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Abstract

The explicit results for the classical Merton optimal investment/consumption problem rely on the
use of constant risk aversion parameters and exponential discounting. However, many studies have
suggested that individual investors can have different risk aversions over time, and they discount future
rewards less rapidly than exponentially. While state-dependent risk aversions and non-exponential type
(e.g. hyperbolic) discounting align more with the real life behavior and household consumption data,
they have tractability issues and make the problem time-inconsistent. We analyze the cases where these
problems can be closely approximated by time-consistent ones. By asymptotic approximations, we are
able to characterize the equilibrium strategies explicitly in terms of the corrections to solutions for the
base problems with constant risk aversion and exponential discounting. We also explore the effects of
hyperbolic discounting under proportional transaction costs.

1 Introduction and Background

1.1 The Merton Problem of Portfolio Optimization

The portfolio optimization problem in a continuous-time diffusion model was first introduced by Merton
in the 1960s, with the original papers reprinted later in [24], where he was able to derive explicit solutions
for the value functions and optimal strategies in cases with geometric Brownian motions and special types
of utility functions. Ever since then, there has been plenty of development aimed at generalizing Merton’s
results in different ways. To deal with market incompleteness is a direction that a large proportion of the
works have been dedicated to. For example, Campbell and Viceira [4] and Wachter [31] studied the problem
with stochastic drift returns. For problems of partial hedging with a non-traded asset, as well as utility
indifference pricing, one could refer to the collection [5]. Meanwhile, stochastic volatility and transaction
cost are two topics that have received much attention and popularity. We refer the reader to Chacko and
Viceira [6] and Kraft [22] for some explicit results in cases with stochastic volatility. For transaction costs,
things are much more subtle as the problem becomes less tractable. Davis and Norman [10] were able to
solve the problem numerically as a free-boundary ODE system, and Shreve and Soner [28] treated it using
the viscosity solution approach.

More recently, asymptotic methods have been used widely to solve the extensions of Merton’s problem
around their classical and well-established counterpart problems. For example, Fouque et al. [15] have
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used multiscale expansions to approximate the case with stochastic volatility around the constant volatility
case. Bouchard et al. [3] used asymptotics for small transaction costs to derive tractable models for a partial
hedging problem under expected loss constraints.

1.2 Time Inconsistency

The key to solving Merton’s problem is the use of the Dynamic Programming Principle (hereinafter DPP)
in order to formulate the Hamilton-Jacobi-Bellman (hereinafter HJB) equation. In a typical dynamic pro-
gramming problem setup, when an agent wants to optimize an objective function by choosing the best plan,
he is only required to decide his current action. This is because DPP assumes that one’s future selves are
going to solve the remaining part of today’s problem and act optimally when future comes. However, in
many problems, the DPP does not hold, and an agent does not have such “commitment power” on their
future selves, which is the ability to enforce a course of plans obtained by repeatedly optimizing the same
objective function over time. In such problems, the future selves may have changed preferences or tastes, or
would want to make decisions based on different objective functions, effectively acting as opponents of the
current self.

The dilemma described above is called dynamic inconsistency, which has been noted and studied by
economists for many years, mainly in the context of non-exponential type discount functions. In [29], Strotz
demonstrated that when a discount function was applied to consumption plans, one could favor a certain
plan at the beginning, but later switch preference to another plan. This would hold true for most types of
discount functions, the only exception being the exponential. Nevertheless, exponential discounting is the
default setting in most literatures, as none of the other types could produce explicit solutions. Results from
experimental studies contradict this assumption (see, for example, Loewenstein and Prelec [23]), indicating
that the discount rates for the near future are much lower than the discount rates for the time further away in
future, and therefore a hyperbolic type discount function would be more realistic.

Other types of time-inconsistency do exist as well. Bjork and Murgoci [1] listed out three possible
scenarios where time inconsistency would occur in typical Markovian stochastic control problems. More
specifically, given an objective function of the following form:

J(t, x, π) = E
[∫ T

t
ϕ(s− t)F (Xπ

s , x)ds+G(Xπ
T , x)

]
+H(x,E [Xπ

T ]),

where Xπ is some controlled diffusion process with Xπ
t = x and π being our control, the optimization for

J(t, x, π) is a time-inconsistent problem if:

1. the discount function ϕ(s− t) is not of exponential type, e.g. a hyperbolic discount function;
2. x appears in the objective function, e.g. a utility function that depends on the initial wealth x;
3. H() is a nonlinear function of E [Xπ

T ], e.g. continuous-time mean-variance optimization on Xπ
T .

In all the three cases, the standard HJB equations cannot be derived since the usual formulation requires
an argument about the value function (process) being a supermartingale for arbitrary controls and being a
martingale at optimum, which does not hold here. In light of the non-applicability of DPP on these problems,
some have turned in a game-theoretic direction. By treating the problem as a game played with one’s future
selves, it is possible to derive a sub-game Nash equilibrium. In the next section, we will discuss recent work
on deriving equilibrium strategies in some of the time-inconsistent problems.
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1.3 Recent Literature on Time-inconsistent Portfolio Optimization

One of the earlier advances was made by Harris and Laibson who discussed the existence and uniqueness of
an equilibrium consumption path in the case of hyperbolic (in [16]) and quasi-hyperbolic (in [17]) discount
functions in a discrete-time setup. They also derived the Euler relation for the equilibrium path using the
recursive property of an equilibrium consumption plan. Ekeland and Lazrak [11] studied the problem in
continuous time with a more general non-exponential type discount function and derived an equation for the
equilibrium value function process, which was comparable to Harris and Laibson’s results and resembles the
classical HJB equation plus a non-local term. Later, Ekeland et al. [13] looked at an investment/consumption
problem from life insurance with time-inconsistent discount functions. They solved the non-local HJB-
type equation numerically and were able to obtain a hump-shaped consumption path that agreed with the
household consumption data, as opposed to the monotone shape path produced by exponential discount
functions.

Progress has been made on other types of time inconsistent problems as well. Bjork et al. [2] used the
same technique to study the continuous time mean-variance optimization problem with a state-dependent
risk aversion parameter. They obtained a system of HJB-type equations which they were able to reduce to
an ODE system and solve numerically if risk aversion had a special form. Their equilibrium strategy was
comparable to the utility-maximizing strategy in a Merton model statically, but was able to capture some
horizon effect as opposed to the Merton optimal strategy which was constant in time. On the other hand,
Hu et al. [18] derived an open-loop equilibrium strategy, characterized by a system of forward-backward
stochastic differential equations, to solve a time-inconsistent stochastic linear quadratic control problem,
which is the generalized version of the mean-variance problem. Pirvu and Zhang [26] have studied the
problem of utility indifference pricing under a discrete time model with a state-dependent risk aversion
modeled by a two-state regime-switching Markov chain.

The remaining part of this article is organized as follows. In Section 2, we study the portfolio optimiza-
tion problem with time-varying risk aversions that depend on the wealth or volatility factor. A discrete-time
example will be given to illustrate the time inconsistency, followed by the derivation of the HJB-type equa-
tion in continuous time. We will use asymptotic methods to derive the equilibrium strategies up to first order.
In Section 3, we look at hyperbolic discounting problems and use similar methodologies to obtain tractable
solutions in this case. An extension with proportional transaction costs is also studied, and we provide some
numerical results for this problem. Section 4 concludes.

2 Utility Maximization with Time-varying Risk Aversion

In this section, we look at the classical Merton’s problem of portfolio optimization, but with the risk aversion
parameter being state-dependent1. Our motivation is that, in the classical case, we need to, at time 0,
fix a (constant) risk aversion parameter for expected utility at terminal time T . This value reflects our
present conjecture about our future attitude towards risk, and thus it would be unnatural for this conjecture
to be independent of the current state of the world, for example the wealth level and economic conditions.
There are many indicators in the market that can, at least partially, measure investors’ risk aversion. As
mentioned in Coudert and Gex [9], the movement of risk aversion is often correlated with market indices,
for example the gold price and VIX. There are also aggregate indicators of risk aversion created by financial
institutions such as JP Morgan’s Liquidity, Credit and Volatility Index. The consequence of incorporating

1These models can be seen as a particular example of the studies on state-dependent utility/preference by Karni [20]. In this
case the dependency has an explicit functional form as γ(·).
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such dependence is that the problem now becomes time-inconsistent, as the risk aversion will likely to be
different at a later time leading to a different objective function to optimize. An example is provided in the
next section as an illustration. We will follow closely the methodology described in [1]. As we will see
later, a system of equations of the HJB type can be obtained in this manner, which admits the equilibrium
solution via first order conditions. And when the risk aversion is constant, this system will degenerate to the
classical HJB equation.

2.1 Time-inconsistency and Wealth-dependent Risk Aversion

To keep the dimension small, we start by describing the time-inconsistency problem with the risk aversion
being dependent on the current wealth level, Xt. Since the current wealth level is an indicator on how
much loss (downside risk) one is able to bear, we believe this dependence is natural. We will illustrate the
derivation of the HJB-type system of equations in this case, which can be easily extended to cases where
risk aversion depends on other state variables.

2.1.1 An Illustration

We can use a simple two-period binomial tree to illustrate the time inconsistency that results from the wealth-
dependent risk aversion. Let k ∈ {0, 1, 2} denote the time periods. Suppose there are two assets Sk and
Bk, Bk being the risk free asset and Sk being the risky one with u > 1, d < 1 and p ∈ [0, 1] as the usual
parameters in a binomial tree model. We also assume that both assets have value equal to 1 at time 0 and we
have zero interest rate so Bk = 1 ∀ k.

S0 : 1

u

d

u2

ud

d2

1− p

p

B0 : 1 1 1

Let Xk denote our wealth at time k and suppose X0 = 1 for simplicity. We use an exponential utility
function U(x) = −e−γx here, and we let the risk aversion γ be a function of the current wealth level
(denoted as x here):

γ(x) =


a if x > 1
1 if x = 1
b if x < 1,

for a, b > 0.
Let 0 < π < 1 denote the amount of wealth invested in Sk at time 0. At time k = 0, with wealth

X0 = 1, the expected utility of terminal wealth Xπ
2 := πS2 + (1− π)B2 can be written as:

E[U(Xπ
2 )] = −e−1

{
p2eπ(1−u2) + 2p(1− p)eπ(1−ud) + (1− p)2eπ(1−d2)

}
=: −e−1f1(π),
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where the risk aversion γ = 1. At time k = 1, depending on whether the stock price goes up or down, the
risk aversion will becomes γ = a or b because we have either X1 > 1 or X1 < 1. The expected utility of
Xπ

2 at time 1 is either

E[U(Xπ
2 ) S1 = u] = −e−1

{
peπ(1−u2)a + (1− p)eπ(1−ud)a

}
=: −e−1f2(π),

or

E[U(Xπ
2 ) S1 = d] = −e−1

{
peπ(1−ud)b + (1− p)eπ(1−d2)b

}
=: −e−1f3(π).

Remark 2.1. It is possible to choose p, u, d, π such that

∂

∂π
f1(π) > 0,

∂

∂π
f2(π) < 0 and

∂

∂π
f3(π) < 0.

For instance, if a = 0.5 and b = 2, then by choosing u = 2, d = 0.5, p = 0.5 and π = 0.5 we can obtain
the desired inequalities.

Suppose we have Portfolio #1 that has π in the stock and 1 − π in the bank, and Portfolio #2 that
has π − ε in stock and 1 − π + ε in the bank for an infinitesimal positive amount ε. The signs of the first
derivatives in Remark 2.1 tell us that, at the second period, Portfolio #1 is always favored over Portfolio
#2. However, at time 0, Portfolio #2 is the better one. We recall the definition of time consistent utility
function, such as in [21] and [7]:

Definition 2.2. A dynamic utility function (Ut)
T
t=0 is time-consistent if for all X, Y ∈ L(FT ) and t ∈

0, . . . , T − 1,
Ut+1(X) ≥ Ut+1(Y ) implies Ut(X) ≥ Ut(Y ).

We can see that in our case the preference between Portfolio #1 and #2 is “flipped” in the two periods,
which clearly violates the definition of time consistency.

2.1.2 Formal Problem Setup in Continuous Time

We use the standard two-asset framework where we have a risky stock St and a risk-free bond that we can
invest our wealth in. By assuming zero interest rate or working under the discounted unit, we only need to
define the stock dynamics:

dSt = µSt dt+ σSt dWt, (1)

where Wt denotes a standard Brownian motion, so St is a geometric Brownian motion (henceforth GBM).
For the time being, we assume constant drift µ and volatility σ. The case where the volatility is stochastic
will be discussed in Section 2.3 when we consider the volatility-dependent risk aversion as an extension of
this problem.

Let Xt denote our wealth at time t, which consists of the cash amount πt invested in the risky stock
as well as the remaining part invested in the riskless bond. The wealth process Xt follows the controlled
diffusion:

dXt = πt
dSt
St

= πt[µdt+ σ dWt]. (2)
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The optimization problem is to maximize the expected utility of terminal wealth at time T among all
admissible strategies π, given the wealth level being Xt = x at time t. This problem can be represented
using the value function V (t, x)

V (t, x) := sup
π∈Π

Et,x [U(Xπ
T , γ(Xt))]

= sup
π∈Π

J(t, x,π),
(3)

where Π is the set of all admissible strategies that are adapted to the filtration (Fs) generated by the stock
price process and which satisfy E[

∫ T
t π2

sds < ∞], and γ(Xt) is the risk aversion that we fix for our fu-
ture self at time T based on the current wealth level Xt. Here U(x1, γ(x2)) denotes the von Neumann-
Morgenstern utility function which is a twice differentiable, concave function in x1 ∈ R+.

Remark 2.3. Note that in U(x1, γ(x2)), x1 is the wealth at future for which we want to compute the
utility, with risk aversion computed using current wealth level x2. In order to retain the differentiability and
concavity at terminal time T when x1 and x2 coincide, we also require γ(x2) to be chosen such that

• U(x1, γ(x2)) is twice differentiable in x2;

• (Ux1x1 + Ux2x2 + 2Ux1x2) x2=x1 < 0 for all x1 > 0.

In the classical case, the risk aversion γ is constant so we can suppress its argument by denoting the
utility function asU = Uγ(x). Then the optimal strategy can be computed from the HJB equation associated
with the value function, and the DPP, from which the HJB equation is derived, guarantees that the optimal
strategy π∗ computed at the initial time will remain optimal at a later time. A rigorous proof of the derivation
of HJB equation from DPP can be found in, for example, Pham [25]. In this case, the optimal strategy takes
the form:

π∗t =


λ

σ

1

γ
for exponential utility functions

λ

σ

x

γ
for log and power utility functions,

where Xt = x and λ is the Sharpe ratio defined by λ := µ
σ .

Now, as we have made the risk aversion wealth dependent, intuitively the optimal strategy might be
obtained by replacing the constant γ with γ(x) in the above expressions. Is it really the case? It turns out
that this is not so trivial, since we cannot even formulate the HJB equation (in the classical DPP sense)
once we allow the risk aversion to change with the current wealth level. As our objective function changes
constantly, our future selves will not solve the “remaining” part of the optimization problem that our current
self is facing now.

Using a game-theoretic approach, we can think of it as a game played by a number of ordered players
(our selves at different times), each of whom has his own utility function and has temporary control over the
resource (wealth). For a particular player, when the resource is in his possession (obtained from the previous
player), he can choose the strategy to be applied to the resource at this particular moment. After that, the
player has to pass on the resource to the next player and he will no longer be able to apply strategies to it
or control what other players’ strategies will be. As the game is played by a continuum of players in the
continuous time setting, each player would have to play against all his future selves.

To define the equilibrium in this game, we follow the explanation given in [11], in which it was assumed
that the current self has the ability to commit all future selves to his decision up to a small period ε > 0.
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Thus the player can form a small coalition with players in the near future. Now suppose π ≡ (πs)s∈[t,T ] is
an admissible policy (all strategies over time). Define another policy πε as:

πε =

{
π, s ∈ [t, t+ ε]
πs, s ∈ (t+ ε, T ],

(4)

where π can be any strategy that makes πε admissible. Then the following from [11] gives the definition of
the equilibrium policy.

Definition 2.4. A policy π̄ : (t, x)→ R is an equilibrium one if for any t, x > 0 and any arbitrary π,

lim
ε ↓ 0

J(t, x, π̄)− J(t, x, π̄ε)

ε
≥ 0

where J is our objective function.

This definition means that, if we are using the equilibrium policy π̄, then we will not be better off by
committing the immediate future selves to our action instead of letting them choose the best strategy in
their views. This also means that the equilibrium policy computed at one time should coincide, from the
next period onward, with the equilibrium policy computed at the next period. The equilibrium policy is
therefore time-consistent as the future selves have no incentives to deviate from this path. We refer the
readers to the paragraphs following Definition 1 in Ekeland and Lazrak [12] for a detailed explanation about
the equilibrium strategy in discrete time setting. The definition leads to the following result as appeared in,
e.g. [1]:

Proposition 1. Assuming sufficient regularity, the equilibrium value function and Markovian policy satisfy
the following extended HJB-type system:

sup
πt∈R

(AπtV (t, x)−Aπtf(t, x, x) +Aπtfw(t, x)) = 0

Aπ∗t fw(t, x) = 0

V (T, x) = U(x, γ(x))

f(T, x, w) = U(x, γ(w)),

(5)

where Aπt contains the infinitesimal generator of the wealth process taking the form:

Aπtg(t, x) = gt + µπtgx +
1

2
σ2π2

t gxx

Aπth(t, x, x) = ht + µπthx + µπthw|w=x +
1

2
σ2π2

t hxx +
1

2
σ2π2

t hww|w=x + σ2π2
t hxw|w=x,

and fw(t, x) means fixing the w variable of f(t, x, w) as constant.

Proof. We need to define the following “auxiliary value function”:

f(t, x, w) = Et,x
[
U(Xπ∗

T , γ(w))
]
,

which is made from V (t, x) by making the initial wealth value in γ(·) vary independently from Xt, and
where π∗ denotes the equilibrium strategy. For every fixed w, γ(w) can be treated as a constant, as w and
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x are independent. Thus f(t, x, w) is the value function for a Merton problem with constant risk aversion
parameter γ(w).

By construction of πε from the definition, we have the following equality:

Et,x [J(t+ ε,Xt+ε,πε)] = Et,x [f(t+ ε,Xt+ε, Xt+ε)]

= Et,x [f(t+ ε,Xt+ε, Xt+ε)] + J(t, x,π)− Et,x [U(Xπ
T , γ(x))]

= Et,x [f(t+ ε,Xt+ε, Xt+ε)] + J(t, x,π)− Et,x [E [U(Xπ
T , γ(x)) | Xt+ε, t]]

= Et,x [f(t+ ε,Xt+ε, Xt+ε)] + J(t, x,π)− Et,x [f(t+ ε,Xt+ε, x)] .

Since J(t+ ε,Xt+ε,πε) = V (t+ ε,Xt+ε), we can write the above equation as:

Et,x [V (t+ ε,Xt+ε)] = Et,x [f(t+ ε,Xt+ε, Xt+ε)] + J(t, x,π)− Et,x [f(t+ ε,Xt+ε, x)] .

Taking the supremum and rearranging the equation, we get

sup
π∈Π

(Et,x [V (t+ ε,Xt+ε)]− V (t, x) + Et,x [f(t+ ε,Xt+ε, x)]− Et,x [f(t+ ε,Xt+ε, Xt+ε)]) = 0.

Now we take the limit ε→ 0,

sup
πt

(
AπtV (t, x)−Aπtf(t, x, x) +Aπtfw|w=x(t, x)

)
= 0. (6)

Meanwhile, for every fixed w, f(t,Xt, w) corresponds to a martingale process and thus it must satisfy
the PDE

Aπ
∗
t fw(t, x) = 0, (7)

where π∗ is the equilibrium policy appeared in the definition of f(t, x, w). In addition, there are two terminal
conditions for V and f : {

V (T, x) = U(x, γ(x))

f(T, x, w) = U(x, γ(w)).
(8)

We get the extended HJB-type system by combining equations (6), (7) and (8).

The verification theorem provided by [1] holds here, we shall quote:

Theorem 1 (Bjork and Murgoci). Assume that (V (t, x), f(t, x, w)) is a solution of the system defined in
(5), and that the strategy path π∗ realizes the supremum in the equation. Then π∗ is an equilibrium policy,
and V (t, x) is the corresponding value function.

Proof. See [1].

When writing out the first two equations in (5) explicitly, we get the following two PDEs:
Vt + sup

π

{
µπ(Vx − fw) +

1

2
σ2π2(Vxx − fww − 2fxw)

}
= 0

ft + µπ∗fx +
1

2
σ2π∗2fxx = 0.

(9)

Note that all w partial derivatives are evaluated at the point w = x.
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We can find the equilibrium strategy by the first order condition:

π∗ = −λ
σ

Vx − fw
Vxx − fww − 2fxw

w=x, (10)

where λ denotes the constant Sharpe ratio. Inserting (10) back into (9) and we obtain the following two
PDEs to solve for V (t, x) and f(t, x, w)

Vt −
1

2
λ2 V

2
x − 2Vxfy + f2

w

Vxx − fww − 2fxw
= 0

ft + λ2

[
fx(fw − Vx)

Vxx − fww − 2fxw
+

1

2

(V 2
x − 2Vxfw + f2

w)fxx
(Vxx − fww − 2fxw)2

]
= 0.

(11)

2.1.3 A Remark: Why Two Equations Instead of One?

As we can see from above, we now face an HJB-type system of two equations instead of solving one single
HJB equation as in the time-consistent case. It turns out this is essential for characterizing the equilibrium
strategy and value function. In the definition of the equilibrium strategy, coalition is allowed for an infinites-
imal period, during which we are actually solving a Merton problem with constant risk aversion. That is
what the function f(t, x, w) represents when setting w = x and it is the time-consistent part of the problem.
After this infinitesimal period, however, the evolution of the value function cannot be characterized by this
function f(t, x, w) any more, as the problem now is time-inconsistent. This is the reason we need V (t, x)
as our value function.

In Harris and Laibson [17], the dynamic consumption choice problem with quasi-hyperbolic discount-
ing was also solved by the equilibrium strategy and value function that were defined similarly using two
functions. There is a continuation-value function characterizing the dynamics of the true time-inconsistent
value function and there is another current-value function, which is used locally at the current point (t, x)
to derive the equilibrium strategy. Our HJB-type system has a strong analogy to the two functions in their
work.

Another way of describing this is that the true value function V (t, x) cannot be solved alone. For each
point (t, x), the value of V (t, x) is determined by another non-local function f(t, x, w) by setting w = x
in its third argument, i.e. V (t, x) = f(t, x, x). The first equation in (5) can be considered as a PDE of the
non-local type. For the non-exponential discounting problem in [11], a non-local integro-PDE was obtained,
where the dynamics of the value function depends on an integral of the value function at all future time. In
general, non-local PDEs are very difficult to solve.

2.1.4 Asymptotic Expansions

If the time-inconsistent problem is close to a time-consistent one, we can approximate the first problem very
effectively using the latter by asymptotic methods. Here we look at the special case where the risk aversion
only varies slowly with the wealth level, i.e. it is close to the case of constant risk aversion. Mathematically,
this corresponds to

γ(x) = γ0 + εγ1(x) + · · ·

for positive ε� 1. We look for an expansion of the form

V (t, x) = V0(t, x) + εV1(t, x) + · · · ,
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and
f(t, x, w) = f0(t, x) + εf1(t, x, w) + · · · ,

for the equations in (11).
We first introduce a few notations.

Definition 2.5. We define the risk tolerance to be

R := − V0,x

V0,xx
;

and we use Dk to denote

Dk := Rk
∂k

∂xk
;

and finally define the linear operator Lt,x as

Lt,x := ∂t + λ2D1 +
1

2
λ2D2.

Collecting zeroth order terms in (11) we get{
Lt,xV0 = 0

Lt,xf0 = 0,
(12)

with terminal conditions V0(T, x) = U(x, γ0) and f0(T, x) = U(x, γ0). Since f0 and V0 have the same
terminal condition, we find V0(t, x) = f0(t, x) which is the classical Merton value function with constant
risk aversion parameter γ0.

At the first order, we have:Lt,xV1 = λ2Rf1,w +
λ2

2
R2 (f1,ww + 2f1,xw)

Lt,xf1 = 0,

(13)

with terminal conditions V1(T, x) = ∂U
∂γ (x, γ0)γ1(x) and f1(T, x, w) = ∂U

∂γ (x, γ0)γ1(w). The following
proposition will be useful for solving the order ε PDEs.

Lemma 1. We have
∂

∂γ
Lt,xV0 = Lt,x

(
∂V0

∂γ

)
. (14)

Proof. For any function v,

∂

∂γ
Lt,xv =

∂

∂γ

(
vt + λ2Rvx +

1

2
λ2R2vxx

)
= Lt,x

(
∂v

∂γ

)
+ λ2∂R

∂γ
vx + λ2

(
R
∂R

∂γ

)
vxx.

The last two terms cancel out when v = V0 since R = − V0,x
V0,xx

.
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Lemma 1 will lead us to the solutions of f1 and V1.

Proposition 2. The solution to the second equation in (13) is

f1(t, x, w) = γ1(w)
∂f0

∂γ
.

Therefore the order ε value function is

V1(t, x) = γ1(x)
∂V0

∂γ
. (15)

Proof. By direct substitution and verification.

2.1.5 Effect on the Trading Strategy

Recall the equilibrium strategy from (10)

π∗ = −λ
σ

Vx − fw
Vxx − fww − 2fxw

.

We plug in V = V0 + εV1 and f = f0 + εf1,

π∗ = −λ
σ

V0,x + εhxγ1(x)

V0,xx + εhxxγ1(x)

=
λ

σ
R(1 + ε

hxγ1(x)

V0,x
+ o(ε2))(1− εhxxγ1(x)

V0,xx
+ o(ε2))

=
λ

σ
R

[
1 + εγ1(x)

(
hx
V0,x

− hxx
V0,xx

)]
+ o(ε2), (16)

where we denote h := ∂V0
∂γ . Thus the equilibrium strategy will deviate from the optimal strategy in the case

of constant risk aversion γ0 by a fraction given by εγ1(x)
(
hx
V0,x
− hxx

V0,xx

)
.

2.1.6 Power Utility Case

Recall that the power utility function with constant risk aversion parameter γ is:

U(x) =
x1−γ

1− γ
.

For the Merton problem with power utility and constant risk aversion, the value function V (t, x) satisfies

Vt −
1

2
λ2 V

2
x

Vxx
= 0,

with terminal condition V (T, x) = x1−γ

1−γ . The solution for the PDE above is given by

V (t, x) =
x1−γ

1− γ
e
λ2

2

(
1−γ
γ

)
(T−t)

.
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This is our zeroth order value function V0(t, x) once we replace γ with γ0. We can find the first order
correction by taking the partial derivative w.r.t. γ and multiplying by γ1(x):

V1(t, x) = γ1(x)

[
1

1− γ0
− log(x)− λ2(T − t)

2γ2
0

]
V0(t, x). (17)

The equilibrium trading strategy up to first order is given by:

π∗ =
λ

σγ0

[
1 + εγ1(x)

(
hx
V0,x

− hxx
V0,xx

)]
=

λ

σγ0

[
1 + ε

γ1(x)

γ0

]
.

We have provided some plots for the power utility case. Figure 1a compares a power utility function
with constant risk aversion γ = 2 to the one with risk aversion slowly decreasing with wealth. Here we have
chosen γ1(x) = − tan−1(x− 10) and ε = 0.01 which retain the twice differentiability and concavity of the
utility function. Figure 1b compares the Merton optimal strategy with the equilibrium strategy up to the first
order correction.
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Figure 1: Plots of utility functions and equilibrium trading strategies (up to 1st order correction) against wealth level
in the case of power utility function. We chose µ = 0.15, r = 0, σ = 0.25, γ0 = 2, γ1(x) = − tan−1(x − 10)
and ε = 0.01. Risk aversion is modeled as slowly decreasing with wealth level here and the corresponding utility
function is still concave and slightly above the utility function with constant risk aversion. Moreover, we see that the
equilibrium strategy is slightly above the Merton strategy due to a lower risk aversion.

2.2 Utility-indifference Pricing with Wealth-dependent Risk Aversion

One of the immediate applications of wealth-dependent risk aversion is indifference pricing, where the
(buyer’s) price of the option is set such that the buyer has the same expected utility no matter he chooses to
invest in a portfolio without the option or to invest in another portfolio with the option but paying a price at
the beginning. In scenarios where the option is likely to cost a significant portion of the investor’s wealth,
for example constructing a power plant or start an R&D project as often considered in real option valuation
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problems, it is possible for the investor to become more risk averse after he purchases the option. A wealth-
dependent risk aversion can be used to capture this change. Here we look at the indifference pricing of an
option written on a non-traded asset. The controlled wealth process follows

dXπ,x
t = πt dS

(1)
t + r(Xπ,x

t − πtS(1)
t )dt,

where the price S(1)
t of the traded asset follows the geometric Brownian motion with drift µ

dS1
t = µS

(1)
t dt+ σS

(1)
t dW

(1)
t .

The option written on the non-traded asset S(2)
t has payoff C(S

(2)
T ) at terminal time T . And S(2)

t follows
the SDE

dS
(2)
t = p dt+ q dW

(2)
t ,

where W (1)
t and W (2)

t have correlation ρ. Now assuming r = 0, the value function for the Merton problem
without the option is

V (x, 0) =− e−γ0x−λ2T/2 + εγ1(x)xe−γ0x−λ
2T/2 + o(ε2)

=− e−γ0x−λ2T/2 (1− εγ1(x)x) + o(ε2). (18)

Note that we are using exponential utility here to simplify the calculations. Now the value function with a
long position in k units of the option is given by

V (x− pk, k) =− e−γ0(x−pk)−λ2T/2 (1− εγ1(x)x)
(
EQ0 [e−kγ0(1−ρ2)C(S

(2)
T )(1− kεγ1(x)(1− ρ2)C(S

(2)
T ))]

)1/(1−ρ2)

=− e−γ0(x−pk)−λ2T/2 (1− εγ1(x)x)
(
EQ0 [e−kγ0(1−ρ2)C(S

(2)
T )]
)1/(1−ρ2)

+ εkγ1(x)e−γ0(x−pk)−λ2T/2
(
EQ0 [e−kγ0(1−ρ2)C(S

(2)
T )]
)ρ2/(1−ρ2)

EQ0 [C(S
(2)
T )e−kγ0(1−ρ2)C(S

(2)
T )],

(19)

where Q0 is the probability measure under which S(2)
t has a new drift p− ρλq but the same diffusion q.

For the solution of pk, we seek the following expansion:

pk = p
(0)
k + εp

(ε)
k + o(ε2).

Consequently,

V (x− p(0)
k − εp

(ε)
k , k) =

V 0(x, 0)eγ0p
(0)
k Θ

1
1−ρ2
T

1 + ε

1− γ1(x− p(0)
k )x−

kγ1(x− p(0)
k )EQ0

[
C(S

(2)
T )ΛT

]
ΘT

+ o(ε2)

(20)

where we have used the following notation

V 0(x, 0) := −e−γ0x−λ2T/2,

ΛT := e−kγ0(1−ρ2)C(S
(2)
T ),

ΘT := EQ0 [ΛT ],

13



and that γ1(x− p(0)
k − εp

(ε)
k ) ≈ γ1(x− p(0)

k ).
Now we just need to equate (18) and (20). At the zeroth order,

−e−γ0x−λ2T/2 = −e−γ0(x−p(0)k )−λ2T/2Θ
1/(1−ρ2)
T ,

from which we can find the zeroth order indifference price:

p
(0)
k = − 1

(1− ρ2)γ0
log ΘT .

At order ε, after substituting in p(0)
k , we have

−γ1(x)x = p
(ε)
k − γ1(x− p(0)

k )x− kγ1(x− p(0)
k )Θ−1

T EQ0

[
C(S

(2)
T )ΛT

]
,

from which we can get the order ε correction to the indifference price

p
(ε)
k =(γ1(x− p(0)

k )− γ1(x))x+
kγ1(x− p(0)

k )EQ0 [C(S
(2)
T )ΛT ]

ΘT
.

As we have assumed that the investor will become more risk averse when holding the option, i.e. γ1(x −
p

(0)
k ) ≥ γ1(x), the correction p(ε)

k above tells us that the true indifference price will be higher than the
constant risk aversion case for k > 0 and C(·) ≥ 0.

2.3 Stochastic Volatility Models with Volatility-dependent Risk Aversion

Since first introduced by Hull and White [19] for pricing options, stochastic volatility models have gained
wide popularity as they could reproduce features about the implied volatility surface that are missing in the
standard Black-Scholes models. Incorporating the stochastic volatility framework is also one of the many
extensions being studied recently for the classical Merton portfolio optimization problems.

One way to look at the problem is to use the timescale stochastic volatility asymptotics, which have
been applied to many option pricing problems, see Fouque et al. [14] and the references therein. In this
framework, the volatility is assumed to have a fast mean-reverting factor following a speeded-up diffusion
process and/or a slow factor following a slowed-down diffusion. The empirical evidence to support the
multiscale stochastic volatility model can be found in Chernov [8]. When Fouque et al. [15] treated the
Merton problem in this way, they obtained in explicit forms both the fast and slow scale corrections to the
value function, which resemble the stochastic volatility corrections for pricing European-style options.

A natural question to ask is whether volatility, an indicator of investment risk, would affect the risk
aversion parameter, a measure of investor’s attitude towards risk. This question is nontrivial when the as-
sumption of constant volatility has been dropped. Intuitively the answer should be yes, as investors would
usually focus on preserving capitals when the risky assets have high volatility, thus becoming more risk
averse. Empirical results also support this argument, which can be found in Scheicher [27] and Tarashev
et al. [30]. Scheicher [27] discovered a positive relationship between the implied risk aversion in German
equity market and the implied volatility of the US market, and Tarashev et al. [30] concluded from re-
sults obtained in different equity and fixed income markets that a higher risk aversion is linked to higher
volatilities and this is more noticeable in the equity markets.

In the next section, we will look at the case where risk aversion is a function of the slow scale volatility
factor so it slowly varies. Our rationale is that the effect from the fast scale factor would likely be averaged
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out over the investment horizon if it is long enough; and it is the general trend of the volatility that would
reflect the change in investors’ risk aversion. We will derive the extended HJB system and carry out the slow
scale asymptotic expansion in this case to approximate the value function and equilibrium strategy. Using
power utility functions, we will show that it is possible to obtain results similar to Fouque et al. [15] but
with an additional correction term to account for change in risk aversion.

2.3.1 Slow Scale Stochastic Volatility Model

Suppose that the volatility slowly fluctuates as a general diffusion process and the stock price follows a
geometric Brownian Motion as usual:{

dSt = µSt dt+ σ(Zt)St dWt

dZt = δc(Zt) dt+
√
δg(Zt) dW

′
t ,

(21)

where Wt and W ′t are Brownian motions with correlation ρ′ ∈ (−1, 1). We have the wealth process:

dXt = πtµdt+ πtσ(Zt)dWt, (22)

and the associated infinitesimal generator:

Aπt(t, x, z) = ∂t + πtµ(z)∂x +
1

2
π2
t σ(z)2∂2

x + δc(z)∂z +
1

2
δg(z)2∂2

z +
√
δπtρg(z)σ(z)∂2

xz.

The portfolio optimization problem we consider here is:

V (t, x, z) = sup
π

Et,x,z [U(Xπ
T , γ(Zt))] , (23)

where we make the risk aversion dependent on current level of the slow factor Zt. The extended HJB system
for the value function can be derived in the same way as the wealth-dependent risk aversion case (with a two
dimensional state process now), which is given by

sup
πt
{Vt + πtµ(z)Vx +

1

2
π2
t σ(z)2Vxx +

√
δρπtg(z)σ(z)(Vxz − fxw)

+δc(z)(Vz − fw) +
1

2
δg(z)2(Vzz − fww − 2fwz)} = 0

ft + π∗t µ(z)fx +
1

2
π∗2t σ(z)2fxx + δc(z)fz +

1

2
δg(z)2fzz +

√
δρπ∗t g(z)σ(z)fxz = 0,

(24)

with terminal conditions: {
V (T, x, z) = U(x, γ(z))

f(T, x, z, w) = U(x, γ(w)).
(25)

By the first order conditions, the equilibrium strategy takes the form:

π∗t = −µ(z)Vx +
√
δρg(z)σ(z)[Vxz − fxw]

σ(z)2Vxx

∣∣∣∣
w=z

. (26)
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Plugging this equilibrium strategy back to the extended HJB system, we get:

Vt −
{µ(z)Vx +

√
δρg(z)σ(z)[Vxz − fxw]}2

2σ(z)2Vxx
+ δ{c(z)(Vz − fw) +

g(z)2

2
[Vzz − fww − 2fzw]} = 0

ft −
µ(z)Vx +

√
δρg(z)σ(z)[Vxz − fxw]

σ(z)2Vxx
[µ(z)fx +

√
δρg(z)σ(z)fxz]

+
{µ(z)Vx +

√
δρg(z)σ(z)[Vxz − fxw]}2

2σ(z)2V 2
xx

fxx + δ[c(z)fz +
g(z)2

2
fzz] = 0.

(27)
Now we assume that the risk aversion γ(Zt) takes the form:

γ(Zt) = γ0 +
√
δγ1(Zt) + o(δ), (28)

thus slowly varies with the slow scale volatility factor. And we expand V and f as:

V (t, x, z) = V0(t, x, z) +
√
δV1(t, x, z) + δV2(t, x, z) + o(δ

3
2 )

f(t, x, z, w) = f0(t, x, z, w) +
√
δf1(t, x, z, w) + δf2(t, x, z, w) + o(δ

3
2 ).

(29)

Now introduce the risk tolerance function:

R := R(t, x, z) = − V0,x(t, x, z)

V0,xx(t, x, z)
,

and the differential operator:

Dk := Rk
∂k

∂xk
,

as well as the linear operator:

Lt,x,z = ∂t + λ(z)2D1 +
1

2
λ(z)2D2,

where λ(z) := µ
σ(z) denotes the Sharpe ratio.

We can find that V0(t, x, z) = f0(t, x, z, z) is the Merton value function with Sharpe ratio fixed at λ(z)
and risk aversion parameter fixed at γ0. As a result, order

√
δ equations become:{

Lt,x,zV1 + ρg(z)λ(z)D1(V0,z −���f0,w) = 0

Lt,x,zf1 + ρg(z)λ(z)D1f0,z = 0,
(30)

with terminal condition given by: 
V1(T, x, z) = γ1(z)

∂U

∂γ
(x, γ0)

f1(T, x, z, w) = γ1(w)
∂U

∂γ
(x, γ0).

Proposition 3. The solution to (30) is given by:

V1(t, x, z) = γ1(z)V0,γ +
1

2
(T − t)ρλ(z)g(z)D1V0,z. (31)
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Proof. Using the result from Lemma 1, we can see that γ1(w)f0,γ is a solution to the PDE problem below:
Lt,x,zf1 = 0,

f1(T, x, z, w) = γ1(w)
∂U

∂γ
(x, γ0),

which is the original order
√
δ PDE problem without the source term. Now if we can find the solution to the

full PDE problme with zero terminal condition, we can find the full solution satisfying the original terminal
condition by combining the two partial solutions. This can be done by making use of the “Vega-Gamma”
relation in Lemma 3.1 of Fouque et al. [15], which states

f0,z = −(T − t)λ(z)λ′(z)D2f0.

The second problem can be rewritten as follows{
Lt,x,zf1 = (T − t)ρg(z)λ(z)2λ′(z)D1D2f0

f1(T, x, z, w) = 0.

Using the commutativity property of Lt,x,z withD1 and the equalityD1f0 = −D2f0 from [15], we find that

f1(t, x, z, w) = −1

2
(T − t)2ρg(z)λ(z)2λ′(z)D1D2f0

=
1

2
(T − t)ρλ(z)g(z)D1f0,z

is the solution. We get the solution for V (t, x, z) by combining the two partial solutions and replacing the
w variable with z.

Once we get the solution of V1, the equilibrium trading strategy up to order o(
√
δ) can be computed:

π∗ =
λ(z)

σ(z)
R−
√
δ

{
ρg(z)

σ(z)

V0,xz

V0,xx
+
λ(z)

σ(z)

[
V1,x

V0,xx
+R

V1,xx

V0,xx

]}
. (32)

Power Utility Case For a power utility function:

U(x, γ(z)) =
1

1− γ(z)
x1−γ(z), (33)

we have the zeroth order value function given by:

V0(t, x, z) =
x1−γ0

1− γ0
e
λ(z)2

2
1−γ0
γ0

(T−t)
. (34)

Thus the explicit form of the first order value function is:

V1(t, x, z) =

{
(T − t)2ρg(z)λ(z)2λ′(z)(1− γ0)2

2γ2
0

+ γ1(z)

[
1

1− γ0
− log(x)− λ(z)2(T − t)

2γ2
0

]}
V0(t, x, z).

(35)
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The strategy is given by:

π∗ =
λ(z)x

σ(z)γ0
+
√
δ

[
ρg(z)λ′(z)λ(z)(1− γ0)(T − t)

σ(z)γ2
0︸ ︷︷ ︸

slow factor adjustment in [15]

− λ(z)

σ(z)

γ1(z)

γ0
(1 +

1

γ0
)

]
︸ ︷︷ ︸

risk aversion adjustment

x. (36)

We now compare the Merton optimal strategy, the optimal strategy with first order correction for the slow
volatility factor appeared in [15] and our equilibrium strategy with first order correction. Note that the
second strategy is equivalent to (36) with only the first fractional term inside the square bracket. We notice
that for different levels of the slow factor, the proportions that the two adjustment factors would contribute to
the first order correction are different. Figure 2 contains the plots of the three strategies for different ranges
of the slow factor. Figures 2a and 2c show that for small z, the main contributor of the first order correction
is the first fractional term inside the square bracket of (71), whereas for larger values of z, as Figures 2b
and 2d suggest, an increasing risk aversion plays the major role instead. The direction to which the first
adjustment factor affects the strategy depends on the sign of the correlation factor ρ.

2.4 Comparison with Mixture of Power Utility Functions

A mixture of power utility functions takes the following form:

Umix(x) = c1
x1−γ1

1− γ1
+ c2

x1−γ2

1− γ2
,

as introduced in Fouque et al. [15], where γ1 6= γ2 and c1, c2 are positive constants. Under this utility
function, the relative risk aversion is not constant any more but decreases in x. Now let us look at a power
utility function with wealth-dependent risk aversion:

U(x) =
x1−γ(x)

1− γ(x)
. (37)

We can choose γ(x) to make Umix(x) = U(x), but in the case of power utility the solution will be a
complex-valued function due to the presence of γ(x) in the exponent of x. (In contrast, for a mixture of
exponential utility functions, γ(x) will be real-valued).

For the case of small wealth-dependence, we have the following expansion:

U(x) =
x1−(γ0+εγ1+o(ε2))

1− (γ0 + εγ1 + o(ε2))

=
x1−γ0 − εγ1log(x)x1−γ0 + o(ε2)

1− γ0
(1 + ε

γ1

1− γ0
+ o(ε2))

=
x1−γ0

1− γ0
+ ε

{
− x

1−γ0

1− γ0
γ1log(x) +

x1−γ0

1− γ0

γ1

1− γ0

}
+ +o(ε2)

where γ1 ≡ γ1(x) can be chosen in such a way that the expansion is also a mixture of power utility functions.
For example, we can set γ1(x) to be:

γ1(x) =
c1x

k1 + c2x
k2

−log(x) + 1
1−γ0
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(b) ρ = −0.2
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(c) ρ = 0.2
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(d) ρ = 0.2

Figure 2: Plots of the equilibrium strategies, in terms of the proportion of total wealth, against the slow stochastic
volatility parameter z, in the case of power utility function. We chose the stochastic volatility model to be slow scale
CIR(Heston), with µ = 0.15, r = 0, σ(z) =

√
z, g(z) =

√
z
2 , ρ = ±0.2, T = 5, γ0 = 2, γ1 = tan−1(z) and the time

scale is δ = 0.1.

then for x belonging to the region where γ1(x) is bounded, the expansion above becomes:

x1−γ0

1− γ0
+ ε

x1−γ0

1− γ0

(
c1x

k1 + c2x
k2
)

+ o(ε2)

=
x1−γ0

1− γ0
+ εc1

x1−γ0+k1

1− γ0
+ εc2

x1−γ0+k2

1− γ0
+ o(ε2)

=
x1−γ0

1− γ0
+ εc1

1− γ0 + k1

1− γ0

x1−γ0+k1

1− γ0 + k1
+ εc2

1− γ0 + k2

1− γ0

x1−γ0+k2

1− γ0 + k2
+ o(ε2)

i.e. a mixture of three power utility functions up to order ε.
Despite the similarity between the two types of utility functions, i.e. the terminal conditions for the two

problems, the portfolio optimization under a mixture of power utility functions remains time-consistent as
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the risk aversion always depends on the terminal wealth, which is a random variable revealed at time T . In
our problem here, we have made γ(·) dependent on the instantaneous level of wealth which becomes the
source of time inconsistency.

3 Investment/Consumption Problems with Non-exponential Discounting

In the previous section we have looked at the utility maximization for terminal wealth with time-varying risk
aversions by using the method of asymptotic expansions. Here we want to study the investment/consumption
problem under non-exponential discounting. We adopt the same two-asset diffusion model (1) for this
problem thus we have our wealth process being

dXt = [πt(µ− r)Xt + (rXt − ct)] dt+ πtσXt dWt, (38)

where the additional term ct denotes our instantaneous consumption rate and πt is the proportion of wealth
invested in the risky asset. We define the objective function as:

J(t, x, π, c) = Et,x
[∫ T

t
ϕ(s− t)U(cs)ds+ ϕ(T − t)U(Xπ,c

T )

]
, (39)

where U(·) is some appropriate utility function to be chosen and ϕ(·) is the discount function for the utility
derived from consumption. We do not require ϕ(·) to be exponential, which is the source of time inconsis-
tency for this problem. As usual, the value function is defined as:

V (t, x) = sup
π, c

J(t, x, π, c). (40)

Similar to the utility maximization for terminal wealth case, we have the following result as a consequence
of Definition 2.4:

Proposition 4. The value function V (t, x) satisfies the following HJB-type equation:

sup
π,c∈R×R+

{∂V
∂t

+ [πx(µ− r) + (rx− c)]∂V
∂x

+
π2

2
σ2x2∂

2V

∂x2
+ U(c)} =

−Et,x[

∫ T

t
ϕ′(s− t)U(c∗s)ds+ ϕ′(T − t)U(Xπ,c∗

T )] (41)

where we have terminal and boundary conditions given by

V (T, x) = 0

V (t, 0) = 0,

and c∗s denotes the equilibrium consumption in the future time s ≥ t.

Proof. For this proof we ignore the ϕ(T − t)U(Xπ,c∗

T ) term for simplicity. Using the definition of equilib-
rium strategies in (4), let us define:

πεs =

{
π for s ∈ [t, t+ ε]

π∗ for s ∈ (t+ ε, T ]
and cεs =

{
c for s ∈ [t, t+ ε]

c∗ for s ∈ (t+ ε, T ].
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i.e. our policy u := (πεs, c
ε
s)s∈[t, T ] is defined such that it is a uniform and arbitrary perturbation from u∗ for

the period [t, t+ ε] and the two strategy will coincide after t+ ε. Therefore we have

J(t+ ε,Xt+ε,u) = V (t+ ε,Xt+ε),

which we take the expectation conditional on (t, x) and plug into the following inequality:

V (t, x) ≥ J(t, x,u)

= J(t, x,u)− Et,x[J(t+ ε,Xt+ε,u)] + Et,x [V (t+ ε,Xt+ε)]

= Et,x
[∫ T

t
ϕ(s− t)U(cεs)ds−

∫ T

t+ε
ϕ(s− t− ε)U(c∗s)ds

]
+ Et,x [V (t+ ε,Xt+ε)]

≈ εEt,x
[
U(cεt+ε)−

∫ T

t+ε
ϕ′(s− t− ε)U(cεs)ds

]
+ Et,x[V (t+ ε,Xt+ε)],

which in turn is a result of the following simple Taylor expansion for point t around (t+ ε):∫ T

t
ϕ(s−t)U(cεs)ds ≈

∫ T

t+ε
ϕ(s−t−ε)U(cεs)ds+(−ε)

(
−U(cεt+ε)−

∫ T

t+ε
ϕ′(s− t− ε)U(cεs)ds)

)
+o(ε2).

Dividing the inequality by ε and taking the limit ε→ 0, we obtain:

Gπ,cV (t, x) + U(ct) + Et,x
[∫ T

t
ϕ′(s− t)U(c∗s)ds

]
≤ 0,

where Gπ,c denotes the infinitesimal generator for V (t, x). If we take the supremum over π and c, the
inequality above becomes equality and we recover the HJB-type equation for V (t, x) less the E[ϕ′(T −
t)U(Xπ,c∗

T )] term, which can be obtained using the same argument as above. The boundary conditions are
straightforward.

Remark 3.1. A first look may suggest that the result (41) above contradicts the remark made in Section 2.1.3
regarding the two-equation characteristics for time inconsistency, since this time we only have one HJB-type
equation. In fact, the two-equation feature is masked in the term Et,x[

∫ T
t ϕ′(s − t)U(c∗s)ds], which char-

acterizes the difference on how one’s current self and his immediate future self would value consumption.
This is equivalent to saying that the derivative characterizes the difference between the current value func-
tion and the continuation value function. If we take the discounting function to be of exponential type, then
the term Et,x[

∫ T
t ϕ′(s− t)U(c∗s)ds] will simply reduce to−rV (t, x), where r is the exponential discounting

rate; and the HJB-type equation will reduce to the classical HJB equation for an investment/consumption
problem. However, for all non-exponential-type discounting functions, Et,x[

∫ T
t ϕ′(s − t)U(c∗s)ds] makes

the equation non-local and thus hard to solve. See Ekeland et al. [13] for a numerical treatment of a similar
problem using backward integration.

3.1 Approximating a Hyperbolic Discount Function

On one hand, the exponential discounting produces explicit solutions but is less realistic. On the other hand,
a hyperbolic discount function is in accordance with how people behave but becomes less tractable. There
is a clear trade-off between tractability and realisticity. Consider the following discount function:

ϕα(τ) = e(α−1)δ0τ−α log(1+δ1τ) (42)
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for α ∈ [0, 1]. When α = 0, this is an exponential discount function with discount rate δ0. When α = 1,
this is a hyperbolic discount function with rate δ1. For α ∈ (0, 1), the discount function will have partial
amount of the features that a hyperbolic discount function has.

Now we consider the case where α = ε > 0 is very small, then

ϕε(τ) ≈ e−δ0τ
(
1 + ε∆(τ) + o(ε2)

)
, (43)

where ∆(τ) = δ0τ − log(1 + δ1τ) (we can choose other forms of ∆(τ) as well). This discount function
will allow us to solve the HJB-type equation (41) using asymptotic expansions in the following subsection.
Figure 3 illustrates that this discount function is close to the exponential discounting case for small ε while
it bends towards the hyperbolic discount function. Thus it mimics the hyperbolic discounting feature by a
small amount controlled by ε.
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Figure 3: A comparison of discount functions exp(−δ0τ), 1/(1 + δ1τ) and the one defined by (43) with δ0 = δ1 =
0.15 for various values of ε.

3.2 Solving the HJB-type Equation Using Asymptotic Expansions

Let us go back to the HJB type equation (41). Using the first order conditions, the maximizations over π
and c can be done separately:

π∗ = −µ− r
xσ2

Vx
Vxx

and c∗ = (U ′)−1(Vx), (44)

where Vx denotes the first derivative w.r.t x and so on. We can see that c∗ is the Legendre transform of the
utility function at Vx. From now on we will adopt a power utility function with risk aversion γ:

U(c) =
c1−γ

1− γ
,
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thus we have c∗ = (Vx)−1/γ . We plug π∗ and c∗ into (41) to obtain the following nonlinear non-local PDE:

Vt −
λ2

2

V 2
x

Vxx
+

γ

1− γ
(Vx)

γ−1
γ + rxVx = −Et,x

[∫ T

t
ϕ′(s− t)U(c∗s)ds+ ϕ′(T − t)U(Xπ,c∗

T )

]
, (45)

with boundary conditions V (T, x) = 0 and V (t, 0) = 0.
As a consequence of the expansion (43) for the discount function, we seek a similar expansion for the

value function:
V (t, x) = V0(t, x) + εV1(t, x) + o(ε2), (46)

which we plug into (45). After grouping terms of different orders, we have the following PDEs for the first
two orders:

V0,t −
λ2

2

V 2
0,x

V0,xx
+

γ

1− γ
(V0,x)

γ−1
γ + rxV0,x − δ0V0 = 0,

V1,t −
(
λ2 V0,x

V0,xx
+ (V0,x)

− 1
γ − rx

)
V1,x +

λ2

2

V 2
0,x

V 2
0,xx

V1,xx − δ0V1 = (47)

−Et,x
[∫ T

t
∆′(s− t) e−δ0(s−t) [c∗0,s(X

(0)
s )]1−γ

1− γ
ds+ ∆′(T − t)

(X
(0)
T )1−γ

1− γ

]
,

where X(0)
s denotes the wealth process under the zeroth order equilibrium investment and consumption

strategies π∗0 and c∗0. The detail of the decomposition of (45) into (47) can be found in the Appendix.

Note The first equation in (47) can be solved in a fairly standard way with the appropriate boundary con-
ditions. Once this is solved, we obtain the zeroth order value function as well as the zeroth order strategies
that will give explicit forms for the parameters of the second equation. As we will see later, the solution to
the second PDE can be found explicitly. We have therefore managed to bypass the “nonlocal” issue in the
HJB-type PDE by using asymptotic expansions. This allows us to avoid the usual numerical procedures as
seen for example, in [13].

3.2.1 Zeroth Order Solution

The solution to the zeroth order equation with zero terminal & boundary conditions is very well-known.
Using separation of variables method, we seek solution V0(t, x) of the following form:

V0(t, x) =
x1−γ

1− γ
[f(t)]γ . (48)

The original PDE problem reduces to the following ODE problem

f ′(t) +
1− γ
γ

(
λ2

2γ
+ r

)
f(t) + e

δ0
γ
t

= 0, (49)

with f(T ) = 1. Thus we have

f(t) =
−eA2t +A3e

A2T+A1(T−t)

A1 +A2
(50)
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where A1 = 1−γ
γ

(
λ2

2γ + r
)

, A2 = δ0
γ and A3 = A1+A2+eA2T

eA2T
. We can also compute the zeroth order

equilibrium strategies:

π∗0 =
λ

σγ
and c∗0 =

x

f(t)
. (51)

3.2.2 First Order Solution

Using the preceding result, we can simplify the first order PDE from (47) into:

V1,t +

(
λ2

γ
+ r − 1

)
xV1,x +

λ2

2γ2
x2V1,xx − δ0V1 = (52)

Et,x

[∫ T

t
∆′(s− t)e−δ0(s−t) [c∗0,s(X

(0)
s )]1−γ

1− γ
ds+ ∆′(T − t)

(X
(0)
T )1−γ

1− γ

]
.

In order to deal with the expectation term on the right side, we need the dynamics of the zeroth order wealth
process X(0)

t under zeroth order equilibrium strategies:

dX
(0)
t =

(
π∗0(µ− r) + r − f(t)−1

)
X

(0)
t dt+ π∗0σX

(0)
t dWt, (53)

which we notice is a lognormal process and we can write out the expectation term explicitly.
It follows that

E0,x

[
(X

(0)
t )1−γ

1− γ

]
=
x1−γ

1− γ
e(1−γ)[π∗0(µ−r)+r−f(t)−1− γ

2
π∗20 σ2]t. (54)

Therefore, (52) becomes

V1,t +

(
λ2

γ
+ r − 1

)
xV1,x +

λ2

2γ2
x2V1,xx = δ0V1 +

x1−γ

1− γ
F (t), (55)

where F (t) denotes the integral:

F (t) :=

∫ T

t
∆′(s− t)e−δ0(s−t)e(1−γ)[π∗0(µ−r)+r−f(s)−1− γ

2
π∗20 σ2]sds.

The ansatz V1(t, x) = x1−γ

1−γ g(t) reduces (55) to a first order ODE problem:

g′(t) +

[(
λ2

2γ
+ r − 1

)
(1− γ)− δ0

]
g(t) = F (t), (56)

with terminal condition g(T ) = 0, which has a solution given by:

g(t) =

∫ T

t
F (s)eB1(s−t)ds, (57)

where B1 :=
(
λ2

2γ + r − 1
)

(1− γ)− δ0.
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3.2.3 First Order Corrections for Equilibrium Strategies

Proposition 5. We have the following respective first order corrections (to multiply by ε) to the equilibrium
strategies:

π∗1 = 0 and c∗1 = −1

γ

g(t)

f(t)
c∗0. (58)

Proof. We have
V0(t, x) = U(x)f(t) and V1(t, x) = U(x)g(t)

where U(x) is the power utility function with risk aversion γ. For the equilibrium proportion of wealth
invested in the risky asset, we have

π∗ ≈ −µ− r
xσ2

V0,x + εV1,x

V0,xx + εV1,xx
= −µ− r

xσ2

U ′(x)

U ′′(x)

(f(t) + εg(t))

(f(t) + εg(t))
=
µ− r
γσ2

≡ π∗0,

whereas for the equilibrium consumption rate, we have

c∗ ≈ (V0,x + εV1,x)
− 1
γ = (V0,x)

− 1
γ

[
1− ε

γ

V1,x

V0,x
+ o(ε2)

]
= c∗0

(
1− ε

γ

g(t)

f(t)

)
.

We have found that adding a small amount of hyperbolic-discounting feature to the discount function
does not change the proportion of wealth invested in the risky asset, while it will affect the consumption rate
by a fraction depending on the ratio g(t)

f(t) . Figure 4 illustrates how the approximated equilibrium strategies
change over time compared to the optimal one in the exponential discounting case. In general, we find that
hyperbolic discounting would encourage one to consume at a faster rate. The fact that g(t) is negative also
means that the value function is more negative compared to the exponential discounting case, indicating a
loss of welfare. For relatively larger values of ε, the equilibrium strategy is clearly non-monotonic. More
precisely, the ideal consumption speed starts at some higher level compared to the exponential discounting
case and it has a decreasing trend at the beginning. But eventually the consumption speed will start to
increase monotonically once we are sufficiently far away from the commencing point t = 0. In fact, this
non-monotonicity feature agrees with the consumption pattern observed in real-life household data, which
is one of the main reasons economists support the use of hyperbolic discounting. We also note that similar
results were obtained in [13] in which the authors made use of backward numerical integration techniques
to solve the full extended HJB equation analogous to (41).

3.3 A Bound for the Value Function: Infinite Horizon Case

In this section we want to illustrate some characteristics of the hyperbolic discounting problem using Laplace
transform. Suppose we have an infinite horizon investment/consumption problem instead:

V (x) = sup
c

E

[∫ ∞
0

1

1 + δt

c1−γ
t

1− γ
dt

]
. (59)

The following equation holds for the hyperbolic discount function by Laplace transform:

1

1 + δt
=

∫ ∞
0

e−τ(t+ 1
δ

)

δ
dτ.
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Figure 4: µ = 0.15, r = 0.05, σ = 0.25, γ = 2, δ0 = δ1 = 0.15 and T = 5. We have included the utility of wealth
at time T here to fix the unbounded consumption rate near T .

Therefore we have

V (x) = sup
c

∫ ∞
0

E

[∫ ∞
0

e−τt
c1−γ
t

1− γ
dt

]
e−

τ
δ

δ
dτ

= sup
c

∫ ∞
0

J̄(x, c, τ)
e−

τ
δ

δ
dτ

≤
∫ ∞

0
sup

c
J̄(x, c, τ)

e−
τ
δ

δ
dτ

= βC(x)

∫ ∞
0

e−βτ

(τ + α)γ
dτ, (60)

where C(x) := γγx1−γ

1−γ , α := −δ(1− γ)− λ2(1−γ)
2γ , β = 1

δ and J̄(x, c, τ) denotes the objective function for
the infinite horizon investment problem under consumption c and exponential discount rate τ , in which case
the value function has an explicit solution.

The second line of (60) best illustrates how time inconsistency arises from hyperbolic discounting.
Loosely speaking, the integral can be seen as the weighted average of a continuum of optimization problems
parameterized by the (exponential-type) discount rate τ . If there is a policy c∗ that can maximize all the
objective functions, then the inequality becomes an equality and we can say c∗ is the optimal-for-all policy.
Unfortunately, the optimal-for-all policy does not exist most of the time. Nevertheless we can still find a
policy c∗∗ that maximizes the integral, i.e. a linearization of the objectives. And it turns out this partic-
ular policy c∗∗ is a Pareto optimum that corresponds to a point on the Pareto front of the multi-objective
optimization problem. Consequently, the difference between two sides of the inequality corresponds to the
distance between a strict optimal value and the Pareto-optimal value under the particular linearization given.

The integral in the last line of (60) can be solved for positive-integer-valued γ = n ∈ Z+∫ ∞
0

e−βτ

(τ + α)γ
dτ = −n!

n∑
j=0

αj

j!
.
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Thus we have produced a bound for the value function in case γ is a positive integer

V (x) ≤ −βn!

n∑
j=0

αj

j!
C(x). (61)

3.4 Extension with Proportional Transaction Costs

We extend our study to the situation where proportional transaction cost exists. The dynamics of the portfolio
can be represented as below:

dX
(b)
t = (rX

(b)
t − ĉt)dt− (1 + κ)dL̂t + (1− λ)dM̂t

dX
(s)
t = µX

(s)
t dt+ σX

(s)
t dWt + dL̂t − dM̂t, (62)

where X(b)
t and X(s)

t represent the wealth in the risk-free bank account and in the risky asset (stock) respec-
tively. Again ĉt is the rate of consumption and dL̂t := l̂tdt and dM̂t := m̂tdt denote the purchase and sell
of the risky asset which will incur proportional transaction costs κ and λ respectively.

Our objective function has now been modified into maximizing consumption utility over an infinite
horizon because we want to make the analysis simpler. The objective function is given by

J(x(b), x(s), ĉ, l̂, m̂) = E
[∫ ∞

0
ϕ(s)U(cs)ds X

(b)
0 = x(b) , X

(s)
0 = x(s)

]
, (63)

given the current level of wealth x(b) in the bank account and x(s) in the stock as well as the admissible
controls ĉ, m̂, l̂, where the utility function U(.) is still chosen to be the power type. Now define the value
function:

V (x(b), x(s)) = sup
ĉ,m̂,l̂

J(x(b), x(s), ĉ, l̂, m̂). (64)

Almost identical to the result from Proposition 4, the value function satisfies the HJB-type equation:

sup
ĉ,m̂,l̂

(rx(b) − ĉ)Vx(b) + µx(s)Vx(1) +
1

2
σ2(x(s))2Vx(s)x(s) + [(1− λ)Vx(b) − Vx(s))]m̂

+ [Vx(1) − (1 + κ)Vx(b) ]l̂ + U(ĉ) = −Ex(b)x(s)
[∫ ∞

0
ϕ′(s)U(ĉ∗s)ds

]
,

(65)

only this time there is no time derivative. When ϕ(·) is exponential type, this becomes the HJB equation that
was probably first derived by Davis and Norman [10], who noticed that the desirable strategies for purchase
and sell were “bang-bang” type which only took place on the boundaries of the no-transaction region at
maximum possible rates.

The homothetic property holds for the value function since we have chosen a power utility function,
meaning that

V (ρx(b), ρx(s)) = ρ1−γV (x(b), x(s)), (66)

for any positive constant ρ. Thus we can write the value function V (x(b), x(s)) into

V (x(b), x(s)) = (x(s))1−γV (x(b)/x(s), 1) := (x(s))1−γΦ(x(b)/x(s)). (67)

27



As a consequence, it is sufficient to study the transformed value function Φ(z) where we use z to denote the
ratio x(b)/x(s).

The problem reduces to a free boundary ODE problem:

(µ− 1

2
σ2γ)(1− γ)Φ(z) + (r − µ+ σ2γ)zΦ′(z) +

1

2
σ2z2Φ′′(z)

+
γ

1− γ
[
Φ′(z)

]−(1−γ)/γ
+ Ez

[∫ ∞
0

ϕ′(s)
[Φ′(Zs)]

−(1−γ)/γ

1− γ
ds

]
= 0, (68)

with free boundary conditions:

Φ′(l)(1− λ+ l)− (1− γ)Φ(l) = 0

Φ′(u)(1 + κ+ u)− (1− γ)Φ(u) = 0, (69)

where the upper and lower boundaries u and l are to be determined. The ODE (68) is difficult to solve

because it involves a free boundary as well as a non-local term Ez
[∫∞

0 ϕ′(s) [Φ′(Zs)]
−(1−γ)/γ

1−γ ds
]

that is the
source of time inconsistency. Again let us deal with it using the asymptotic approximation method. We
assume the same expansion for the discount function ϕ(·) as in (43). And we seek an expansion for the
solution Φ(z) of the following form:

Φ(z) = Φ0(z) + εΦ1(z) + o(ε2). (70)

At zeroth order, we need to solve the free boundary ODE:
β0Φ0 + β1zΦ

′
0 + β2z

2Φ′′0 +
γ

1− γ
[
Φ′0
] γ−1

γ = 0

Φ′0(l0)(1− λ+ l0)− (1− γ)Φ0(l0) = 0

Φ′0(u0)(1 + κ+ u0)− (1− γ)Φ0(u0) = 0,

(71)

with l0, u0 to be determined, where β0, β1 and β2 are constant parameters defined as

β0 := (µ− 1

2
σ2γ)(1− γ)− δ0, β1 := r − µ+ σ2γ, β2 :=

1

2
σ2.

At first order, we need to solve a fixed boundary ODE problem, but with a nonlocal term:
β0Φ1 +

[
β1z +

γ

1− γ
(Φ′0)

− 1
γ

]
Φ′1 + β2z

2Φ′′1 + Ez

[∫ ∞
0

e−δ0s∆′(s)
(Φ′0)

γ−1
γ

1− γ
ds

]
= 0

Φ′1(l0)(1− λ+ l0)− (1− γ)Φ1(l0) = 0

Φ′1(u0)(1 + κ+ u0)− (1− γ)Φ1(u0) = 0,

(72)

from which we can compute the first order corrections to the NT boundary as

l1 = − (1− λ+ l0)Φ′′1(l0) + γΦ′1(l0)

(1− λ+ l0)Φ′′′0 (l0) + (1 + γ)Φ′′0(l0)

u1 = − (1 + κ+ u0)Φ′′1(u0) + γΦ′1(u0)

(1 + κ+ u0)Φ′′′0 (u0) + (1 + γ)Φ′′0(u0)
, (73)

which are derived from the original boundary equations.
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3.4.1 Zeroth Order Solution

The zeroth order problem (71) is exactly the original problem in [10], which has been shown to have a
solution that can be written as

Φ0(z) =
1

1− γ

[
1− γ
γ

h1(z)

]−γ
(

z

h2(z)
)1−γ , (74)

where h2(z) and h1(z) solve the system below

h′2(z) =
1

β2z
[R(h2(z))− h1(z)]

h′1(z) =
1− γ
γ

h1(z)

β2zh2(z)
[h1(z)−Q(h2(z))] , (75)

with boundary conditions

h2(l0) =
l0

l0 + 1− λ
, h1(l0) = Q

(
l0

l0 + 1− λ

)
, h2(u0) =

u0

u0 + 1 + κ
, h1(u0) = Q

(
u0

u0 + 1 + κ

)
,

where we define Q(x) := − β0
1−γ − β1x+ β2γx

2 and R(x) := Q(x) + β2(1− x)x. This ODE system (75)
can be solved numerically using a shooting method as suggested by [10].

3.4.2 First Order Solution

Recall (72), in order to obtain Φ1(z), we need to solve a fixed boundary ODE, which is numerically straight-
forward except for the source term

Ez

[∫ ∞
0

e−δ0s∆′(s)
(Φ′0(Zs))

γ−1
γ

1− γ
ds

]
,

which involves a path integral depending on the processZt ≡ Xt
Yt

. Note that the major issue here is that we do
not have an explicit form for Φ0 as it is computed numerically, whereas the nonlocality issue has disappeared
similar to the case without transaction cost because of the expansion we have used. To approximate the
source term we reply on Monte Carlo method to generate a large number of sample paths for Zt up to some
time T and evaluate the truncated integral for each of these paths using Riemann-sum approximation, after
which the estimated expectation can be obtained by taking the average. We first use Ito’s Lemma to get the
dynamics for the process Zs under the zeroth order equilibrium strategies c∗0, dL

∗
0 and dM∗0 :

dZt = [(r − µ+
σ2

2
)Zt − c∗0,t]dt− σZtdWt − (1 + κ+ Zt)dL

∗
0,t + (1− λ+ Zt)dM

∗
0,t. (76)

To further simplify the problem we put restrictions on the “Bang-Bang” type strategies dL∗0 and dM∗0 so that
the process Zt diffuses within the zeroth order NT region but whenever it hits the boundary l0 or u0, it will
be pushed back to the Merton ratio line in the NT region. Figure 5 gives a few sample path of the controlled
process Xs. We repeat the approximations for a grid of initial values z and we can smooth out the results
using Fourier-type curve fitting method.

We are left with a second-order ODE with a mixed-type boundary condition to solve. Numerical dis-
cretization makes it a linear system of equations Ax = b with A being a tridiagonal matrix. Once we
solve this, we can compute the first-order corrections for the NT boundaries as well as for the equilibrium
strategies.
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Figure 5: Some realizations of Zs with zeroth order optimal consumption rate c∗0 and boundaries l0 and u0.
Note that each time the process hits the boundaries, it will be pushed back to the Merton line inside the NT
region.

3.4.3 Numerical Results

We have numerically solved the zeroth and first order ODE problems using the following set of parameter
values: r = 0.05, µ = 0.15, γ = 2, κ = λ = 0.01, δ0 = δ1 = 0.15 or 0.3 and σ = 0.25 : 0.02 :
0.35. Figure 6 gives illustrations for the zeroth order value function Φ0(z) and the zeroth order equilibrium
consumption rate c∗0(z). For different volatility σ, the NT boundaries are different. Figure 7 illustrates the
NT region with/without first order corrections. We can see that hyperbolic discounting has the effect of
shrinking the NT region, which leads to more frequent trading and rebalancing. This result matches the
behavior of typical individual investors who tend to be myopic and impatient and are therefore prone to
excessive rebalancing of their investment portfolios. However, whether this is a good or bad thing requires
further investigation on this problem.

4 Conclusion

In this article, we have studied several time-inconsistent problems related to portfolio optimization. By using
asymptotic methods, we can handle the nonlocality issue that arises from the game-theoretic methodology
framework introduced to tackle time-inconsistency. Tractable solutions have been obtained in situations
where the time-inconsistent problems can be closely approximated by time-consistent ones, which can also
provide a qualitative/directional characterization of the equilibrium investment strategies in more general
cases. Our results are intuitive and can describe how differently investors behave in reality and in time
consistent settings.
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Figure 6: Plots of the zeroth value function Φ0(z) and optimal consumption rate c∗0(z) for parameter values
r = 0.05, µ = 0.15, γ = 2 and κ = λ = 0.01.
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Figure 7: NT regions as function of volatility σ.

A Derivation of (47)

This part is to demonstrate that the expansion for (45) will lead to (47). The expansion for the left hand of
the equation is straightforward and therefore omitted. The main challenge of the expansion is the term:

Et,x
[∫ T

t
ϕ′(s− t)U(c∗s)ds

]
.

We start by introducing the following expansions:

c∗(·) = c∗0(·) + εc∗1(·) + o(ε2), Xt = X
(0)
t + εX

(1)
t + o(ε2), ϕ(τ) = e−δ0τ + ε∆(τ)e−δ0τ + o(ε2),

which will be plugged into the equilibrium value function for power utility function:

V (t, x) = Et,x
[∫ T

t
ϕ(s− t)U(c∗(Xs))ds

]
≈ Et,x

[∫ T

t
ϕ(s− t)

(
c∗0(X

(0)
s )1−γ

1− γ
+ εc∗0(X(0)

s )−γc∗0,x(X(0)
s )X(1)

s + εc∗0(X(0)
s )−γc∗1(X(0)

s )

)
ds

]

= Et,x

[∫ T

t
e−δ0(s−t) c

∗
0(X

(0)
s )1−γ

1− γ
ds

]
+ εEt,x

[∫ T

t
∆(s− t)e−δ0(s−t) c

∗
0(X

(0)
s )1−γ

1− γ
+

+e−δ0(s−t)c∗0(X(0)
s )−γc∗0,x(X(0)

s )X(1)
s + e−δ0(s−t)c∗0(X(0)

s )−γc∗1(X(0)
s )ds

]
=: V0(t, x) + εV1(t, x).
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This leads to the expansion:

Et,x
[∫ T

t
ϕ′(s− t)U(c∗s)ds

]
≈− δ0Et,x

[∫ T

t
e−δ0(s−t) c

∗
0(X

(0)
s )1−γ

1− γ
ds

]
− εδ0Et,x

[∫ T

t
∆(s− t)e−δ0(s−t) c

∗
0(X

(0)
s )1−γ

1− γ
+

+e−δ0(s−t)c∗0(X(0)
s )−γc∗0,x(X(0)

s )X(1)
s + e−δ0(s−t)c∗0(X(0)

s )−γc∗1(X(0)
s )ds

]
+

+ εEt,x

[∫ T

t
∆′(s− t)e−δ0(s−t) [c∗0,s(X

(0)
s )]1−γ

1− γ
ds

]

=− δ0V0 − εδ0V1 + εEt,x

[∫ T

t
∆′(s− t)e−δ0(s−t) [c∗0,s(X

(0)
s )]1−γ

1− γ
ds

]
,

of which the zeroth order term will go into the RHS of the first equation in (47) and the remaining two terms
will go into the V1 equation.
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