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Abstract

American options are actively traded worldwide on exchanges, thus making their accurate
and efficient pricing an important problem. As most financial markets exhibit randomly
varying volatility, in this paper we introduce an approximation of American option price
under stochastic volatility models. We achieve this by using the maturity randomization
method known as Canadization. The volatility process is characterized by fast and slow
scale fluctuating factors. In particular, we study the case of an American put with a single
underlying asset and use perturbative expansion techniques to approximate its price as well
as the optimal exercise boundary up to the first order. We then use the approximate optimal
exercise boundary formula to price American put via Monte Carlo. We also develop efficient
control variates for our simulation method using martingales resulting from the approximate
price formula. A numerical study is conducted to demonstrate that the proposed method
performs better than the least squares regression method popular in the financial industry,
in typical settings where values of the scaling parameters are small. Further, it is empirically
observed that in the regimes where scaling parameter value is equal to unity, fast and slow
scale approximations are equally accurate.
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singular perturbation theory, regular perturbation theory, Monte Carlo, control variate
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1 Introduction

In this paper, we develop approximations for the optimal exercise boundary and price of Ameri-
can options under stochastic volatility, where the volatility process is modulated by fluctuations
occurring on fast or slow time scales. We particularly consider the example of an American put
with a single underlying asset. It is also made clear that the case of an American call option
written on a dividend-paying underlying asset can be handled similarly. In order to derive these
approximations, we replace the fixed maturity of the option with an exponentially distributed
random variable to introduce an American put with random maturity. We then use singular and
regular perturbation techniques to approximately solve the pricing problem associated with the
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random maturity American put. We demonstrate, with the help of numerical experiments, that
the resulting approximation of the optimal exercise boundary for this new put can be used to
estimate the price of original option with fixed maturity via Monte Carlo. Moreover, we use the
approximation of the random maturity put price to form efficient martingale control variates for
our simulation method.

In the classical theory of risk-neutral pricing, the price of an American option corresponds to
the solution of an optimal stopping problem which, in Markovian models, can also be expressed
as a free boundary problem. Even in the simple case of constant volatility, the American option
price is not available in closed form. Over the years, many numerical and simulation techniques
have been developed to approximately solve either of the two formulations for American option
pricing problem. The prominent numerical methods in the constant volatility case are the
binomial lattice method of Cox et al. [10], and the approximation method proposed by Brennan
and Schwartz [6] where the associated free boundary problem is solved numerically such that
the boundary conditions are not violated. Carr [9] introduced the maturity randomization
technique where fixed maturity of the American put is successively replaced by random variables
corresponding to the arrival times of an independent Poisson process. The partial differential
equation (PDE) satisfied by the price of this transformed option becomes similar to the pricing
PDE of a perpetual American put, which can be solved explicitly for every instance of maturity
randomization. The series of these solutions is then used to approximate the price of original
American put. Bouchard et al. [5] proved that the approximation of American put value obtained
via maturity randomization converges to the true value with successive randomization iteration
of the algorithm. This so-called Canadization method is also extended recently for optimal
multiple stopping problems in Lévy models by Leung et al. [22]. Other examples of application
of the Canalization method to price American and Russian options are [21], [11], [20].

In order to estimate the true American option value, simulation methods typically solve the
discretized version of the option pricing problem, where exercise can happen only at a finite
number of fixed times. As the number of exercise opportunities increases to infinity, the price
of this discrete exercise American option converges to the true value. In this setting, simulation
methods approximately solve the dynamic program associated with the pricing problem. To
facilitate this, first, the so-called continuation value function is estimated at each exercise op-
portunity using simulated underlying sample paths via Monte Carlo, and then, based on these
estimates, an approximately optimal exercise policy is defined. This policy is used to exercise
on the simulated sample paths, and the average payoff on these exercised sample paths is used
as an estimator for the true American option price. The random tree method of Broadie and
Glasserman [7] used nested paths simulation to estimate the continuation value function. In the
stochastic mesh method, Broadie and Glasserman [8] used a likelihood ratio weighted average
on simulated sample paths to estimate the continuation value recursively. These methods were
limited in their success due to their slow convergence rate for a given computational budget.
In 2001, Longstaff and Schwartz [23] proposed the least squares regression method where the
continuation value function is modeled as a linear combination of pre-specified basis functions
in the L2–space. This method has proven to be very popular in practice due to its fast rate of
convergence, and it is considered as a benchmark in simulation methods for American option
pricing. Recently, an improvement of Longstaff-Schwartz method has been proposed by Gra-
macy and Ludkovski [15] where the authors adaptively learn the classifiers which are then used
in dynamic regression algorithms to estimate the option value function.

Empirical evidence in many studies (see Rubinstein [25]) shows that the implied volatility
of options exhibit a smile curve (or skew). In order to capture this phenomenon, stochastic
volatility models were proposed (see e.g., Hull and White [17] and Heston [16]). A common
theme in all the proposed stochastic volatility models is mean-reversion of a stochastic factor
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driving the volatility of the underlying process. A detailed discussion of the mean-reverting
nature of these models is provided by Fouque et al. [13] where empirical references are given for
fast and slow factors in volatility fluctuations. Hence, in [13], the authors proposed multiscale
stochastic volatility models which capture both the separation of scales and mean-reverting
characteristics of the volatility process.

The problem of pricing European options in the stochastic volatility setting has been well
studied. In the Heston model, the European option price appears as a Fourier inversion inte-
gral which can be efficiently calculated using numerical methods. Fouque et al. [13] provide
an approximation for European option prices for calibration in the multiscale model which is
reasonably accurate. Relatively, little has been done to address the problem of American option
pricing in stochastic volatility setting. The few existing methods in the literature can be broadly
categorized as PDE and non-PDE based methods. The PDE based methods provide an approx-
imation for the price of American option by numerically solving the (at least three-dimensional)
free boundary problem. A popular approach is to solve the problem by reformulating it as a lin-
ear complementarity problem. In order to solve each discrete complementarity problem, Ikonen
and Toivanen use operator splitting methods in [18], and use component-wise splitting methods
in [19]. These methods are time-consuming and are typically dependent on sophisticated solver
packages. In non-PDE methods, a variant of the Longstaff-Schwartz method with cross-sectional
basis functions can be used for pricing as demonstrated by Rambharat and Brockwell [24].

As mentioned earlier, in our work, we develop an approximation for the finite time-horizon
American put price and the associated optimal exercise boundary under stochastic volatility. We
use the idea of maturity randomization proposed by Carr [9] to reduce the original pricing PDE to
a pricing PDE problem corresponding to a perpetual American put. We use perturbation theory
and variation of parameters techniques to approximate the put price and the optimal exercise
boundary. The optimal boundary approximation is used to exercise simulated underlying paths
and estimate the true American option price. We compare the performance of our method with
an implementation of the Longstaff-Schwartz method as suggested in [24] and demonstrate better
numerical accuracy under typical parameter settings and small computational budget. Fouque
and Han [12] provided centered martingales which can be possibly used as control variates for
estimating the true option price. However, the true option price function appears in these
centered martingales. We replace the true option price function with our approximate price
function and use the resulting martingales to form control variates for our simulation method.
The proposed control variates lead to a considerable variance reduction in the case of fast mean-
reverting stochastic volatility as shown in the numerical examples. In our numerical experiments,
we also observe that in the regime where value of scaling parameter is equal to one, fast and
slow scale approximations are equally accurate.

For simplicity of presentation, we analyze the two stochastic volatility factors separately. In
Section 2 we consider the case of fast mean-reverting volatility process which leads to a singular
perturbation problem for the associated pricing PDE. It is evident from the calculations that
one does not require to track the fast mean-reverting volatility level to calculate the put price
approximation. Next, in Section 3, we derive the approximation for American put price and
optimal exercise boundary in the case of slowly fluctuating volatility. In Sections 2.2 and 3.2, we
show how to use the price and boundary approximations to form effective control variates using
the fast and slow factor approximations respectively. A detailed numerical study comparing our
method with the Longstaff-Schwartz method is presented in Section 4. We conclude with few
comments on our work and some suggestions for further research in Section 5. The proofs are
relegated to Appendix A. We explain the numerical implementation of the respective fast and
slow scale control variates in Appendix B.
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2 Approximation under fast mean-reverting stochastic volatility

We first consider a fast mean-reverting stochastic volatility model. Here, let X denote the price
of a non-dividend paying asset whose dynamics under the risk-neutral probability measure P is
given by the following system of SDEs:

dXt = rXt dt+ f(Yt)Xt dW
(1)
t , X0 = x > 0, (1)

dYt =
1

ε
(m1 − Yt) dt+ ν1

√

2

ε
dW

(2)
t , Y0 = y, (2)

where W
(1)
t and W

(2)
t are one-dimensional Brownian motions with correlation d〈W (1),W (2)〉t =

ρ1dt, ρ
2
1 < 1 and ε > 0 is the intrinsic time-scale of Y. We choose specific form of the drift

function: (m1−Yt) and volatility function:
√
2ν1 such that Y is an ergodic process (the Ornstein-

Uhlenbeck process) with unique invariant distribution denoted by Φ which is normal N (m1, ν
2
1)

and does not depend on ε. Further, we require f : R → R+\{0} to be a continuously differentiable
function such that

∫

f2(y)Φ(y)dy < ∞. We assume ε << 1 so that the intrinsic time-scale of Y
is small and hence it represents a fast mean-reverting stochastic factor of underlying volatility.

Under the risk-neutral probability measure, the price at time t < T of an American put
option with maturity T < ∞ is

P ε(t, x̃, ỹ) := sup
τ∈T[t,T ]

Et,x̃,ỹ

[

e−r(τ−t)(K −Xτ )
+
]

, (3)

where K is the strike price, and T[t,T ] is the set of stopping times τ taking values in [t, T ]. It can
be shown, using the dynamic programming principle, that the American put value is the solution
of a free boundary problem. The standard approach to solve this problem is to separate the
space of state variables into two regions, the hold- and exercise- region where the boundary of
the region is regarded as the optimal exercise boundary. However, it is not possible to calculate
an explicit solution for the free boundary problem.

In order to solve this problem approximately, we randomize the maturity of the American
put and replace it with an exponentially distributed independent random variable τλ with mean
1
λ = T . Following the arguments in Carr [9], we can write the price of American put with
random maturity as follows

P (1)(x, y) := sup
τ∈T[0,∞]

Ex,y

[

e−r(τ∧τλ)(K −Xτ∧τλ)
+
]

.

As the option maturity is an exponentially distributed random variable, by the memoryless
property, the option gets no closer to its random maturity as the time elapses and thus its
value suffers no time decay. As the exercise value is also time stationary, the exercise boundary
becomes time-independent as well and we need to search for a single critical stock price which
depends on the level of stochastic volatility factor. Thus, we look for the optimal exercise
boundary parametrized by y.

For the proposed multiscale stochastic volatility model, it is clear that the smooth pasting
condition for P (1)(x, y) holds w.r.t. (x, y) from Lemma 2.1 in [28]. Thus, we look for a solution
that satisfies the following PDE in the hold region with the smooth pasting conditions:

LεP (1)(x, y) + λ(K − x)+ = 0, for x > xb(y), (4)

P (1)(xb(y), y) = K − xb(y),
∂P (1)

∂x
(xb(y), y) = −1,

∂P (1)

∂y
(xb(y), y) = 0,
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where xb(y) is the optimal exercise boundary. Here, the operator Lε is given by:

Lε =
1

ε
L0 +

1√
ε
L1 + L2,

where we define

L0 := ν21
∂2

∂y2
+(m1−y)

∂

∂y
, L1 :=

√
2ρ1ν1xf(y)

∂2

∂x∂y
, L2 :=

1

2
f2(y)x2

∂2

∂x2
+rx

∂

∂x
−(r+λ)·.

Note that L0 is the infinitesimal generator of an OU process with unit rate of mean reversion.
In the exercise region, we have

P (1)(x, y) = K − x, for x < xb(y). (5)

For a general stochastic volatility function f(y), there is no analytic solution to the free-boundary
problem (4)-(5). In the limit ε ց 0, this is a singular perturbation problem and thus our
approach is to construct an asymptotic approximation.

2.1 Asymptotic analysis

Specifically, we perform a singular perturbation with respect to the small parameter ε, expanding
the solution and exercise boundary in powers of

√
ε

P (1)(x, y) = P0(x, y) +
√
εP1(x, y) + εP2(x, y) + · · · , (6)

xb(y) = x0(y) +
√
εx1(y) + · · · . (7)

This particular choice of expansion in powers of
√
ε allows us to analytically solve for terms in

the expansion, independent of ε. We now plug (6) and (7) into (4) - (5), and collect terms of
equal powers of

√
ε. For x > xb(y), we get

1

ε
L0P0 +

1√
ε
(L0P1 + L1P0) +

(

L0P2 + L1P1 + L2P0 + λ(K − x)+
)

+
√
ε (L0P3 + L1P2 + L2P1) + · · · = 0, (8)

where we have suppressed the dependence on (x, y) for notational convenience. For x < xb(y),
in (5), we use the asymptotic expansion of (7) in the right hand side and use (6) in the left hand
side to perform a Taylor series expansion around x0(y) to write

P0(x0(y), y) +
√
ε

(

x1(y)
∂P0

∂x

∣

∣

∣

x0(y)
+ P1(x0(y), y)

)

+ · · · = K − x0(y)−
√
εx1(y) + · · · . (9)

Similarly, the boundary conditions can be expanded as

∂P0

∂x

∣

∣

∣

x0(y)
+

√
ε

(

x1(y)
∂2P0

∂x2

∣

∣

∣

x0(y)
+

∂P1

∂x

∣

∣

∣

x0(y)

)

+ · · · = −1 (10)

∂P0

∂y

∣

∣

∣

x0(y)
+

√
ε

(

x1(y)
∂2P0

∂y∂x

∣

∣

∣

x0(y)
+

∂P1

∂y

∣

∣

∣

x0(y)

)

+ · · · = 0.

Zeroth order terms. Collecting terms of order 1/ε in (8) and order 1 in (9) and (10), we
have the following PDE and boundary condition:

L0P0(x, y) = 0, for x > x0(y),

P0(x, y) = K − x, for x ≤ x0(y),

∂P0

∂x

∣

∣

∣

x0(y)
= −1.
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As L0 is the infinitesimal generator of Y , zero is an eigenvalue with constant as its eigenfunction.
Thus, the first equation implies that we may seek P0 of the form P0 = P0(x). Along with the
second equation above, it is easy to see that P0 is independent of y everywhere. As P0 is
independent of y on either side of the exercise boundary x0(y), we can conclude that x0 is also
independent of y. We make use of this observation going forward.

First order terms. Collecting terms of order 1/
√
ε in (8) and order

√
ε in (9) and (10)

leads to the following PDE and boundary condition:

L0P1(x, y) = 0, for x > x0,

P1(x, y) = 0, for x ≤ x0,

x1(y)
∂2P0

∂x2

∣

∣

∣

x0

+
∂P1

∂x

∣

∣

∣

x0

= 0, (11)

where we have used the result that P0 is independent of y. As with P0, we can also take P1 to
be independent of y. Thus, we can see that x1 is also independent of y.

Second order terms. Matching terms of order 1 in (8) and order ε in (9) leads to

L0P2 + L2P0 + λ(K − x)+ = 0, for x > x0, (12)

P2(x, y) = 0, for x ≤ x0,

where we have used that P1 does not depend on y. The first equation is a Poisson equation for
P2 with respect to the infinitesimal generator L0 with the source term L2P0+λ(K−x)+. A well-
behaved solution (polynomial growth at infinity) for P2 exists if and only if L2P0+λ(K−x)+ is
centered with respect to the invariant distribution of the diffusion whose infinitesimal generator
is L0. Thus, the centering condition becomes

〈L2P0〉+ λ(K − x)+ = 0, (13)

where the angled brackets indicate taking the average of the argument with respect to Φ, the
invariant distribution of Y. Since P0 does not depend on y, the centering condition becomes
〈L2〉P0 + λ(K − x)+ = 0 which is equivalent to the ODE

1

2
σ̄2x2

d2P0

dx2
+ rx

dP0

dx
− (r + λ)P0 + λ(K − x)+ = 0

where σ̄2 := 〈f2〉 =
∫

f2(y)Φ(dy). The solution to the above ODE can be obtained from the
calculations performed in [9].

Proposition 1. In the stochastic volatility model (1)–(2), the zeroth order approximation of

randomized maturity American put price is given by

P0(x) =











a01
(

x
K

)β1 + a02
(

x
x0

)β1
if x > K,

b01
(

x
K

)β2 + a02
(

x
x0

)β1 +KR− x if x0 < x ≤ K,

K − x if x ≤ x0,

(14)

where the constants are

γ =
1

2
− r

σ̄2
, R =

λ

λ+ r
, ∆ =

√

γ2 +
2λ

Rσ̄2
,

p =
∆− γ

2∆
, q = 1− p, p̂ =

∆− γ + 1

2∆
,

q̂ = 1− p̂, a01 = (qKR− q̂K) , a02 = qKR
r

λ
,

b01 = (p̂K − pKR) , β1 = γ −∆, β2 = γ +∆.
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The zeroth order approximation to the exercise boundary is given by

x0 = K

(

pRr

λ(p̂−Rp)

)
1
β2

.

By plugging the expressions back in the above mentioned formulas, it can be easily verified
that x0 ≤ K and P0(x) is continuous at K and x0. From (12), we have

L0P2 = −L2P0 − λ(K − x)+ = − (L2P0 − 〈L2P0〉) ,

which follows from (13). Therefore,

P2 = −1

2
(φ(y) + c̃(x)) x2

∂2P0

∂x2
, (15)

where function φ solves L0φ = f2(y) − σ̄2 and c̃(x) is an arbitrary finite-valued function inde-
pendent of y.

Third order terms. Collecting terms of order
√
ε in (8) and order ε3/2 in (9), we obtain

the following PDE and boundary condition:

L0P3 + L1P2 + L2P1 = 0 for x > x0.

This is a Poisson equation in y for P3(x, y), which imposes a solvability condition on the source
term L1P2 + L2P1, leading to

〈L2〉P1 = −〈L1P2〉. (16)

We introduce a new convenient notation for the correction term P̃1 :=
√
εP1. Thus, plugging

P2, given by (15), into (16) gives:

〈L2〉P̃1 = V3

(

2x2
∂2P0

∂x2
+ x3

∂3P0

∂x3

)

, (17)

where V3 :=
√

ε
2ρν〈f(y)φ′(y)〉. The above ordinary differential equation can be solved to obtain

the following result:

Proposition 2. The correction term P̃1 in the price expansion is given by

P̃1(x) =































â1

(

x
x0

)β1 − V3β2
1(β1−1)
σ̄2∆

log(x)
(

a01

(

x
K

)β1

+ a02

(

x
x0

)β1
)

if x > K,

â2

(

x
x0

)β1

+ â3

(

x
K

)β2

+V3 log(x)
σ̄2∆

[

b01β
2
2(β2 − 1)

(

x
K

)β2 − a02β
2
1(β1 − 1)

(

x
x0

)β1
]

if x0 < x ≤ K,

0 if x ≤ x0,

where

â1 =
V3

2∆2σ̄2

(

a01β
2
1(β1 − 1) + b01β

2
2(β2 − 1)

)(

(x0
K

)β2 −
(x0
K

)β1
)

+
V3

∆σ̄2

(

β2
1(β1 − 1)

(

a01(
x0
K

)β1 log(K) + a02 log(x0)
)

− b01
(x0
K

)β2β2
2(β2 − 1) log(x0/K)

)

â2 =
V3

2∆2σ̄2

(x0
K

)β2
(

a01β
2
1(β1 − 1) + b01β

2
2(β2 − 1)(1 + 2∆ log(K))

)

,

+
V3 log(x0)

∆σ̄2

(

a02β
2
1(β1 − 1)− b01β

2
2(β2 − 1)

(x0
K

)β2
)

,

â3 = − V3

2∆2σ̄2

(

a01β
2
1(β1 − 1) + b01β

2
2(β2 − 1)(1 + 2∆ log(K))

)

.
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Let x̃1 :=
√
εx1. Then, the correction term in the optimal exercise boundary expansion is given

by

x̃1 = −dP̃1

dx

∣

∣

∣

x0

/d2P0

dx2

∣

∣

∣

x0

where

dP̃1

dx

∣

∣

∣

x0

=
â2β1
x0

+
â3β2
K

(x0
K

)β2−1

+
V3

σ̄2∆

[b01β
2
2(β2 − 1)

K

( x

K

)β2−1
(1 + β2 log x0) +

a02β
2
1(β1 − 1)

x0
(1 + β1 log x0)

]

,

d2P0

dx2

∣

∣

∣

x0

=
b01β2(β2 − 1)

K2

(x0
K

)β2−2
+

a02β1(β1 − 1)

x20
.

Remark 1. Ting et al. [27] performed a similar analysis as in Proposition 2, but for the case
of a perpetual American option i.e. λ = 0, under fast-mean reverting stochastic volatility.

In the constant volatility case, Carr [9] used successive jump times of an independent Poisson
process to randomize the maturity of American put in order to closely approximate the true
American put price. In this work, we use an independent exponential random variable, which
corresponds to the first jump time of an independent Poisson process, to randomize the maturity
of the American put. Therefore, the obtained price approximation P0+

√
εP1 may not be accurate

enough to approximate the true American put price P ε. The approximation can be improved by
replacing the fixed maturity with successively increasing arrival times of an independent Poisson
process as in Carr [9]. In this approach, the number of different coefficient calculations in the
approximation terms increases with the number of boundary conditions and poses a significant
computational challenge. This direction has been reserved for future research.

However, it has been empirically observed and theoretically proved (cf. Andersen [2], Be-
lomestny [4], Agarwal and Juneja [1]) that simulation methods based on even a crude approxi-
mation of the optimal exercise boundary produce good estimates for the true American option
price. Thus, in Section 2.2, we use the exercise boundary approximation x0+

√
εx1 in our setting

to price the finite maturity American put via Monte Carlo.

Remark 2. American call options on a dividend paying underlying can also be priced using
the proposed methodology under the multiscale stochastic volatility model. In the case of an
underlying with continuous dividend yield, we can use the American option put-call parity from
Corollary 1 [26] to transform the original American call option pricing problem to an American
put option pricing problem. It can be further checked that the free boundary problem for the new
American put problem can be solved using the maturity randomization technique as in Section
2. Finally, to incorporate the discrete cash dividends, a correction to the exercise boundary
condition can be introduced based on Equation (37) of [9].

2.2 Control variate for finite maturity American option pricing

Here we discuss how to form control variates for our simulation method to price an American
put with finite maturity T under fast mean-reverting stochastic volatility. Let τ∗ denote the
optimal stopping time in (3). As in [12], by applying Itô’s Lemma, we can write

P ε(0, x, y) := e−rτ∗(K −Xτ∗)
+ − U0(P

ε)− 1√
ε
U1(P

ε),
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where U0 and U1 are defined as

U0(P
ε) :=

∫ τ∗

0
e−rs∂P

ε

∂x
(s,Xs, Ys)f(Ys)Xs dW

(1)
s ,

U1(P
ε) :=

∫ τ∗

0
e−rs∂P

ε

∂y
(s,Xs, Ys)

√
2ν1 dW

(2)
s .

As an explicit formula for P ε is not available, we use the approximation of the price P (1) of the
random maturity American put as given in Propositions 1 and 2 to calculate an approximation
for the martingales U0 and U1. Since, the terms P0 and P1 in the approximation are independent
of y, we only need to approximate U0(P

ε) which is done by using

Û0(P
(1);xb) :=

∫ τ̂

0
e−rs ∂

∂x
(P0 +

√
εP1)(Xs)f(Ys)Xs dW

(1)
s ,

where τ̂ is an approximation to optimal stopping time τ∗ defined using the optimal exercise
boundary approximation x0 +

√
εx1:

τ̂ := inf{t : Xt ≤ x0 +
√
εx1} ∧ T

where x0 and x1 are constants independent of y. Hence, for a set of N independent sample paths
of the underlying process X, a Monte Carlo estimator with the martingale control variate is
given by

1

N

N
∑

i=1

[

e−rτ̂ (K −X
(i)
τ̂ )+ − Û (i)

0 (P (1);xb)
]

(18)

where X
(i)
τ̂ is the value of the ith underlying process sample path at τ̂ . We provide details of

the numerical implementation of control variates in Appendix B.

3 Slow scale volatility approximations

We conduct a similar analysis for the case when stochastic volatility is slowly fluctuating. Note
that we do not require ergodicity of the slow scale factor Z. However, for simplicity of pre-
sentation, we assume a specific form of the drift and volatility functions: (m2 − Zt) and

√
2ν2

respectively for the volatility driving process Z. In this case, the dynamics of X is given by the
following system of SDEs:

dXt = rXt dt+ f(Zt)Xt dW
(1)
t , X0 = x,

dZt = δ(m2 − Zt) dt+ ν2
√
2δ dW

(3)
t , Z0 = z,

where W
(1)
t and W

(3)
t are one-dimensional Brownian motions with correlation d〈W (1),W (3)〉t =

ρ2dt, ρ
2
2 < 1 and 1/δ > 0 is the intrinsic time-scale of Z. We assume δ << 1 so that the

intrinsic time-scale of Z is large and hence it represents a slowly fluctuating stochastic factor
of underlying volatility. Here, we require f : R → R+\{0} to be a continuously differentiable
function.

The price at time t of an American put option with maturity T < ∞ is

P δ(t, x̃, z̃) := sup
τ∈T[t,T ]

Et,x̃,z̃

[

e−r(τ−t)(K −Xτ )
+
]

, (19)
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where K is the strike price, and T[t,T ] is the set of stopping times τ taking values in [t, T ]. The
price of American put with independent exponentially distributed random maturity τλ, with
mean 1

λ = T , is

P (1)(x, z) := sup
τ∈T[0,∞]

Ex,z

[

e−r(τ∧τλ)(K −Xτ∧τλ)
+
]

.

Let us denote by xb(z) the optimal exercise boundary for American option with randomized
maturity defined above. Again, we look for a solution P (1)(x, z) that satisfies the following PDE
in the hold region with the boundary conditions and smooth pasting conditions:

LδP (1)(x, z) + λ(K − x)+ = 0, for x > xb(z), (20)

P (1)(xb(z), z) = K − xb(z),

∂P (1)

∂x
(xb(z), z) = −1,

∂P (1)

∂z
(xb(z), z) = 0,

where the operator Lδ := L2 +
√
δM1 + δM2, with

L2 :=
1

2
f2(z)x2

∂2

∂x2
+ rx

∂

∂x
− (r + λ)·,

M1 :=
√
2ρ2ν2f(z)x

∂2

∂x∂z
, M2 := ν22

∂2

∂z2
+ (m2 − z)

∂

∂z
.

In the exercise region, we have

P (1)(x, z) = K − x, for x < xb(z). (21)

In the limit δ ց 0, the above problem is a regular perturbation problem and we look for an
asymptotic approximation.

3.1 Asymptotic analysis

We expand P (1)(x, z) and the optimal exercise boundary xb(z) in powers of
√
δ as follows

P (1)(x, z) = P0(x, z) +
√
δP1(x, z) + δP2(x, z) + · · · ,

xb(z) = x0(z) +
√
δx1(z) + · · · .

We plug the asymptotic expansion formulas and repeat the procedure as followed in Section 2.1.
Matching terms of order 1 (with respect to

√
δ) in (20)-(21) leads to the following PDE and

boundary condition:

L2P0 + λ(K − x)+ = 0, for x > x0(z), (22)

P0 = K − x, for x ≤ x0(z),

∂P0

∂x

∣

∣

∣

x0(z)
= −1.

We know from our previous calculations, that P0(x, z) is given as in Proposition 1 where the
coefficients are defined as in (14) with σ̄ replaced by f(z).
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Next, by matching order
√
δ terms in (20)-(21), we get

L2P1 +M1P0 = 0, x > x0(z) (23)

P1 = 0, x ≤ x0(z).

The source term in (23), has a term with derivative with respect to the volatility factor z. In
order to solve this PDE, we define a new quantity, V := ∂P0/∂z. The following result enables
us to construct the solution to (23).

Lemma 1. We assume that V is continuous at x = x0(z) and is differentiable at x = K. Then,

V is given by

V(x, z) =



























a1
(

x
x0(z)

)β1 + f ′(z)β1(β1−1)
f(z)∆ log x

(

a01
(

x
K

)β1 + a02
(

x
x0(z)

)β1
)

if x > K,

a2
(

x
x0(z)

)β1 + a3
(

x
K

)β2

− f ′(z) log(x)
f(z)∆

(

b01β2(β2 − 1)
(

x
K

)β2 − a02β1(β1 − 1)
(

x
x0(z)

)β1
)

if x0(z) < x ≤ K,

0 if x ≤ x0(z)

where a1, a2 and a3 are coefficients given by (26), (27) and (28) in Appendix A.2.

The proof of the above lemma is given in Appendix A. Once, we have solved for V, we proceed
to find the correction term P1 in the price approximation under slowly fluctuating stochastic
volatility.

Proposition 3. The correction term P1 in the price approximation, solution of (23), is given

by

P1(x, z) =



























































η1
(

x
x0(z)

)β1 + V2(z)a1β1f(z) log(x)
(

x
x0(z)

)β1 + V2(z)f ′(z)
2∆2 β1

× log(x)(β1 − 1)(β2 + β1∆ log(x))
(

a01
(

x
K

)β1 + a02
(

x
x0(z)

)β1
)

if x > K,

η2
(

x
x0(z)

)β1 + η3
(

x
K

)β2 + V2(z)f(z) log(x)
(

a2β1
(

x
x0(z)

)β1

−a3β2
(

x
K

)β2
)

− V2(z)f ′(z)
2∆2 b01β2

× log(x)(β2 − 1)
(

β1 − β2∆ log(x)
)(

x
K

)β2

+V2(z)f ′(z)
2∆2 a02β1(β1 − 1) log(x)

(

β2 + β1∆ log(x)
)(

x
x0(z)

)β1
if x0(z) < x ≤ K,

0 if x ≤ x0(z)

where V2(z) :=
√
2ρ2ν2

∆f2(z)
and η1, η2 and η3 are given in (29), (30) and (31). The correction term

in optimal exercise boundary expansion is

x1(z) = −dP1

dx

∣

∣

∣

x0(z)

/d2P0

dx2

∣

∣

∣

x0(z)
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where

dP1

dx

∣

∣

∣

x0(z)
=

η2β1
x0(z)

+
η3β2
x0(z)

(

x0(z)

K

)β2

+
V2(z)f(z)

x0

(

a2β1 (1 + β1 log(x0(z)))

− a3β2 (1 + β2 log(x0(z)))

(

x0(z)

K

)β2)

− V2(z)f
′(z)b01β2(β2 − 1)

2∆2x0(z)

(

(

β1

−∆β2 log(x0(z))
)(

1 + β2 log(x0(z))
)

−∆β2 log(x0(z))
)

(

x0(z)

K

)β2

+
V2(z)f

′(z)a02β1(β1 − 1)

2∆2x0(z)

(

(β2 +∆β1 log(x0(z))) (1 + β1 log(x0(z)))

+ ∆β1 log(x0(z))
)

,

d2P0

dx2

∣

∣

∣

x0(z)
=

b01β2(β2 − 1)

K2

(x0(z)

K

)β2−2
+

a02β1(β1 − 1)

x0(z)2
.

We will use the derived exercise boundary approximation x0(z) +
√
δx1(z) under the slow

scale to price the finite maturity American put via Monte Carlo.

3.2 Control variate for finite maturity American option pricing

We discuss how to form control variates for our simulation method to price an American put
with finite maturity T under slow stochastic volatility. Let τ∗ denote the optimal stopping time
in (19). Applying Itô’s Lemma, we have

P δ(0, x, z) := e−rτ∗(K −Xτ∗)
+ − U0(P

δ)−
√
δ U2(P

δ),

where U0 and U2 are defined as

U0(P
δ) :=

∫ τ∗

0
e−rs∂P

δ

∂x
(s,Xs, Zs)f(Zs)Xs dW

(1)
s ,

U2(P
δ) :=

∫ τ∗

0
e−rs∂P

δ

∂z
(s,Xs, Zs)

√
2ν2 dW

(3)
s .

We use the approximation of the price P (1) of the random maturity American put as given in
Propositions 1 (with σ̄ replaced by f(z)) and 3 to calculate an approximation for the martingales.
We approximate the centered martingales U0(P

δ) and U2(P
δ) as follows:

Û0(P
(1);xb) :=

∫ τ̂

0
e−rs ∂

∂x
(P0 +

√
δP1)(Xs, Zs)f(Zs)Xs dW

(1)
s ,

Û2(P
(1);xb) :=

∫ τ̂

0
e−rs ∂

∂z
(P0 +

√
δP1)(Xs, Zs)

√
2ν2 dW

(3)
s ,

where τ̂ is the approximation to the optimal stopping time τ∗ defined using the optimal exercise
boundary approximation x0(z) +

√
δx1(z):

τ̂ := inf{t : Xt ≤ x0(Zt) +
√
δx1(Zt)} ∧ T.

The Monte Carlo estimator in this case is

1

N

N
∑

i=1

[

e−rτ̂ (K −X
(i)
τ̂ )+ − Û (i)

0 (P (1);xb)−
√
δÛ (i)

2 (P (1);xb)
]

. (24)

We provide details of the numerical implementation of control variates in Appendix B.

12



4 Numerical examples

In this section, we compare the performance of estimators suggested in the fast mean-reverting
and slowly fluctuating volatility cases in (18) and (24) respectively with the popular least squares
regression method of Longstaff and Schwartz [23]. The numerical tests are conducted using a
workstation with two 64-bit Quad-Core Intel Xeon processors and 16 GB RAM. For the purpose
of comparison studies, we choose the following functional form of volatility driving function for
both fast and slow scale: f(y) = ey.

Before we proceed, we need to calculate two constants in the fast mean-reverting stochastic
volatility model of (1)–(2) which are required to evaluate the terms in approximation formulas.

Firstly, the average volatility σ̄ =
(∫

f2(y)Φ(dy)
)1/2

is given by σ̄ = e(m1+ν21), where m1 and ν1
are the corresponding model parameters. Next, in order to evaluate the correction term P1, we
need to calculate V3 =

√

ε
2ρν〈f(y)φ′(y)〉 where φ solves L0φ = f2(y) − σ̄2. With the specified

choice of f , we compute

V3 = − ρ

ν21

√

ε

2
e3m1

(

e9ν
2
1/2 − e5ν

2
1/2
)

.

4.1 Performance of estimator under fast mean-reverting volatility

We consider an American put with maturity T < ∞ under the fast mean-reverting stochastic
volatility model (1)–(2). The model parameters with initial conditions and option parameters are
given in Table 4.1. The numerical experiments are performed with various practically relevant
time scale parameter ε values. Typically, for the fast-scale approximations to be accurate enough,
we need that ε << T where unit of time to maturity is the number of years. The underlying
sample paths are simulated with the Euler discretization scheme (cf. [14, page 81]) with time
step size ∆t = 10−3. Each discrete time step corresponds to an exercise opportunity.

K Y0 r m1 ν1 ρ1 T

100 -1.0 0.10 -2.0 1.0 -0.3 1.0

Table 4.1: Parameters for fast mean-reverting stochastic volatility model and option parameters.

In the proposed method, we use the optimal exercise boundary approximation x0 +
√
εx1

derived in Section 2 to exercise the simulated sample paths. As we use an approximation of the
optimal exercise boundary to exercise the sample paths, the proposed policy is suboptimal. The
resulting option price estimator is thus lower biased. Further, we illustrate the variance reduction
achieved by using the option price approximation P0 +

√
εP1 in the martingale control variate

for the proposed estimator. We use the Longstaff and Schwartz (LS) method as implemented in
the numerical examples by Rambharat and Brockwell [24] to compare the performance of our
method. As chosen in [24], we use the following set of Hermite polynomials as basis functions
for LS method:

L0(Xt), L1(Xt), L2(Xt), L3(Xt), L4(Xt),

L1(Yt), L2(Yt), L3(Yt), L4(Yt), L1(Xt)× L1(Yt),

L2(Xt)× L2(Yt), L3(Xt)× L3(Yt), L4(Xt)× L4(Yt)

where L0(x) = 1, and for n ≥ 1, Ln(x) = (−1)nex
2/2 dn

dxn e
−x2/2. The lower biased estimator in

the LS method is obtained by using the standard two phase implementation where in Phase 1,
we use M simulated underlying sample paths to estimate the coefficients in continuation value
function representation. In Phase 2, we use the continuation value estimates to exercise on a
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new set of N underlying sample paths. As we compare the lower biased estimators, a higher
value indicates a better estimator.

ε−1 Proposed method VR Longstaff-Schwartz Run time Inter.
Price (s.e.) Price CV (s.e.) Ratio Price (s.e.) (secs) est.

100 15.204 (0.0577) 15.216 (0.0213) 7.3 14.781 (0.1677) 60 15.409
15.220 (0.0527) 15.222 (0.0209) 6.4 14.860 (0.1505) 90 (0.021)
15.229 (0.0462) 15.220 (0.0350) 12.0 14.895 (0.1351) 120

75 14.871 (0.0806) 14.882 (0.0234) 11.9 14.554 (0.1447) 60 15.183
14.876 (0.0535) 14.878 (0.0208) 6.6 14.659 (0.1254) 90 (0.019)
14.874 (0.0454) 14.873 (0.0180) 6.4 14.661 (0.1176) 120

50 14.410 (0.0714) 14.417 (0.0260) 7.5 14.252 (0.1297) 60 14.940
14.437 (0.0674) 14.420 (0.0180) 14.0 14.321 (0.1153) 90 (0.023)
14.414 (0.0498) 14.422 (0.0176) 8.0 14.355 (0.0969) 120

25 13.648 (0.0742) 13.643 (0.0317) 5.5 13.757 (0.1376) 60 14.312
13.651 (0.0678) 13.648 (0.0250) 7.4 13.770 (0.1336) 90 (0.020)
13.653 (0.0570) 13.643 (0.0221) 6.7 13.805 (0.1058) 120

Table 4.2: Comparison of standard errors (s.e.) of the option price estimate using the proposed method
without and with control variate (CV) for in-the-money option with S0 = 90. LS method price is ob-
tained using the first four Hermite polynomials as basis functions. The variance reduction (VR) ratio is
calculated as the square of the ratio of standard errors in two different cases. The results are shown for
different values of the run time (in seconds) for a single iteration.

To estimate the true price of the American option V0 in absence of unbiased estimators,
we aim to calculate a lower biased estimator v̂n and an upper biased estimator V̂n i.e. E[v̂n] ≤
V0 ≤ E[V̂n] where n denotes the number of independent replications of the respective algorithms.
Then, as explained in Glasserman [14, Pg.431], we can form a conservative confidence interval
for V0 as

(

v̂n− ln, V̂n+Hn

)

where ln and Hn denote the halfwidth of a certain level of confidence
interval for lower and upper biased estimator, respectively. The estimator of the true value
V0 can then be taken as the midpoint of the confidence interval. However, due to the high
number of exercise opportunities of the American option being considered, even a reasonable
implementation of the dual method proposed by Andersen and Broadie [3] is unable to provide
a meaningful upper biased estimator due to the exponential increase in computational budget
with the number of exercise times. Hence, to get a proxy for the true price, we use interleaving

estimator of Longstaff and Schwartz [23]. The bias of interleaving estimator is unclear as it
mixes the high bias from the backward recursion with the low bias resulting from suboptimal
exercise. For our purpose, the value of interleaving estimator will act as a proxy to the true price
and proximity to this value will provide a reasonable accuracy comparison. In our experiments,
we use 4 × 105 sample paths and the first seven Hermite polynomials and their cross products
as basis functions to calculate the interleaving estimator (Inter. est.) in different settings where
the running time of a single iteration is 1.5× 103 seconds.

We illustrate the performance of proposed method when compared to the LS method under
the cases of in-the-money, at-the-money and out-of-the-money options in Table 4.2, 4.3 and
4.4 respectively where the reported results are based on 50 independent iterations of the algo-
rithms with varying computational budgets. The computational budget for a single iteration
is specified in terms of running time (in seconds) of the algorithm. In each phase of the LS
algorithm, we use the same number of sample paths – 20000, 30000 and 40000 respectively for
the correspondingly increasing computational budget. We once again emphasize that in case of
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ε−1 Proposed method VR Longstaff-Schwartz Run time Inter.
Price (s.e.) Price CV (s.e.) Ratio Price (s.e.) (secs) est.

100 11.043 (0.1054) 11.042 (0.0308) 11.7 9.693 (0.3781) 60 11.190
11.033 (0.0649) 11.040 (0.0268) 5.9 10.181 (0.2638) 90 (0.031)
11.057 (0.0524) 11.047 (0.0208) 6.4 10.364 (0.2114) 120

75 10.714 (0.0901) 10.723 (0.0297) 9.2 9.464 (0.4034) 60 10.943
10.717 (0.0834) 10.717 (0.0293) 8.1 9.835 (0.2877) 90 (0.028)
10.724 (0.0595) 10.715 (0.0288) 6.8 10.098 (0.2110) 120

50 10.281 (0.0867) 10.300 (0.0349) 6.2 9.203 (0.4078) 60 10.644
10.311 (0.0712) 10.302 (0.0242) 8.7 9.592 (0.3186) 90 (0.27)
10.296 (0.0632) 10.296 (0.0218) 8.4 9.669 (0.2239) 120

25 9.617 (0.0807) 9.626 (0.0345) 5.5 8.199 (0.4817) 60 10.308
9.628 (0.0744) 9.616 (0.0280) 7.1 8.847 (0.3625) 90 (0.029)
9.612 (0.0681) 9.610 (0.0299) 5.2 9.018 (0.2676) 120

Table 4.3: At-the-money option with S0 = 100.

fast mean-reverting stochastic volatility, both the option price and optimal exercise boundary
first order approximations are independent of the current level of stochastic volatility factor Yt.
Only the average of the variance σ̄2 plays a role.

It can be observed in Table 4.2, that our proposed method performs better than the LS
method for small values of the scaling parameter ε. We are also able to achieve considerable
variance reduction using the control variates proposed in Section 2.2. As expected, the pric-
ing accuracy reduces with increasing value of the scaling parameter ε. In Table 4.3, we can
see that the proposed method provides a more accurate estimator than the lower biased LS
estimator, uniformly for all values of the scaling parameter ε. Further, in the case of out-of-the-
money options (Table 4.4), we observed that for the given computational budget, the two phase
implementation of the LS method provided insignificant estimates of the option price. This
observation again emphasizes that the proposed method provides a better approach to estimate
the true American option value when the stochastic volatility is fast mean-reverting.

4.2 Performance of estimator under slowly fluctuating volatility

To test the performance of the proposed estimator in the slowly fluctuating volatility setting, we
consider an American put with the model parameters, initial conditions and option parameters
given in Table 4.5. The numerical experiments are performed with different slow scale parameter
δ values where small values are practically relevant. The underlying sample paths are simulated
with the Euler discretization scheme with time step size ∆t = 10−3. We use the optimal exercise
boundary approximation x0+

√
δx1 derived in Section 3 to exercise the simulated sample paths.

In the case of slowly fluctuating volatility, the developed control variates do not exhibit significant
variance reduction and hence, the values are not reported.

Unlike, the fast-scale stochastic volatility, the current level of volatility factor Zt is extremely
important in the slowly fluctuating stochastic volatility model. It can be observed in Table
4.6 that for δ = 0.1, our proposed method provides a slightly lower estimator than the LS
method but with considerably smaller standard error. As expected, the performance of the
estimator deteriorates as the value of δ increases. We implemented control variates by using
approximate centered martingales U0 and U2 but found that no considerable variance reduction
is achieved in the case of slowly fluctuating volatility. This particular empirical observation
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ε−1 Proposed method VR Run time Inter.
Price (s.e.) Price CV (s.e.) Ratio (secs) est.

100 8.097 (0.0903) 8.107 (0.0258) 12.3 60 8.228
8.112 (0.0727) 8.105 (0.0255) 8.1 90 (0.031)
8.114 (0.0599) 8.103 (0.0207) 8.4 120

75 7.847 (0.0702) 7.834 (0.0243) 8.3 60 8.015
7.823 (0.0620) 7.826 (0.0271) 5.2 90 (0.029)
7.835 (0.0621) 7.829 (0.0210) 8.8 120

50 7.487 (0.0794) 7.495 (0.0357) 5.0 60 7.881
7.489 (0.0618) 7.493 (0.0286) 4.7 90 (0.035)
7.496 (0.0570) 7.492 (0.0265) 4.6 120

25 6.965 (0.0837) 6.962 (0.0410) 4.2 60 7.507
6.978 (0.0532) 6.972 (0.0264) 4.1 90 (0.032)
6.959 (0.0541) 6.970 (0.0241) 5.0 120

Table 4.4: Out-of-the-money option with S0 = 110. The two phase Longstaff and Schwartz method
produced very small values of option price estimator which are not reported.

K Z0 r m2 ν2 ρ2 T

100 -1.0 0.10 -2.0 1.0 -0.3 1.0

Table 4.5: Parameters for slowly fluctuating stochastic volatility model and option parameters.

motivates replacing the option maturity with the increasing arrival times of an independent
Poisson process. However, the optimal exercise boundary approximation remains reasonably
accurate and in Table 4.7, we can see that for a small computational budget, the proposed
method provides a more accurate estimator than the lower biased LS estimator, uniformly for
all values of the scaling parameter δ. Further, in the case of out-of-the-money option (Table
4.8), we observed that the two phase implementation of LS method, like in the case of fast
mean-reverting stochastic volatility, provided insignificant estimates of the option price. This
observation again emphasizes that the proposed method provides a better approach to estimate
the true American option value in the case of both fast mean-reverting and slowly fluctuating
stochastic volatility.

Remark 3. In order to compare the accuracy of the option price approximation formula in
different stochastic volatility settings – fast and slow scale – we set the value of the scaling
parameters ε = δ = 1. We empirically observed that the boundary approximations in both the
methods provide an equally accurate Monte Carlo estimator for the true American option price.
Thus, when ε = δ = 1, any of the boundary approximation formula derived in Section 2 and 3
can be used to form the Monte Carlo estimator.

5 Conclusion

We introduced a new method to approximately solve the important problem of American option
pricing under stochastic volatility by combining PDE asymptotic techniques with Monte Carlo
simulation. We particularly study the case of an American put option with a single underlying
asset. We derived closed-form approximations for the price of put option with random maturity
and its optimal exercise boundary up to the first order, when volatility is driven by a fast
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δ Proposed method Longstaff-Schwartz Run Inter.
Price (s.e.) Price (s.e.) time (secs) est.

0.1 13.345 (0.1090) 13.228 (0.9989) 60 15.019
13.370 (0.0895) 13.343 (0.8989) 90 (0.019)
13.373 (0.0700) 13.473 (0.6110) 120

1.0 12.986 (0.1124) 13.592 (0.8595) 60 14.898
13.027 (0.1049) 13.709 (0.5602) 90 (0.019)
13.030 (0.0807) 13.789 (0.7763) 120

10 12.089 (0.1382) 13.071 (0.5722) 60 13.910
12.114 (0.1080) 13.060 (0.6429) 90 (0.021)
12.111 (0.0804) 13.119 (0.6349) 120

25 12.632 (0.1250) 13.720 (0.1318) 60 14.310
12.620 (0.1031) 13.765 (0.1375) 90 (0.022)
12.598 (0.0923) 13.803 (0.1287) 120

Table 4.6: Comparison of standard errors of the option price estimate using the proposed method without
and with control variate (CV). The Longstaff-Schwartz method price is obtained using first four Hermite
polynomials as basis functions. The results are shown for different values of the run time for single
iteration. In-the-money option with S0 = 90.

mean-reverting or a slowly fluctuating factor. We then proposed a simulation method which
uses the optimal exercise boundary approximation for price estimation and numerically showed
that it performs better than a reasonable implementation of the least squares regression method
under typical parameter settings and small computational budget. We also achieved significant
improvement in pricing accuracy by using the derived asymptotic price approximation to form
control variates in the proposed method when the stochastic volatility is fast mean-reverting. It
was observed that similar improvement in pricing accuracy is not replicated when the stochastic
volatility fluctuates on the slow scale. In the multiscale stochastic volatility model, it can be
shown that the approximations derived separately for different scales of fluctuations essentially
combine.

In our work, we randomized the maturity of the put with an exponentially distributed ran-
dom variable and showed that under typical scaling parameter regimes, the exercise boundary
approximations provide accurate estimators when used with Monte Carlo simulation. Under-
standably, the accuracy of these approximations can be iteratively improved by replacing the
fixed maturity with successively increasing arrival times of an independent Poisson process. But
the number of different coefficient calculations increases with the number of boundary conditions
which poses a significant computational challenge. The development of an iterative approach to
achieve this task provides a promising direction for future research.

A Proofs

A.1 Proof of Proposition 2

It is evident from the zeroth order term P0 in (14) that we solve for the correction term P̃1 in
two separate regions. Firstly, for x > K, from (17), we get the following ODE

1

2
σ̄2x2

d2P̃1

dx2
+ rx

dP̃1

dx
− (r + λ)P̃1 = c1x

β1

17



δ Proposed method Longstaff-Schwartz Run Inter.
Price (s.e.) Price (s.e.) time (secs) est.

0.1 9.883 (0.1116) 5.144 (0.4283) 60 10.709
9.850 (0.0706) 5.723 (0.5083) 90 (0.026)
9.887 (0.0718) 5.885 (0.4376) 120

1.0 9.890 (0.1362) 5.512 (0.5939) 60 10.714
9.878 (0.0939) 5.908 (0.5967) 90 (0.021)
9.864 (0.0931) 6.555 (0.5844) 120

10 8.879 (0.0952) 6.984 (0.5531) 60 9.871
8.822 (0.0986) 7.439 (0.5832) 90 (0.022)
8.861 (0.0741) 7.707 (0.4379) 120

25 9.224 (0.1079) 8.280 (0.5165) 60 10.215
9.227 (0.0794) 8.665 (0.4431) 90 (0.020)
9.243 (0.0795) 8.843 (0.2598) 120

Table 4.7: At-the-money option with S0 = 100.

where

c1 = V3β
2
1(β1 − 1)

(

a01
Kβ1

+
a02

xβ1
0

)

.

We use a transformation to make the linear operator L2 which has x–dependent coefficients,
into the constant coefficient heat operator. To this end, we define the new variable y = log(x).
Then, the transformation to the heat equation with a source term is given by

d2P̃1

dy2
+

(

2r

σ̄2
− 1

)

dP̃1

dy
− 2(r + λ)

σ̄2
P̃1 =

2c1
σ̄2

exp(β1y). (25)

We use variation of parameters to solve the above ODE. The two linearly independent solutions
to the homogeneous part of (25) are u1(y) = exp(β2y) and u2(y) = exp(β1y). It is easy to see
that β2 > 1 > 0 > β1. The Wronskian of the two linearly independent solutions is W (y) =
(β1 − β2) exp((β1 + β2)y) = −2∆ exp(2γy) and the general solution for the ODE (25) can be
calculated as A(z)u1(y) +B(z)u2(y), where

A(y) =

∫

− 1

W (y)
F (y)u2(y)dy, B(y) =

∫

1

W (y)
F (y)u1(y)dy,

and F (y) = 2c1 exp(β1y)/σ̄
2 is the source term. The solution for the first order correction term

can then be computed via substituting back to the x variable

P̃1(x) = a1x
β1 + ã1x

β2 − V3β
2
1(β1 − 1)

σ̄2∆
log(x)

(

a01

( x

K

)β1

+ a02

( x

x0

)β1
)

, for x > K,

for unknown constants a1 and ã1.

Similarly, in the region x0 < x ≤ K, from the solution in (14), we get

1

2
σ̄2x2

d2P̃1

dx2
+ rx

dP̃1

dx
− (r + λ)P̃1 = c2x

β1 + c3x
β2

where

c2 = V3β
2
1(β1 − 1)

a02

xβ1
0

, c3 = V3β
2
2(β2 − 1)

b01
Kβ2

.
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δ Proposed method Run Inter.
Price (s.e.) time (secs) est.

0.1 7.304 (0.1069) 60 7.623
7.325 (0.0830) 90 (0.016)
7.329 (0.0783) 120

1.0 7.737 (0.1356) 60 8.193
7.721 (0.1128) 90 (0.024)
7.727 (0.0905) 120

10 6.714 (0.0962) 60 7.351
6.709 (0.0728) 90 (0.022)
6.709 (0.0847) 120

25 6.893 (0.1175) 60 7.428
6.888 (0.0854) 90 (0.022)
6.912 (0.0834) 120

Table 4.8: Out-of-the-money option with S0 = 110. The two phase Longstaff and Schwartz method
produced very small values of option price estimator which are not reported.

The solution in this case is

P̃1(x) = a2x
β1 + a3x

β2 +
V3 log(x)

σ̄2∆

(

b01β
2
2(β2 − 1)

( x

K

)β2

− a02β
2
1(β1 − 1)

( x

x0

)β1
)

, for x0 < x ≤ K,

for unknown constants a2 and a3. For x ≤ x0, we have P̃1(x) = 0.
To solve for the unknown constants, we first note that as β2 > 0, it is easy to see from the

condition lim
x↑∞

P̃1(x) = 0 that ã1 = 0. For the remaining constants a1, a2, a3, we use the continuity

condition at x = K and x = x0, and differentiability condition at x = K to obtain three linear
equations. After a fair bit of algebra we can solve for the constants. Then, P̃1(x) is given by the
formula stated in Proposition 2.

For the correction term in the expansion of the optimal exercise boundary, we refer to (11)
and get

x̃1 = −∂P̃1

∂x

∣

∣

∣

x0

/∂2P0

∂x2

∣

∣

∣

x0

where P0 is given in (14) and P̃1 is as derived above.

A.2 Proof of Lemma 1

In this proof, we do not explicitly mention the dependence of x0(·) on z for ease of notation.
For smooth function P0, we compute the following by differentiating (22) with respect to z

1

2
f2(z)x2

∂2V
∂x2

+ rx
∂V
∂x

− (r + λ)V + f(z)f ′(z)x2
∂2P0

∂x2
= 0

where f ′(z) = ∂f(z)/∂z. In order to solve the above equation, we first consider the homogeneous
equation L2V = 0. We use a transformation to make the linear operator L2 which has (x, z)–
dependent coefficients, into the z–dependent coefficient heat operator as shown below. To this
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end, we define the new variable y = log(x). Then, the transformation to the heat equation is

1

2
f2(z)

∂2V
∂y2

+
(

r − 1

2
f2(z)

)∂V
∂y

− (r + λ)V = 0.

In case of x > K, the source term is given by c1x
β1 where

c1 = −f(z)f ′(z)β1(β1 − 1)
(

a01/K
β1 + a02/x

β1
0

)

.

We use variation of parameters technique to conclude that V is given by

V(x, z) = a1
( x

x0

)β1 +
f ′(z)β1(β1 − 1)

f(z)∆
log x

(

a01
( x

K

)β1 + a02
( x

x0

)β1
)

, for x > K.

Similarly, in the region x0 < x ≤ K, we get

1

2
f2(z)

d2V
dy2

+
(

r − 1

2
f2(z)

)dV
dy

− (r + λ)V = c2x
β1 + c3x

β2

where

c2 = −f(z)f ′(z)β1(β1 − 1)
a02

xβ1
0

, c3 = −f(z)f ′(z)β2(β2 − 1)
b01
Kβ2

.

The solution in this case is

V(x, z) = a2
( x

x0

)β1 + a3
( x

K

)β2 − f ′(z) log(x)

f(z)∆

(

b01β2(β2 − 1)
( x

K

)β2

− a02β1(β1 − 1)
( x

x0

)β1
)

, for x0 < x ≤ K.

From the expression of V, we can see that for fixed z, it remains continuously differentiable with
respect to x in the respective regions. Thus, we expect that the function and its first derivative
also remain continuous across the boundary. Hence, we can find the unknown coefficients a1, a2
and a3 by using the continuity condition at x = x0 and differentiability condition at x = K.
This procedure provides us the following:

a1 = − f ′(z)

2f(z)∆2

(

a01β1(β1 − 1) + b01β2(β2 − 1)
)

(

(x0
K

)β2 −
(x0
K

)β1
)

− f ′(z)

f(z)∆

(

β1(β1 − 1)
(

a01(
x0
K

)β1 log(K) + a02 log(x0)
)

− b01β2(β2 − 1)
(x0
K

)β2 log(
x0
K

)
)

,(26)

a2 = − f ′(z)

2f(z)∆2

(x0
K

)β2
(

a01β1(β1 − 1) + b01β2(β2 − 1)(1 + 2∆ log(K))
)

− f ′(z)

f(z)∆
log(x0)

(

a02β1(β1 − 1)− b01β2(β2 − 1)
(x0
K

)β2
)

, (27)

a3 =
f ′(z)

2f(z)∆2

(

a01β1(β1 − 1) + b01β2(β2 − 1)(1 + 2∆ log(K))
)

. (28)

A.3 Proof of Proposition 3

For the region x > K, plugging back V in (23), we get the following PDE

L2P1 = c4x
β1 + c5x

β1(1 + β1 log(x))
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with

c4 = −
√
2ρ2ν2β1a1f(z)/x

β1
0 , c5 = −

√
2ρ2ν2
∆

β1(β1 − 1)f ′(z)
(

a01/K
β1 + a02/x

β1
0

)

.

By defining a new variable y = log(x), we can reduce the above equation to a heat equation
with only z–dependent coefficients and a source term. The transformation is given by,

1

2
f2(z)

∂2P1

∂y2
+
(

r − 1

2
f2(z)

)∂P1

∂y
− (r + λ)P1 = c4 exp(β1y) + c5(1 + β1y) exp(β1y).

In the remaining proof, we do not explicitly mention the dependence of x0(·) on z for ease of
notation.The solution using variation of parameters technique is given by

P1(x, z) = η̃1x
β1 − c4

∆f2(z)
xβ1 log(x)− c5

2∆2f2(z)
xβ1 log(x)(β2 + β1∆ log(x)), for x > K,

where η̃1 is an unknown coefficient dependent on z. For x0 < x ≤ K, plugging back V in (23),
we get the following PDE

L2P1 = c6x
β1 + c7x

β2 − c8x
β2(1 + β2 log(x)) + c9x

β1(1 + β1 log(x))

with
c6 = −

√
2ρ2ν2f(z)a2β1/x

β1
0 , c7 = −

√
2ρ2ν2f(z)a3β2/K

β2

c8 =
−
√
2ρ2ν2f

′(z)β2(β2 − 1)

∆

b01
Kβ2

c9 =
−
√
2ρ2ν2f

′(z)β1(β1 − 1)

∆

a02

xβ1
0

.

We repeat the procedure discussed above to get, for x0 < x ≤ K,

P1(x, z) = η̃2x
β1 + η̃3x

β2 − c6
∆f2(z)

xβ1 log(x) +
c7

∆f2(z)
xβ2 log(x)

+
c8

2∆2f2(z)
xβ2 log(x)(β1 −∆β2 log(x))−

c9
2∆2f2(z)

xβ1 log(x)(β2 +∆β1 log(x))

where η̃2 and η̃3 are unknown coefficients dependent on z. Let us define V2(z) :=
√
2ρ2ν2

∆f2(z) . Then,

we have

P1(x, z) = η1
( x

x0

)β1 + V2(z)a1f(z)β1 log(x)
( x

x0

)β1 +
V2(z)f

′(z)

2∆2
β1(β1 − 1) log(x)

(

β2

×+β1∆ log(x)
)

(

a01
( x

K

)β1 + a02
( x

x0

)β1
)

, for x > K,

P1(x, z) = η2
( x

x0

)β1 + η3
( x

K

)β2 + V2(z)a2f(z)β1 log(x)
( x

x0

)β1 − V2(z)a3f(z)β2 log(x)
( x

K

)β2

− V2(z)f
′(z)

2∆2
β2(β2 − 1)b01 log(x)

(

β1 − β2∆ log(x)
)( x

K

)β2

+
V2(z)f

′(z)

2∆2
β1(β1 − 1)a02 log(x)

(

β2 + β1∆ log(x)
)( x

x0

)β1 , for x0 ≤ x ≤ K,

for unknown coefficients η1, η2 and η3. Next, we use the continuity condition at x = x0 and
x = K and differentiability condition at x = K to calculate these coefficients which are given as
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follows

η1 = V2(z)
[

a01β1β2(β1 − 1)f ′(z)
(

1−
(K

x0

)β1−β2
)

− 2a01∆
2β1(β1 − 1)f ′(z) log(K)

(

2 + β1 log(K)
)

− 2a01∆β2
1(β1 − 1)f ′(z) log(K)

(K

x0

)β1−β2

− 2a02∆β1(β1 − 1)f ′(z) log(x0)
(K

x0

)β1
(

β2 +∆β1 log(x0)
)

− b01β1β2(β2 − 1)f ′(z)
(

(K

x0

)β1−β2 − 1
)

+ 2b01∆β2
2(β2 − 1)f ′(z) log(K)

(

(K

x0

)β1−β2 − 1
)

− 2b01∆β1β2(β2 − 1)f ′(z)
(K

x0

)β1−β2
(

log(K)− log(x0)
)

+ 2b01∆
2β2

2(β2 − 1)f ′(z)
(K

x0

)β1−β2
(

log2(K)− log2(x0)
)

− 2(a1 − a2)∆
2β1β2f(z) log(K)

(K

x0

)β1 − 2(a1 − a2)∆
2β1f(z)

(K

x0

)β1
(

(K

x0

)β1−β2 − β1 log(K)
)

+ 2a2∆
2β1f(z)

(K

x0

)β1
(

β1 log(x0)− 1
)

− 2(a2β2 log(x0)− a1)∆
2β1f(z)

(K

x0

)β1

− 2a3∆
2β2f(z)

(

(K

x0

)β1−β2 − 1
)

− 4a3∆
3β2f(z)

(K

x0

)β1−β2
(

log(K)− log(x0)
)

]

/(

4∆3(K/x0)
β1
)

, (29)

η2 = −V2(z)
[

a01β1β2(β1 − 1)f ′(z)
(x0
K

)β2 + 2a01∆β2
1(β1 − 1)f ′(z) log(K)

(x0
K

)β2

− 4a02∆
2β1β2f

′(z) log(x0) + 2a02∆
2β2

1(β1 − 1)f ′(z) log2(x0)

+ b01β1β2(β2 − 1)f ′(z)
(x0
K

)β2 − 2b01∆β2
2(β2 − 1)f ′(z) log(K)

(x0
K

)β2

+ 2b01∆β1β2(β2 − 1)f ′(z)
(x0
K

)β2
(

log(K)− log(x0)
)

− 2b01∆
2β2

2(β2 − 1)f ′(z)
(x0
K

)β2
(

log2(K)− log2(x0)
)

+ 2(a1 − a2)∆
2β1f(z)

(K

x0

)β1−β2 + 4a2∆
2β1f(z) log(x0)

+ 2a3∆
2β2f(z)

(x0
K

)β2 + 2a3∆
3β2f(z)

(x0
K

)β2
(

log(K)− log(x0)
)

]

/

4∆3, (30)

η3 = V2(z)
[

a01β1(β1 − 1)f ′(z)
(

β2 + 2∆β1 log(K)
)

+ b01β2(β2 − 1)f ′(z)
(

β1 − 2∆2 log(K)
(

2 + β2 log(K)
)

)

+ 2a3∆
2β2f(z)

(

1 + 2∆ log(K)
)

+ 2(a1 − a2)∆
2β1f(z)

(K

x0

)β1
]

/

4∆3. (31)

B Implementation of control variates

In order to achieve variance reduction for the proposed Monte Carlo price estimator, we use
control variates as introduced in Sections 2.2 and 3.2. Here, we discuss their implementation in
the numerical examples.
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B.1 Fast Factor Control Variate

Let us recall the centered martingale which is used as a control variate under the fast mean-
reverting stochastic volatility. It is given by

Û0(P
(1);xb) =

∫ τ̂

0
e−rs ∂

∂x
(P0 +

√
εP1)(Xs)f(Ys)XsdW

(1)
s

where τ̂ is the exercise time approximated using the boundary approximation x0 +
√
εx1.

In the simulation method, we discretize the time scale with a time step ∆t = 10−3. Thus,
the total number of time steps required to sample a path of the underlying process X for pricing
an American put with maturity T is L = T/∆t. Next, we generate a set of N independent
underlying sample paths for X and Y using the Euler discretization scheme and denote them

as
(

X
(i)
0 ,X

(i)
1 , · · · ,X(i)

L

)N

i=1
and

(

Y
(i)
0 , Y

(i)
1 , · · · , Y (i)

L

)N

i=1
where to simplify the notation we have

used X
(i)
n := X

(i)
n∆t and Y

(i)
n := Y

(i)
n∆t for n = 0, 1, · · · , L. On these sample paths, we use the

exercise policy based on the approximate optimal exercise time defined as

τ̂ := min
{

n ≥ 0 : Xn ≤ x0 +
√
εx1
}

∧ L.

The control variate C(i) which approximates Û0(P
(1);xb) for the ith underlying path is formed

as follows by using the explicit formulas for the derivatives of P0 and P1

C(i) :=
τ̂ (i)−1
∑

n=0

e−r(n+1)∆t
[

DP0(X
(i)
n ) +

√
εDP1(X

(i)
n )
]

f(Y (i)
n )X(i)

n

√
∆tN

(1)
i,n+1

where

DP0(Xn) :=











a01
β1

K

(

Xn

K

)β1−1
+ a02

β1

x0

(

Xn

x0

)β1−1
if Xn > K,

b01
β2

K

(

Xn

K

)β2−1
+ a02

β1

x0

(

Xn

x0

)β1−1 − 1 if x0 < Xn ≤ K,

−1 if Xn ≤ x0,

√
εDP1(Xn) :=



























































â1
β1

x0

(

Xn

x0

)β1−1
− V3β2

1(β1−1)
σ̄2∆K

(

a01

(

Xn

K

)β1−1

+a02

(

Xn

x0

)β1−1)

(1 + β1 log(Xn)) if Xn > K,

â3
β1

x0

(

Xn

x0

)β1−1
+ â4

β2

x0

(

Xn

K

)β2−1

+ V3
σ̄2∆

(

b01β2
2(β2−1)
K

(

Xn

K

)β2−1
(1 + β2 log(Xn))

−a02β2
1(β1−1)
x0

(

Xn

x0

)β1−1
(1 + β1 log(Xn))

)

if x0 < Xn ≤ K,

0 if Xn ≤ x0,

and
(

N
(1)
i,1 , · · · , N

(1)

i,τ̂ (i)

)

is the realization of a sequence of independent standard normal random

variables generated to simulate the ith sample path of Brownian motion W (1) in the Euler
scheme.

B.2 Slow Factor Control Variate

In the case of slowly fluctuating volatility, the first martingale is

Û0(P
(1);xb) =

∫ τ̂

0
e−rs ∂

∂x
(P0 +

√
δP1)(Xs, Zs)f(Zs)XsdW

(1)
s .
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Here, the derivative of P0 and P1 with respect to x can be calculated explicitly from the results
in Section 3. The other centered martingale is

Û2(P
(1);xb) =

∫ τ̂

0
e−rs ∂

∂z
(P0 +

√
δP1)(Xs, Zs)h(Zs)dW

(3)
s . (32)

In (32), the derivative ∂P0/∂z is denoted as V which is given explicitly in Lemma 1. The main
difficulty is to calculate the derivative of P1 with respect to z as it has an implicit dependence on
the variable. To overcome this issue, we use a finite difference estimate of ∂P1/∂z. We suppress
the dependence of x0(·) on z for notational convenience.

Thus, the control variate C(i) which approximates Û0(P
(1);xb) +

√
δÛ2(P

(1);xb) for the ith

underlying path is C(i) := C
(i)
1 +

√
δC

(i)
2 , where

C
(i)
1 :=

τ̂ (i)−1
∑

n=0

e−r(n+1)
[

DP0(X
(i)
n , Z(i)

n ) +
√
δDP1(X

(i)
n , Z(i)

n )
]

f(Z(i)
n )X(i)

n

√
∆tN

(1)
i,n+1,

DP0(Xn, Zn) :=











a01
β1

K

(

Xn

K

)β1−1
+ a02

β1

x0

(

Xn

x0

)β1−1
if Xn > K,

b01
β2

K

(

Xn

K

)β2−1
+ a02

β1

x0

(

Xn

x0

)β1−1 − 1 if x0 < Xn ≤ K,

−1 if Xn ≤ x0,

DP1(Xn, Zn) :=



































































































η1β1

Xn

(

Xn

x0

)β1 + V2(Zn)a1β1f(Zn)
Xn

(

Xn

x0

)β1(1 + β1 log(Xn))

+V2(Zn)β1(β1−1)f ′(Zn)
2∆2Xn

(

a01
(

Xn

K

)β1 + a02
(

Xn

x0

)β1
)

×
(

β2(1 + β1 log(Xn)) + ∆β1 log(Xn)(2 + β1 log(Xn))
)

if Xn > K,
η2β1

Xn

(

Xn

x0

)β1 + η3β2

Xn

(

Xn

K

)β2

+V2(Zn)a2β1f(Zn)
Xn

(

Xn

x0

)β1
(

1 + β1 log(Xn)
)

−V2(Zn)a3β2f(Zn)
Xn

(

Xn

K

)β2
(

1 + β2 log(Xn)
)

−V2(Zn)b01β2(β2−1)f ′(Zn)
2∆2Xn

(

Xn

K

)β2

×
(

(

β1 −∆β2 log(Xn)
)(

1 + β2 log(Xn)
)

−∆β2 log(Xn)
)

+V2(Zn)a02β1(β1−1)f ′(Zn)
2∆2Xn

(

Xn

x0

)β1

×
(

(

β2 +∆β1 log(Xn)
)(

1 + β1 log(Xn)
)

+∆β1 log(Xn)
)

if x0 < Xn ≤ K,

0 if Xn ≤ x0.

Further,

C
(i)
2 :=

τ̂ (i)−1
∑

n=0

e−r(n+1)∆t
[

V(X(i)
n , Z(i)

n )+
√
∆P z

1 (X
(i)
n , Z(i)

n )
]√

2ν2
√
∆t
(

ρ2N
(1)
i,n+1+

√

1− ρ22N
(3)
i,n+1

)

,

and for small h > 0,

P z
1 (Xn, Zn) :=

−P1(Xn, Zn + 2h) + 4P1(Xn, Zn + h)− 3P1(Xn, Zn)

h
.

(

N
(1)
i,1 , · · · , N

(1)

i,τ̂ (i)

)

and
(

N
(3)
i,1 , · · · , N

(3)

i,τ̂ (i)

)

are the realizations of sequence of independent stan-

dard normal random variables generated to simulate the ith sample path of Brownian motion
W (1) and W (3) in the Euler scheme.
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