and a loss from R&D failure)
are by assumption less than ε, while the middle term ρ1R1(0) is by assumption strictly positive.
We conclude

J1(0)−J1(a1) ≥ a1

a1 + a∗2 + ρ1

{
− ρ1ε

a∗2 + ρ1
+ρ1R1(0)− a∗2ε

a∗2 + ρ1

}
=

a1

a1 + a∗2 + ρ1

{
−ε+ρ1R′1(0)

}
≥ 0

as soon as ε < ρ1R′1(0). The case for other players is dealt with similarly.

C Proof of Lemma 3

Proof. Intuitively, the refined model offers higher value since it gives the players a more fine control
over their R&D efforts. Indeed, one can always “embed” a model with M stages into one with 2M
stages by keeping efforts constant for pairs of consecutive technology levels, ǎ(2M)(2k) = ǎ(2M)(2k+
1) = a(M)(k). Optimization over a larger control set should increase profits.

However, refinement also removes the opportunity for rapid advancement, which lowers the
NPV of future profits. To wit, consider the first innovation date τ ≡ τ (M),1 in the model with
M stages with an effort level a ≡ a1(1). Then, τ ∼ Exp(Mλ̄a) and the corresponding discount
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factor is E[e−ρ1τ ] = Mλ̄a
Mλ̄a+ρ1

. In the refined model with 2M stages, the comparable epoch is the

second innovation date τ (2M),2. Suppose that same effort is maintained ǎ(2M)(1) = ǎ(2M)(2) = a on
[0, τ (2M),2). Then times to success on each sub-stage, τ (2M),1, τ (2M),2 − τ (2M),1 ∼ Exp(2Mλ̄a) are
i.i.d., so that τ (2M),2 ∼ Ga(2, 2Mλ̄a) has a Gamma distribution. Therefore, the discount factors
satisfy

E
[
e−ρ1τ (2M),2

]
=

(
2Mλ̄a

2Mλ̄a+ ρ1

)2

<
Mλ̄a

Mλ̄a+ ρ1
= E[e−ρ1τ (M),1

] ∀a. (36)

Observe that τ (2M),2 is a mean-preserving spread of τ (M),1 with a smaller variance (E[τ (2M),2] =
E[τ (M),1] = (Mλ̄a)−1, while V ar(τ (2M),2) = 1

2(Mλ̄a)2 = 1
2V ar(τ

(M),1)), so that (36) follows imme-

diately due to convexity of t 7→ exp(−ρ1t). Note that the above argument holds for any degree of
refinement (not just doubling), since we have that

k 7→ E
[
e−ρ1τ (kM),k

]
=

(
kλ̄a

kλ̄a+ ρ1

)k
, τ (kM),k ∼ Ga(k, kλ̄a)

is decreasing in k.
To formalize the above ideas, consider a setting with unilateral R&D by P1 and a single-stage

original model which is refined to a two-stage one. Label the respective profits as π1(1) < π1(2) <
π1(3), and respective R&D success times as τ (1),1, τ (2),1, τ (2),2. Then similar to (23), fixing the
effort levels a(1),1 and a(2),1, a(2),2 and taking without loss of generality Mλ̄ ≡ 1, we obtain that
the corresponding expected profits are

v
(1)
1 (1; a(1),1) =

1

a(1),1 + ρ1

{
π1(1)−R(a(1),1)

}
+

a(1),1

a(1),1 + ρ1

1

ρ1
π1(3); (37)

v
(2)
1 (1; a(2),1, a(2),2) =

1

2a(2),1 + ρ1

{
π1(1)−R(a(2),1)

}
+

2a(1),1

2a(1),1 + ρ1

1

2a(2),1 + ρ1

{
π1(2)−R(a(2),2)

}
+

(38)

+
2a(1),1

2a(1),1 + ρ1

2a(2),1

2a(2),1 + ρ1

1

ρ1
π1(3).

We now show that depending on the relationship between stagewise profits π1(n), n = 1, 2, 3, the

ordering between v
(1)
1 (1) and v

(2)
1 (1) can turn out either way. This confirms algebraically that the

competing effects described above lead to ambiguous outcomes.

v
(1)
1 (1) > v

(2)
1 (1): if the intermediate profits π1(2) are close to π1(1) then there is minimal gain

from reduced uncertainty, but less likelihood of a quick breakthrough. So less uncertainty lowers
value. Fix the optimal two-stage effort levels a(2),1, a(2),2. We construct a dominant R&D strategy
for the original model. To do so, take ã(1),1 such that

ã(1),1

ã(1),1 + ρ1
:=

2a(1),1

2a(1),1 + ρ1

2a(2),1

2a(2),1 + ρ1
. (39)

This is equivalent to picking ã(1),1 such that E[e−ρ1τ (1),1
] = E[e−ρ1τ (2),2

]. Write π1(2) = π1(1) + ε.
Then an algebraic derivation based on plugging in (39) shows that

1

2a(2),1 + ρ1
π1(1) +

2a(1),1

2a(1),1 + ρ1

1

2a(2),1 + ρ1

{
π1(1) + ε} =

1

ã(1),1 + ρ1
π1(1) + Cε,

32



for a positive constant C. Moreover, a direct computation reveals that in this case NPVs of effort
costs satisfy

− 1

2a(2),1 + ρ1
R(a(2),1)− 2a(1),1

2a(1),1 + ρ1

1

2a(2),1 + ρ1
R(a(2),2) < − 1

ã(1),1 + ρ1
R(a(1),1)

for a quadratic R&D cost function R(a). Subtracting (37) from (38), it follows that for ε small
enough, the two-stage strategy gives strictly lower expected profits, gaining order-ε extra profits
from the intermediate sub-stage but losing a strictly positive amount relative to ã(1),1.

v
(1)
1 (1) < v

(2)
1 (1): If the intermediate profits are nearly as large as the terminal ones, π1(2) =

π1(3)−ε, then the refined model would lead to higher NPV as it accelerates the appearance of higher

profits. To see that, let ã = a(1),1 be optimal for v
(1)
1 (1) and set ã(2),1 = ã(2),2 = ã. Substituting

into (37)-(38), the resulting difference in P1 expected profits is

v
(2)
1 (1)− v(1)

1 (1) =
1

2ã+ ρ1

{
π1(1)−R(ã)

}
+

2ã

(2ã+ ρ1)2

{
π1(2)−R(ã)

}
+

2ã2

(2ã+ ρ1)2

1

ρ1
π1(3)

− 1

ã+ ρ1

{
π1(1)−R(ã)

}
− ã

ã+ ρ1

1

ρ1
π1(3)

= −ãρ1R(ã) + (2ã+ ρ1) · ã · (π1(3)− π1(1))− Cε.

Hence, for π1(3)−π1(1) large enough and ε small enough, we have that the 2-stage NPV is larger.

Figure 6 confirms that both of the above outcomes arise. In the Figure, for c1(x) large or very
small, we are in the second situation of π1(2) ' π1(1) (since profits are currently small, or there are

little productivity gains left) and v
(M)
1 (x) > v

(2M)
1 (x). For c1(x) moderate, there is more sensitivity

to costs and v
(M)
1 (x) < v

(2M)
1 (x) (just barely in the plot).

References

A. Azevedo and D. Paxson. Developing real option game models. European Journal of Operational
Research, 237(3):909–920, 2014.

P. Bremaud. Point Processes and Queues. Springer, New York, 1981.

R. Cellini and L. Lambertini. Dynamic R&D with spillovers: Competition vs cooperation. Journal
of Economic Dynamics and Control, 33(3):568–582, 2009.

P. Chan and R. Sircar. Bertrand & Cournot mean field games. Applied Mathematics & Optimiza-
tion, 71(3):533–569, 2014.

P. Chan and R. Sircar. Fracking, renewables & mean field games. Technical report, Princeton
University, 2015. Available at SSRN 2632504.

E. Dahlgren and T. Leung. An optimal multiple stopping approach to infrastructure investment
decisions. Journal of Economic Dynamics and Control, 53:251–267, 2015.

M. H. A. Davis. Markov Models and Optimization. Chapman & Hall, London, 1993.

H. Dawid, M. Kopel, and PM Kort. R&D competition versus R&D cooperation in oligopolistic
markets with evolving structure. International Journal of Industrial Organization, 31(5):527–537,
2013.

33



U. Doraszelski. An R&D race with knowledge accumulation. The RAND Journal of Economics,
pages 20–42, 2003.

G. Femminis and G. Martini. Irreversible investment and R&D spillovers in a dynamic duopoly.
Journal of Economic Dynamics and Control, 35(7):1061–1090, 2011.

S. Fölster and G. Trofimov. Industry evolution and R&D externalities. Journal of Economic
Dynamics and Control, 21(10):1727–1746, 1997.

D. Fudenberg and J. Tirole. Preemption and rent equalization in the adoption of new technology.
The Review of Economic Studies, 52(3):383–401, 1985.

D. Fudenberg, R. Gilbert, J. Stiglitz, and J. Tirole. Preemption, leapfrogging and competition in
patent races. European Economic Review, 22(1):3–31, 1983.

L.H Goulder and S.H Schneider. Induced technological change and the attractiveness of CO2
abatement policies. Resource and Energy Economics, 21(3):211–253, 1999.

M. Goyal and S. Netessine. Strategic technology choice and capacity investment under demand
uncertainty. Management Science, 53(2):192–207, 2007.
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