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Abstract

We study a game-theoretic model for energy markets. Our framework is an N-player stochastic
dynamic Cournot game where one producer has a reserve (or stock) that depletes over time, while the
others can produce indefinitely with no such quantity restriction. We think of the first player as producing
energy from a fossil fuel such as oil, which is an exhaustible resource, while the others are producing from
renewables. All players have costs of production that evolve over time, and the exhaustible player can
choose to invest in R&D (research and development, including exploration) which may yield increases
in stock probabilistically over time. The assumption that the players have heterogeneous and time-
varying costs requires a reexamination and extension of previous literature which has typically considered
homogeneous costs. We also study how this model may be applied to energy policy, comparing when it
is optimal to consider taxing oil producers, opposed to subsidizing green energy, as a matter of public
policy.

1 Introduction

The motivation behind the work presented in this paper is to present a model for energy markets which
may be considered as oligopolies, where a small number of different producers compete against each other to
maximize profits. The initial work in the economics literature on oligopolistic competition was by Cournot
[2] in 1838, who introduced the idea of competition through production output. This work was re-envisioned
by Bertrand [1] in 1883, who framed competitions in terms of prices. More recently, however, energy markets
have been modeled through dynamic, as opposed to the static games that Cournot and Bertrand considered.
For more modern interpretations of oligopolistic competition, we recommend Friedman [4], Vives [10], or for
dynamic models, Dockner et al. [3].

Additionally, energy markets often have two distinct types of players: some, like oil, depend on a fixed
reserve, while others, like renewable players such as wind and solar, have effectively infinite or inexhaustible
resources. Study of the impact of exhaustibility of resources was initiated by Hotelling [6], within a monopoly.
In [5], energy production is modeled as a dynamic Cournot game, where certain players depend on stock
remaining to produce, while others have a higher extraction cost but can produce indefinitely.

Previous work to model the behavior we consider in energy market production has made certain assump-
tions that we relax here. For example, [8] assumes that there is no R&D or exploration, while [9] assumes
that the only cost oil producers incur are their research costs. We expand such work in two ways. First,
we relax the assumption that the oil producer has zero cost of extraction. Then we allow for evolving costs
of energy production: costs over time are realistically not constant. In particular, as stock begins to run
out, costs for oil producers often increase (deeper drilling, more expensive extraction technology required),
whereas costs for green energy often decrease due to external investment and financing that leads to more
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efficient technology. For instance “the price of solar panels has fallen more than 75 percent just since 2008”
[7].

The outline of this paper is as follows. In Section 2, we analytically solve a special case of constant
costs, which requires no numerical calculations. We define the notion of “blockading” and find the Markov
perfect equilibrium for the case where all costs are positive, yet constant. In Section 3, we provide a partially
analytical solution for the case without exploration. Then, in Section 4, we solve the full model which
incorporates exploration. This extends the stochastic model in [9] to allow for varying costs. Finally, in
Section 5, we demonstrate how our model may be applied to the setting of energy policy. We provide two
examples, the latter of which compares taxing finite resource producers and subsidizing green energy. We
then conclude and suggest methods by which this work may be extended.

2 Dynamic Game Model with Constant Costs

We begin with the case of constant production costs and no exploration where we can establish analytical
results.

2.1 Preliminary Notation

We consider an N -player oligopoly game that models energy markets. The first k < N of the energy players
have exhaustible stocks (or reserves) {x1(t), . . . , xk(t)}. They are active whenever their stock xi(t) > 0 and
are “eliminated” or exit production when their reserve xi(t) hits 0. The remaining players can be considered
“renewable,” and have infinite (or inexhaustible) reserves. Each of the N players has a marginal cost function
si that is associated with the ith player (so it costs the ith player si units of money to produce one unit of
output), and they compete through Cournot (quantity-setting) competition. We will see that all players will
participate provided that their cost is low enough compared to the other active players.

The case where k = N ≥ 2 (that is, there are only exhaustible players who compete against each other),
both with zero extraction costs for all time, was examined in [5], and involved the analysis of a coupled system
of nonlinear partial differential equations (PDEs) which are typically difficult to solve even numerically. We
will thus consider the case where k = 1, so there is only one exhaustible player. Since the motivation behind
this paper is to provide a framework within which energy policy comparisons can be made, we will constrain
ourselves to this case.

Notationally, when we consider an N -player game, we will let player 0 be the exhaustible player. Given
the evident link to energy markets, we will interchangeably refer to player 0 as the “exhaustible” player, the
“stock” player, and the “oil” player. Then, players 1, . . . , N − 1 shall be our renewable players. Since there
is only one exhaustible player in our consideration, we denote by x(t) = x0(t), the remaining stock of player
0. We let the costs also vary in the amount x(t) remaining: si(x). In general, costs evolve as stock begins
to run out and this generalization allows us to encapsulate the meaning of such changes. Further, to have a
meaningful model that can be applied to policy, we must be able to capture evolving costs, as most elements
of energy policy affect the perceived price of various players in the market. The case where s0(x) = 0 and
si(x) = si, that is, the oil player has zero extraction costs and the renewable players have constant cost has
been evaluated analytically in [8].

As assumed there, we will have a representative market for the energy that is produced by these players.
In particular, we assume that the utility function represented by market demand makes no differentiation
between the energy produced by all N players; that is, the individual consumer cares only about prices and
quantities produced, but not the actual source fuel (or technology) itself. We can, in general, assume that
the market demand function follows a constant prudence price curve; that is, if we let Q denote the total
market output, then the inverse demand curve is

P (Q) =







1 − Q1−ρ

1 − ρ
if ρ 6= 1

− log Q if ρ = 1,
(1)
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where we restrict 0 ≤ Q ≤ 1. Here, we will consider the case where ρ = 0, so the inverse market demand
curve reduces to P (Q) = 1 − Q.

We first review the static (one-period) Cournot game with constant costs.

2.2 Static Game

In the static (or one-period or stage) Cournot game with N players who have constant costs s0, . . . , sN−1,
each player i chooses a production quantity qi ≥ 0 to maximize revenue, that is price minus cost multiplied
by quantity produced:

π(qi, q−i) = qi



1 − qi −

N−1
∑

j=0,j 6=i

qj − si



 , where q−i = (q0, · · · , qi−1, qi+1, · · · , qN−1).

Here there is no distinction between player 0 and the others as there is no dynamic component whereby
things change over time.

We say that (q∗0 , · · · , q∗N−1) is a Nash equilibrium if π(q∗i , q∗−i) ≥ π(qi, q
∗
−i) for any qi ≥ 0 and all

i = 0, 1, · · · , N − 1. That is q∗i maximizes revenue for player i when all the other players play their Nash
equilibrium strategies. For this problem, the Nash equilibrium is as follows.

Proposition 2.1. In an N -player static game with constant costs 0 ≤ s0 < s1 < · · · < sN−1 < 1, we let

Pi =
1

i + 1



1 +

i−1
∑

j=0

sj



 , i = 1, . . . , N,

and P̄ = min{Pi | i = 1, . . . , N}. The number of active players is given by

n = min{i | Pi = P̄ , i = 1, . . . , N}.

Then players {0, . . . , n − 1} are active, and players {n, . . . , N − 1} do not produce. The unique Nash equi-
librium is given by

q∗i =
1

n + 1



1 − nsi +

n−1
∑

j=0;j 6=i

sj



 , i ∈ {0, . . . , n − 1},

and q∗i = 0 for i ∈ {n, . . . , N − 1}.

Proof. See [5, Proposition 2.9].

Remark. We chose to have the costs to be strictly increasing; if costs of players are allowed to be the same,
then the blockading points for the dynamic game (defined in section 2.3) might coincide. For purposes of
consistency, we use the same assumption here. The result in Proposition 2.1 would hold even if the sequence
of costs is only weakly increasing and the calculations presented in section 2.3 and beyond can be reproduced
for weakly increasing costs. For simplicity and to highlight the focus of our results, we use a strictly increasing
costs assumption.

When the oil producer is inactive (as will occur in the dynamic game when his reserves are exhausted)
and only players 1 ≤ i ≤ N − 1 are in the market, the static game Nash equilibrium is

q∗i =

{

1
n+1

(

1 − nsi +
∑n

j=1;j 6=i sj

)

, i ∈ {1, . . . , n}

0 i ∈ {n + 1, . . . , N − 1},
(2)
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where n = min{i | Pi = P̄ , i = 1, . . . , N − 1} and

Pi =
1

i + 1



1 +
i
∑

j=1

sj



 , i = 1, . . . , N − 1, P̄ = min{Pi | i = 1, . . . , N − 1}. (3)

We denote by S(k) =
∑k

i=1 si, the cumulative cost of the first k renewable players, and we also define

ρi =
1 + S(i−1)

i
, i ∈ 2, . . . , N, (4)

with ρ1 = 1. Further, we make the following assumption.

Assumption 2.2. We assume that sN−1 < ρN−1.

Remark. This assumption is necessary to guarantee that when the oil producer is not present, the costs of
the renewable producers are low enough that all participate in equilibrium. This follows from the fact that
Pi−1 = ρi, where Pi is given in (3). Then a calculation shows that

ρN < ρN−1 ⇐⇒ sN−1 < ρN−1,

and so under Assumption 2.2, PN−1 < PN−2. Therefore P̄ = PN−1 and n = N − 1.

We also have:

Lemma 2.3. Under Assumption 2.2, we have that sj < ρj for all j ∈ 1, . . . , N − 1.

Proof. For player N − 2:

sN−2 − ρN−2 =
(N − 1)sN−2 − (1 + S(N−2))

N − 2
=

N − 1

N − 2
(sN−2 − ρN−1) ≤

N − 1

N − 2
(sN−1 − ρN−1) < 0,

where in the second to last step, we used sj < sj+1 for all j ∈ {1, . . . , N − 2}. The implication sj < ρj can
be shown inductively from here.

Lemma 2.4. When si is increasing in i and Assumption 2.2 holds, we have that ρi is decreasing in i.

Proof. This follows from

ρi − ρi−1 =
1 + S(i−1)

i
−

1 + S(i−2)

i − 1
=

isi−1 − S(i−1) − 1

i(i − 1)
< 0,

since

si−1 < ρi−1 =⇒ si−1 <
1 + S(i−1)

i
=⇒ isi−1 < 1 + S(i−1).

Next, we introduce the dynamic N player Cournot game, where player 0 is our “oil” producer with
exhaustible resources, and the remaining players 1, . . . , N − 1 are renewable energy producers.
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2.3 Dynamic Game

Energy is produced from different sources by players 0, . . . , N − 1, who have constant costs of production
(s0, . . . , sN−1). The case where s0 = 0 has been solved analytically in [8]. The general case where s0 is
allowed to be a constant that is in [0, 1) can also be solved completely analytically and will be presented
below. We will study the game when costs vary as time goes on and oil runs out in Section 3.

Player 0 is our oil producer who plays when his stock x(t) > 0 and has an extraction cost s0 > 0. The
stock x(t) evolves according to the flow equation

dx(t)

dt
= −q0(x(t))1{x(t)>0},

where q0 is the extraction strategy of player 0, and his initial reserve is x(0). Players i = 1, . . . , N − 1 are
renewable producers and have a fixed marginal cost of production si > 0. We order the players such that
s1 ≤ s2 ≤ · · · ≤ sN−1 and further require that Assumption 2.2 holds. They produce energy at the rates qi.

Each player has an infinite time horizon objective value function that is determined by future profits
discounted at rate r > 0. In particular, the Nash equilibrium (q∗0(·), q∗1(·), . . . , q∗N−1(·)) are given by the
arguments of the following suprema:

v(x) = sup
q0

∫ τ

0

e−rtq0(x(t))



1 − q0(x(t)) −

N−1
∑

j=1

q∗j (x(t)) − s0



 dt (5)

wi(x) = sup
qi

∫ τ

0

e−rtqi(x(t))



1 − q∗0(x(t)) −
N−1
∑

j=1,j 6=i

q∗j (x(t)) − qi(x(t)) − si



 dt +
1

r
e−rτGi, (6)

where i = 1, · · · , N − 1. Here τ is the exhaustion time τ = inf{t | x(t) = 0}, and Gi is the equilibrium profit
of player i in the static game with only players 1, . . . , N − 1 (who all participate under Assumption 2.2):

Gi = q∗i



1 −

N−1
∑

j=1

q∗j − si



 =

(

1

N
(1 − Nsi + S(N−1))

)2

,

where we have used (2) for q∗i with n = N − 1. The admissible Markov strategies qi(x) are such that qi ≥ 0
and the qi(x) are Lipschitz continuous.

2.4 Blockading of Renewable Producers

Under some conditions, some subset of the players are blockaded from production because their costs are
too high to generate a profit given the competition from players with lower costs. In the context of the
renewable players i ∈ {1, . . . , N − 1}, this will be denoted by a point xi

b such that

xi
b = inf{x > 0 : q∗i (x) = 0}.

That is, for all points x < xi
b, player i produces and participates in the game, but for x ≥ xi

b, the supply of
cheap oil makes the market energy price too low for him to participate. We define this to be the blockading
point for player i. In the case where qi

∗(x) > 0 for all x, we set xi
b = ∞. In such an instance, we say that

player i is never blockaded. We also identify xN
b = 0 and x0

b = ∞.
Additionally, unlike the s0 = 0 case, since s0 is now positive, there is also the chance that the oil player

may be blocked from playing if his extraction cost s0 is too high compared to the renewable players. In other
words, it may be possible that the oil player is inactive even if x(t) > 0. We will defer this case to Section
2.5. The intuition behind the case where s0 is sufficiently low so that the oil player plays whenever he has
remaining stock is presented in [8] and reproduced in Figure 1, where the blocking times tib are defined by
x(tib) = xi

b.
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Figure 1: Blockading intuition

In the region x ∈ [xn
b , xn−1

b ), there are n ≤ N active players including the oil player. Shifting the variable
x, we write v(xn

b + x) = v(n)(x) for x ∈ (0, xn−1
b − xn

b ). A straightforward extension of [8, Proposition 5.3]
to incorporate the cost s0 shows that v(n) solves the Hamilton-Jacobi-Bellman (HJB) equation

rv(n) =
1

(n + 1)2



1 − n(v(n)′ + s0) +

n−1
∑

j=1

sj





2

, n = 1, . . . , N. (7)

These are solved with the boundary conditions v(N) = 0 and v(n)(0) = v(n+1)(xn
b − xn+1

b ) for continuity of
the value function v(x). The equilibrium strategies in the region x ∈ [xn

b , xn−1
b ) are given by the formula in

Proposition 2.1 with the replacement s0 7→ s0 + v(n)′(x − xn
b ):

q∗0(x) =
1

n + 1



1 − n(s0 + v(n)′(x − xn
b )) +

n−1
∑

j=1

sj ,



 (8)

q∗i (x) =
1

n + 1



1 − nsi + (s0 + v(n)′(x − xn
b )) +

n−1
∑

j=1;j 6=i

sj



 , i = 1, . . . , n − 1. (9)

Further, since at any given point x, q∗j (x) > q∗j+1(x) (that is, higher cost renewable players produce less),

and since costs are constant in x, we have that xj
b > xj+1

b ; so, it takes more oil to run out before player j
enters compared to player j + 1, as indicated in Figure 1. To solve (7) analytically, the following Lemma
shall be useful:

Lemma 2.5. The solution to the ODE
(α − v′)2 = κv, (10)

where v0 = v(0) ≥ 0 and α, κ > 0 is

v(x) =
α2

κ
(1 + W (θ(x)))2 ,

where W (·) is the Lambert-W function, satisfying Z = W (Z) eW(Z) restricted to Z ≥ −e−1. Further,

θ(x) = βeβe−κx/(2α) and β = −1 +
κv0

α
.

Proof. The result follows by direct evaluation, which is explained in detail in [8].
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Writing (7) in the form (10), we see that α =
1 − ns0 + S(n−1)

n + 1
> 0 by Assumption 2.2. Consequently,

the closed form solution to (7) is

v(n)(x) =
1

r

(

1 − ns0 + S(n−1)

n + 1

)2

(1 + W (θ(x)))2, (11)

where θ(x) = βeβe−κx/(2α) with β = −1 +
κv(n)(0)

α
and κ = r . Taking the derivative, we have

v(n)′(x) = −
1

n
W (θ(x)) (1 − ns0 + S(n−1)) = −W (θ(x)) (ρn − s0), (12)

where ρn was defined in (4). Assumption 2.2 and Lemma 2.3 guarantee that v(n)′(x) > 0.
We define:

ρ̂n =
1 + S(n−1) − ns0

n
= ρn − s0 (13)

for n = 2, . . . , N . When ρ̂n < 0 for all n, the oil producer does not play in our game, and we have a
perpetually repeated static game with N − 1 players, meaning v and wi (i = 1, . . . , N − 1) are given by
(5)-(6) with τ = 0.

It is straightforward to show from the concavity of v(x) that whenever the stock for the oil producer is
greater than the blockading point xn

b , player n produces nothing. The blockading point is thus a threshold,
below which the player enters the market, and above which, the player does not enter the market.

2.5 Blockading of the Oil Producer

When we allow s0 to be greater than zero, we cannot assume as in [8] that the oil producer will always
participate should x(t) > 0. Indeed, should s0 be sufficiently high, it is possible that the oil producer does
not play because his extraction cost is too high.

Heuristically, we can view the “cost” for the oil producer as s0 + v′(x) at any given stock x(t) (the sum
of extraction and shadow costs). This is bounded below by s0, so if s0 is sufficiently high, it may be too
expensive for him to produce and he may be forced to exit the market. This shall be referred to as blockading
of the oil player.

We define a blockading point for our oil producer as the point

x∗
b = sup{x > 0 : q∗0(x) = 0}.

For all x > x∗
b , the oil producer will produce, whereas for all x < x∗

b , the oil producer does not participate.
If there is no such x > 0 such that q∗0(x) = 0, then we say the oil producer is never blockaded and let x∗

b = 0.
We will first demonstrate that provided that the oil producer always plays when x(t) > 0 provided s0 is

small enough.

Proposition 2.6. If s0 < ρn for all n ∈ {2, . . . , N}, then the oil producer is never blockaded.

By Lemma 2.4, this condition is equivalent to s0 < ρN , as ρn is decreasing in n.

Proof. In the interval [0, xN−1
b ), the candidate value function is v(x) = v(N)(x) which solves the ODE (7)

with boundary condition v(N)(0) = 0, and the corresponding equilibrium oil production is

q∗0(x) =
N

N + 1

(

ρN − (s0 + v(N)′(x))
)

,

following from formula (8). Then q∗0(x) ≥ 0 as long as v(N)′(x) ≤ ρN − s0, where the bound is positive by
hypothesis. It follows from the ODE (7) that v(N)′(0) = ρN − s0, and it is easily verified from the formula
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(11) for v(N) that v(N)(x) is strictly concave and so v(N)′(x) ≤ ρN − s0 for all x ∈ [0, xN−1
b ). Therefore the

candidate solution in which player 0 is not blockaded hold in the first interval as the unique Markov perfect
equilibrium. A similar argument hold in the other intervals (in which the shadow cost v′ of the oil producer
is even lower).

This is consistent for the s0 = 0 limiting case, since then it is always true that s0 ≤ ρN and thus there
are no blockading points for player 0. In this case, we can evaluate the blockading points explicitly. We first
define

δn = (n + 1)sn − (1 + s0 + S(n−1)).

Then, the following proposition holds:

Proposition 2.7. Provided that s0 < ρN , the blockading point for the kth player is finite if δk > 0. Let
i = min{k : δk > 0}, or the lowest cost player who is blockaded at some point. Players {i, . . . , N − 1} are
blockaded to the right of their blockading points which are determined recursively by the equations:

xN−1
b =

1

µN

[

−1 +
δN−1

ρ̂N
− log

(

δN−1

ρ̂N

)]

(14)

xn−1
b = xn

b +
1

µn

[

log

(

δn

δn−1

)

−
(n + 1)(sn − sn−1)

ρ̂n

]

, (15)

where, for n ∈ {i, . . . , N − 2},

µn =
2r

ρ̂n

(

1

2
+

1

2n

)2

,

and ρ̂n was defined in (13).

Proof. To find xN−1
b , we look for a solution of q∗N−1(x

N−1
b ) = 0, and thus, from (9), we require that

v(N)′(xN−1
b ) = NsN−1 − (1 + s0 + S(N−2)) = δN−1.

Since, from (11), v(N)′ = −ρ̂NW (θ(x)), we have that

W
(

θ(xN−1
b )

)

= −
δN−1

ρ̂N
.

This equation only has a positive solution for xN−1
b for δN−1 > 0, which is given by (14). The recursion

formula (15) follows from shifting the axes left by xN−1
b and proceeding with similar analysis to that for the

s0 = 0 case in the proofs of Propositions 5.2 and 5.3 in [8].

The following proposition solves the case where s0 ≥ ρN :

Proposition 2.8. If s0 ≥ ρN , then the Markov perfect equilibrium is that the oil producer does not play and
the renewables play an N − 1 player Cournot game as given by (2) with n = N − 1:

q∗i (x(t)) =
1

N

(

1 − Nsi + S(N−1)
)

, i = 1, . . . , N − 1. (16)

Proof. In the candidate N − 1 player equilibrium (16), the total output is

Q =

N−1
∑

i=1

q∗i = 1 − ρN ,

and so the market price is P = 1 − Q = ρN . Since s0 ≥ ρN , player 0 will not enter the market and his best
response is q∗0 = 0. Therefore (16) gives the Nash equilibrium in this case.
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Finally, in Figure 2, we plot v(x) for two constant costs: s0 = 0.2 and s0 = 0.4. For the lower cost, note
that the value function is strictly higher, as expected, because profits are greater. On the right, however, we
note that the oil producer lasts longer in time t with a higher cost than with a lower cost. The additional
cost produces an amplified incentive to save until tomorrow and hence the oil producer lasts longer. This
is reflected in the market price as well, as there is a greater market price with a higher cost, but the jump
in market price is not as significant when oil runs out. In other words, the higher fixed cost of extraction
results in price stability over time at the cost of higher market prices even when the oil player produces.
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Figure 2: Constant cost dynamic game based on analytical solution for s0 = 0.2 and s0 = 0.4 for s1 = 0.51, s2 =
0.52, . . . , s9 = 0.59. Notationally, Qren =

P

9

i=1
qi (total renewable production). In this case ρN = 0.595, and so, as

s0 < 0.595, the oil producer always produces.

3 Varying Costs

Now that we have considered the one subcase in which we can derive a fully analytical Markov strategy, we
consider the general case, where costs vary for each of the players. We associate to each player i in our N
player game a cost function si(x), where x is the remaining stock of player 0, the only exhaustible player.
To understand how this generalizes the earlier result, we first consider a base case, where s1, . . . , sN−1 are
constant.

In this section, we do not yet allow discovery of new reserves. Since disabling discovery of new reserves
enables us to have partially analytical solutions, we present these calculations here and resort to a numerical
approach to the full discovery problem in Section 4.

3.1 Holding renewable costs constant

The array of costs for this base case is such that si(x) = si ∈ [0, 1] for each i ∈ {1, . . . , N − 1}, while s0(x)
is a decreasing function. The following assumptions are made:

Assumption 3.1. We retain the assumption that si < ρi for the renewable players i = 1, . . . , N − 1. This
implies that should the oil producer exit, the appropriate Cournot solution among the renewable players, given
in formula (2), entails that all players are active.

9



Assumption 3.2. We assume that the cost function of the oil producer s0(x) ∈ C1 and s′0(x) < 0, so cost
increases as remaining reserves are depleted. This assumption can be justified, as oil producers typically
delay extraction from their most expensive ores, so as reserves begin to run out, costs are increased.

When there are n − 1 active renewable players, and hence n total players, should the oil producer play,
the Hamilton-Jacobi equation for his value function v(x) is

rv =
1

(n + 1)2

(

1 − n(v′(x) + s0(x)) + S(n−1)
)2

, x ∈ [xn
b , xn−1

b ), (17)

analogous to (7) with the constant s0 replaced by s0(x). The oil producer’s strategy is

q∗0(x) =
1

(n + 1)

(

1 − n(v′(x) + s0(x)) + S(n−1)
)

=
n

(n + 1)
(ρn − (v′(x) + s0(x))) , (18)

where ρn was defined in (4). We will also see that, while the effective cost for the oil player is always
decreasing in x, even when Assumption 3.2 does not hold, the shadow cost v′(x) may be increasing or
decreasing in x, depending on the properties of s0(x).

Proposition 3.3. The sum v′(x) + s0(x) is strictly decreasing, but v′(x) is not necessarily decreasing. In
particular, if we define

T (x, n) = −
(n + 1)2rv′(x)

2nq∗0(x)
,

then if |s′0(x)| ≥ |T (x, n)|, when there are n players total including the oil producer, then v(x) is convex
(v′(x) increasing), while |s′0(x)| ≤ |T (x, n)| implies that v(x) is concave, with v′(x) decreasing.

Proof. The result follows immediately from taking the derivative of equation (17) with respect to x:

v′′(x) + s′0(x) = −T (x, n),

so if |s′0(x)| ≥ |T (x, n)|, then v′′(x) > 0 and hence v′(x) is increasing, and similarly for the other case.

Note that q∗0(x) is increasing in x since the effective cost v′(x) + s0(x) is decreasing; further, as x → 0,
q∗0(x) → 0, but v′ is bounded above (v′(0)+s0(0) = ρN ). Assuming that s0(x) is bounded above as well, then
in a neighborhood around 0, v(x) is concave. If s0(x) decreases sufficiently quickly in some neighborhood of
a point x > 0, then v(x) becomes convex. Figure 3 illustrates with two different cost functions s0(x).

We now let x∗
b = sup{x > 0 : q∗0(x) = 0}. Then, it is evident that since v′(x) + s0(x) is decreasing that

for all x > x∗
b , the oil producer participates and for all x < x∗

b , the oil producer does not participate. In
the region the oil producer does not participate, the assumption sn < ρn for renewable players implies the
quantities and market price is determined by an N − 1 player Cournot static game among the renewable
players. The following establishes that the condition upon which the oil producer plays is solely dependent
on extracting costs and not remaining stock:

Proposition 3.4. The blockading point x∗
b for player 0 is given by

x∗
b = sup{x > 0 : q∗0(x) = 0} = inf{x > 0 : s0(x) ≤ ρN}.

Proof. Let I = inf{x > 0 : s0(x) ≤ ρN}. It suffices to show that when x < I, the oil producer does not play
and when x > I, the oil producer does. When x < I, we have that s0(x) > ρN ; assume the oil producer
plays. Prior to this assumption, the equilibrium in this region would have been an N − 1 player Markov
game, so for the assumption to hold, the quantity produced in an N player game once the oil producer enters
should be positive. That is, from (18) with n = N , this requires v′(x) + s0(x) < ρN , but this forces v′ < 0,
a contradiction. So, the oil producer does not play on x < I.

Similarly, the oil producer must play when x > I. Assume he doesn’t; then it must not be profitable for
him to play. Hence, if q0 > 0 when x > I, the oil player plays. This is evident, since if x > I, s0(x) ≤ ρN , so
v′(I) ≤ 0 and the Hamilton-Jacobi equation is well-defined and evolves to give positive q0 and hence positive
profit. Since s(x) is decreasing and continuous, the result follows. �
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Figure 3: Compares value functions as well as quantity and price evolution over time for 9 renewable players with
costs 0.51, . . . , 0.59, while we adjust the cost of extraction for the oil producer from s0(x) = .2e−.1x (solid) to
s0(x) = .2e−.1x + .2 (dashed).

Remark: The first point coming from the left at which s(x) = ρN (and also the only point since s(x)
is decreasing) is the threshold point at which the oil producer enters. The mechanism here is not that the
oil producer’s shadow cost is too high. Rather, the oil producer’s cost of extraction becomes too prohibitive
in comparison to the other alternatives. To the left of this point, since the assumption sn < ρn for the
renewable players binds, only the renewable players remain and they play indefinitely in a static game. To
the right of this point, blockading for the renewable players once again can occur; that is, there may be
associated threshold values for each of the renewable players to the left of which they do play and to the
right of which they do not. In particular, the following proposition highlights when the renewable players
are blockaded.

3.2 Numerical examples with renewable costs held constant

Figures 3 and 4 depict numerically evaluated solutions for the case of decreasing s0(x). In particular, in
Figure 3, we note that if s′0(x) < s0(x) for all x, then the v(x) that corresponds to s′0(x) is less than or equal
to than the v(x) for s0(x). In particular, we note that similar to earlier, increasing s0(x) by a fixed cost leads
to the oil player staying in for a longer period of time. In Figure 3, the vertical dotted lines correspond to
blockading points xi

b for the oil producers for s0(x) = .2e−.1x. That is, to the left of these lines, additional
players enter since the reserves have depleted sufficiently. When we increase s0(x), the blockading points
are shifted to the left, since the relative cost of oil is higher, so the threshold for the renewables entering is
lower. Hence, when simulating such a game over time, the renewable players come in earlier.

Figure 4 depicts the case where for some x < x∗, we have that s0(x) > ρN . In particular, note that until
x = 11.6, the oil producer does not produce. This is reflected in the graph on the left. At the time when the
oil producer leaves, there are still reserves left that have yet to be drilled (specifically, 11.6 units). Further,
Figure 4 depicts a situation that is consistent with that explained in Proposition 8. That is, s′0(x) is greater
than the threshold value T (x, n) for a subset of x ∈ [0, 50], resulting in a shift from concavity to convexity.
This is due to the high Lipschitz constant that bounds the value of s′0(x) from the above and continuity,
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which ensures concavity in a neighborhood where the derivative is maximized.
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Figure 4: Demonstrates evolution of game when s0(x) is high enough for small enough x so that the oil player is
effectively blockaded for low x. Notationally, Qren =

P

9

i=1
qi. Also demonstrates case where Lipschitz constant of

s0(x) is so large to cause concavity of v(x) on certain regions of x. The dotted vertical line reflects blockading of the
9th renewable player.

3.3 Varying renewable costs: Analytic Results

The above problem can be solved partially analytically for N players, all of whom have varying costs that
obey the following assumption:

Assumption 3.5. In an N player game, let player 0 be the exhaustible player and players 1, . . . , N − 1
be renewable players. Let si(x) be the cost of player i. We assume that s′0(x) < 0 and s′i(x) > 0 for all
i ∈ {1, . . . , N − 1}.

This assumption is justified because, as oil tends to deplete, governments tend to subsidize green energy,
thus reducing costs for the renewable players as x approaches 0.

The following assumption is made so that players are not forced out of the game due solely to their
absolute extraction cost, but rather only choose not to play because of relative extraction cost:

Assumption 3.6. For all i ∈ {0, 1, . . . , N − 1}, we require si(x) ∈ [0, 1] for all x ≥ 0.

We now let N = 2 for a couple of reasons: first, the structure of the game is not substantively different
with N > 2, and second, N = 2 simplifies numerical computation significantly.

Proposition 3.7. We define

ρ1(x) =
1 + s1(x)

2
.

The dominant strategy for the oil producer is not to produce when s0(x) > ρ1(x).
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Proof. Assume that the oil producer will want to produce; then there must be some neighborhood around
the point x by continuity of s0(x) and s1(x) such that both players will participate with positive quantities.
However, in such a case,

q∗0(x) =
1

3
(1 − 2v′ − 2s0(x) + s1(x)) > 0,

implying that v′ < ρ1(x)− s1(x) < 0, a contradiction to the obvious fact that giving a player extra resources
does not make him worse off.

Remark. When s1(x) is held constant, then ρ1(x) is also constant, so this result is identical with that of
the fixed cost case discussed previously.

In particular, since s1(x) is decreasing, so must ρ1(x). However, at the same time, s0(x) is decreasing,
leading to the following corollary:

Corollary 3.8. It cannot be the case that at some point x1, the oil producer produces, but for some x2 > x1

the oil producer does not produce.

Thus, we define the point
x∗

b = inf{x > 0 : q∗0(x) ≥ 0}.

For all points x < x∗
b , the oil producer will not produce. In particular, it is easy to see that

sup{x > 0 : q∗0(x) = 0} = inf{x > 0 : q∗0(x) ≥ 0}.

Proposition 3.9. If there exists a point x such that s0(x) < ρ1(x), then the oil producer will participate.

Proof. Assume for sake of contradiction that the oil player does not play. Then, should he play, the cost
must be too high. In other words, v′(x) + s0(x) > ρ1(x) must hold, requiring v′(x) > ρ1(x) − s0(x) > 0, so
the value function is increasing at the point x. However, then, there must be a neighborhood to the left of x
on which the value function is also rising; since the value function measures objective utility, the player must
produce nonzero quantity. If the player were to produce zero quantity, then his utility could not increase.
Thus, there must be a neighborhood to the left of x on which the oil player produces. However, Corollary
3.8 then implies that at x, the oil player must participate, contradicting the assumption.

It thus follows immediately that there are three cases for the form of s0(x)

CI: It could be that s0(0) < ρ1(0), which implies that s0(x) < ρ1(x) for all x, in which case the oil producer
always plays.

CII: It could be that s0(x) ≥ ρ1(x) for all x, in which case the oil producer never plays.

CIII: It could be that s0(0) ≥ ρ1(0), but there is some later x′ > 0 such that s0(x
′) < ρ1(x

′). By continuity,
it is evident that the point x∗

b can be expressed as

x∗
b = inf{s0(x) < ρ1(x)}.

In the third case we were examining, continuity and closure of [0, x′] requires that x∗
b ∈ [0, x′]. In

particular, continuity of s0(x) and s0(x) decreasing implies that in this case, x∗
b is the unique point that

satisfies s0(x
∗
b ) = ρ1(x

∗
b ).

The following Proposition then establishes the Markov perfect equilibrium:

Proposition 3.10. The Markov perfect equilibrium for the game is that for all points x < x∗
b , the renewable

player is the only player and the strategies are

(q∗0 , q∗1) =

(

0,
1 − s0(x)

2

)

.

For all x > x∗
b ,

(q∗0 , q∗1) = (1 − 2v′(x) − 2s0(x) + s1(x), 1 − 2s1(x) + v′(x) + s0(x)) .
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Proof. Should we show that this holds for Case III, we can merely take the limits x∗
b → 0 for Case I and

and x∗
b → ∞ for Case II, so proving that this is the relevant equilibrium for Case III suffices. Assume for

contradiction that this is not a Markov equilibrium. Then, either there is some strategy q0 such that profit
is larger for the oil player holding q∗1 constant (Case A), or there is some strategy q1 such that profit is
larger for the renewable player holding q∗0 constant (Case B). Assume Case A holds; then, Proposition 12
implies optimality of q∗0 . Assume Case B holds; then, when x < x∗

b , the renewable player has a monopoly
on the market, which implies q∗1 is optimal. For x > x∗

b , the optimal Cournot equilibrium is described by q∗1
and hence is already optimal. Thus, the assumption fails to hold and we have a contradiction, implying the
result.
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Figure 5: The “low” cost corresponds to s0(x) = .6e−.1x and s1(x) = .6(1 − e−.1x), while the “high” cost case
corresponds to s0(x) = .6e−.1x + .1 and s1(x) = .6(1 − e−.1x).

3.4 Varying costs: Numerical calculations

We now investigate the problem numerically. We first consider a simple case, shown in Figure 5; the oil
producer shall have an exponentially decreasing cost in stock, that is s0(x) = .6e−x and player 1, our
renewable player, shall have an exponentially increasing cost in stock, that is, s1(x) = .6(1 − e−x). The left
plot suggests a result that follows directly from the analytical propositions above. That is, for sufficiently
low stock, that is for all stock x < x∗, where x∗ satisfies s0(x

∗) = ρ1(x
∗), the oil producer has a cost too

high for him to ever produce. For all x > x∗, his cost is lower than the necessary threshold. This is reflected
in the value functions v(x) which satisfy v(x) = 0 for all x ∈ [0, x∗].

Although not explicitly depicted, for large reserves of oil, the renewable players’ cost increases to the
point where he must drop out, leading to an oil monopoly for sufficiently large x. In particular, we note that
the total quantity produced is not smooth at these two points. This is as expected; if we let x′ be the point
at which the oil player has a monopoly for all x > x′, the intervals [0, x∗], (x∗, x′), and (x′,∞) correspond
to fundamentally different games.

Finally, Figure 6 plots two value functions; this time, we once again fix s1(x) = .6(1 − e−.1x). However,
the low s0(x) case corresponds to s0(x) = .6e−.1x, while the high s0(x) case corresponds to s0(x) = .8e.1x.
While the right plot exhibits similar features to those discussed earlier, the left plot is of particular interest.
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Figure 6: The “low” cost corresponds to s0(x) = .6e−.1x and s1(x) = .6(1 − e−.1x), while the “high” cost case
corresponds to s0(x) = .8e−.1x and s1(x) = .6(1 − e−.1x).

If we denote vL(x) to correspond to the low cost case and vH(x) to correspond to the high cost, we note that
as x → ∞, ‖vH(x) − vL(x)‖ → 0. This is a consequence of the lower and higher costs both converging to
0, which reduces the difference in oil value over time. This suggests that as stock is increased to arbitrarily
large amounts, the differences in discounted profits for the oil producer becomes negligible as long as the
costs over time converge to the same value.

4 Resource Discovery

We now allow that the oil producer may invest in research and development, choosing to invest in exploration
that yields a possibility of discovering new reserves. In particular, the oil producer may, at any given point,
explore with intensity a at a cost C(a). We choose C(a) to be increasing in a. As intensity increases, the
probability of finding additional reserves also increases. In particular, we let reserves at any time t evolve
according to

dXt = −q0(Xt)1{Xt>0} dt + δ dNt.

Here, Nt is a point process with intensity λat, where λ is determined exogenously. The probability of
increasing one’s reserves by a fixed quantity δ at a given time t is thus λatdt. This is the situation considered
in [9] for constant costs.

4.1 Two Players

We first consider a scenario similar to above where there are two players, an oil player (denoted player 0)
and a renewable player (denoted player 1). The oil producer’s strategy will depend on his stock at any given
time and produces at q0(Xt), where q0 is part of a Markov strategy with player 1.

We let both players have a cost of extraction s0(x) and s1(x), where s′0(x) < 0. This reflects that as oil
runs out, the oil producer’s cost of extraction also goes up. Meanwhile, we let s′1(x) > 0, since as x decreases,
investment and the like in renewable resources increasing.
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We then can write the value functions for both players, where (q∗0 , q∗1) is a Markov equilibrium:

v(x) = sup
q0,a

E

[∫ ∞

0

e−rt (q0(Xt)(1 − q0(Xt) − q∗1(Xt) − s0(Xt)) − C(at)) dt
∣

∣X0 = x

]

w(x) = sup
q1

E

[∫ ∞

0

e−rtq1(Xt)(1 − q∗0(Xt) − q1(Xt) − s1(Xt))1{Xt>0}dt

+

∫ ∞

0

e−rt 1

4
(1 − s1(Xt))

2
1{Xt=0}dt

∣

∣X0 = x

]

.

As earlier, we will note that v0(x) will be the only value function necessary for a description of the
strategies. From just the value functions, we may note that the oil player has to optimize over two variables,
q0 and a. In other words, in certain intervals it may be optimal for player 1 to defer production by investing
in exploration (R&D) while at other times, he may choose to not invest in R&D at all.

The corresponding Hamilton-Jacobi equation for the oil producer is

rv(x) = sup
q0,a

[(1 − q0 − q∗1)q0 − q0(v
′(x) + s0(x)) − C(a) + aλ∆v(x)] .

Here, we have that C(a) is the cost of exploring with intensity a and ∆v(x) is a jump term defined by

∆v(x) = v(x + δ) − v(x).

Since q1 and a are additively separable, we can simplify the above Hamilton-Jacobi equation to

rv(x) = sup
q0

{(1 − q0 − q∗1)q0 − q0(v
′(x) + s0(x))} + sup

a
{−C(a) + aλ∆v(x)} .

In particular, the optimum exploration intensity at any given x is given by

a∗ = argsup
a≥0

−C(a) + aλ∆v(x),

the Legendre transform of the exploration cost function evaluated at λ∆v(x).
As is done in [9], we will take the cost of exploration to be

C(a) =
1

β
aβ + κa, (19)

with β > 1 and κ ≥ 0. We define a saturation point xsat to be the point where the oil producer stops
exploring. In particular,

xsat = inf{a∗(x) = 0 : x > 0}.

Since we require C(a) to be increasing in a, it is evident from λ > 0 and ∆v(x) > 0 (v(x) non-decreasing
is guaranteed by Lemma 5), we have that for all x > xsat, a∗(x) = 0 and for all x < xsat, a∗(x) > 0. It is
immediately seen that

a∗(x) = [max(λ∆v(x) − κ, 0)]
γ−1

, where γ =
β

β − 1
. (20)

4.1.1 Structure of Solution

In particular, there are three possibilities. In regions where s0(x) >
1 + s1(x)

2
, the oil producer is blockaded

and does not produce. On this interval, the above Hamilton-Jacobi equation reduces to

v(x) = −C(a∗) + a∗λ∆v(x).
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When both the oil and renewable players produce, then the Hamilton-Jacobi equation reduces to

rv =
1

9
(1 − 2s0(x) − 2v′(x) + s1(x))

2
+

1

γ
[max(λ∆v(x) − κ, 0)]

γ
.

If the renewable player is blockaded, in the sense that there exists a finite x1
b such that

x1
b = inf{q∗1(x) = 0 : x > 0},

then for all x ≥ x1
b , the Hamilton-Jacobi equation is

rv =
1

4
(1 − s0(x) − v′(x))2 +

1

γ
[max(λ∆v(x) − κ, 0)]

γ
.

The case where s0(x) = 0 has been asymptotically evaluated when λ < ǫ for small ǫ in [9].
Finally, to compute the boundary condition, we note that at x = 0, the oil producer cannot produce;

that is, we have q0(0) = 0. This implies that

v(0) = sup
a≥0

E

[

e−rT v(δ) −

∫ T

0

e−rtC(a)dt

]

,

where T is the time until when the next discovery is made.

In the case where s0(x) >
1 + s1(x)

2
for some x, we let

x∗ = sup

{

x : s0(x) >
1 + s1(x)

2

}

.

If no such x∗ exists (that is s0(x) < (1+s1(x))/2 for all x ∈ R+), we let x∗ → 0. In particular, the constraint

v(x∗) = sup
a≥0

E

[

e−rT v(x∗ + δ) −

∫ T

0

e−rtC(a)dt

]

must also hold. The above thus implies that

v(0) = sup
a≥0

λav(δ) − C(a)

λa + r
. (21)

4.1.2 Numerical Discretization

As explained in [9], we can reduce the above to an iterative ODE that can be solved with Runge-Kutta
methods by defining v0(x) = v(x), which is the no-exploration case solved in Section 3.3. For all n ≥ 1, we
recursively define

rvn = (qn
0 (x))2 +

1

γ

(

max(λ(vn−1(x + δ) − vn(x)) − κ, 0)
)γ

qn
0 =











1
2 (1 − s0(x) − v′(x)) if x ≥ x1

b
1
3 (1 − 2s0(x) − 2v′(x) + s1(x)) if x ∈ (x∗, x1

b)

0 if x ∈ [0, x∗]

vn(0) = sup
a≥0

λavn−1(δ) − C(a)

λa + r
.

vn(x ∈ (0, x∗)) = sup
a≥0

λavn−1(x + δ) − C(a)

λa + r
,

where C(a) is defined in (19). The above can then be solved using standard Runge-Kutta methods. In
particular, it is shown in [9] that for a monopoly with zero costs, the above iterative scheme does converge
uniformly to the value function with exploration.
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4.2 Numerical Solution for Two Players

A numerical solution for the case where s0(x) = .15e−.05x and s1(x) = .15(1 − e−.1x) + 0.5 is evaluated
graphically using the iterative approach above in Figures 7 and 8. We note in particular that as x → ∞,
‖v(x)− v0(x)‖ < ǫ for ǫ → 0. This follows from v′(x) → 0 as x → ∞ for all iterations n; hence, we also have
from the Mean Value Theorem that ∆v(x) → 0 as x → ∞, and κ > 0 forces a∗(x) to be realized at 0 as
x → ∞. Applying this limit to the Hamilton-Jacobi equation, we see that as x → ∞, we recover the original
equation for the non-exploration case, implying that ‖v(x) − v0(x)‖ → 0 as x → ∞. Further, we can see
that for all x, v(x) ≥ v0(x). This follows immediately from a revealed preference argument, since when we
allow exploration, the oil producer can never be strictly worse off, as he can always choose to never explore.

From Figure 8, we have that for all x < xsat, the oil producer (player 0), does indeed explore and has a
value a∗(x) > 0. We also have analytically that a∗(x) is strictly decreasing in x. This follows from Figure
7 which indicates that v(x) is concave everywhere. This is a result of our chosen cost function which has a
low enough Lipschitz constant to obey the condition outlined in Proposition 8. Hence, ∆v(x) is decreasing
in x so a∗(x) must also be strictly decreasing. Since the process that governs evolution of reserves δdNt has
increased probability of identifying with δ as x → ∞, we can see that there are more “jumps” or discoveries
as x decreases.
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Figure 7: Oil producer has cost function s0(x) = .15e−0.05x and the renewable player has cost function s1(x) =
.15(1 − e−.1x) + 0.5.

Intuitively, as oil runs out, the oil producer needs to amp up discovery in order to stay in the game and
is thus willing to pay additional cost, since the opportunity cost of not exploring is to leave the game. In the
right panel of Figure 8, we can also see such jumps. In particular, in the beginning, the oil producer does
fairly well, and for each discovery, the oil producer does produce additional quantities; even though the cost
for the renewable player approaches a cost significantly higher than that of the oil producer (0.5 for player
1 vs. .15 for player 0), the renewable producer does indeed outproduce when the oil effectively runs out.
Finally, we can note a trend of total quantity q0 + q1 decreasing in x, which corresponds to a higher market
price over time.

If we now increase the relative cost of s0(x) by both increasing s0(x) and by decreasing s1(x), we obtain
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Figure 8: Simulation vs. time of an exhaustible resource producer (player 0) and renewable producer (player 1) with
costs s0 = .15e−.05x and s1(x) = .15(1 − e−.1x) + 0.5.

the simulation presented in Figure 9. We can note a few differences. First, xb → ∞, so the renewable
producer is never blockaded. Further, the saturation point xsat is now strictly lower. That is, the oil
producer stops researching for new reserves at a lower threshold. This is a mathematical triviality from
the expression for a∗(x); as we increase the relative cost of s0(x), the value function v(x) is decreased since
profits are lower. This in turn causes ∆v(x) to go down since the marginal utility of an additional δ amount
of oil at any given x is also lower. Hence, the threshold for which the cost becomes too prohibitive to research
is also lower.

In particular, a∗(x) is also strictly lower in this case due to an argument similar to that in the previous
paragraph. This means the the probability of successful discovery of reserves is also lower. Hence, there is
a dual effect to increasing relative cost. Not only does the oil producer produce less and hence have less
discounted profit overall, but he also spares less for researching, which harms him when x → 0.

Finally, we can note that in the long term, the market price is quite similar since the total quantity
produced, plotted in the right panel of Figure 9 is about the same as before. However, now, the green
producer almost always overtakes the red producer because the probability of discovery is now lower.

4.3 N-player case

Finally, we consider a multi-player oligopoly differential game with exploration. Consider an N player game
where player 0 is an exhaustible producer, whom we will term the “oil” producer, while players 1, . . . , N − 1
are renewable players with fixed costs s1, . . . , sN−1. For simplicity, we set each of these costs to be constant
for all x. Further, let the “oil” producer have a decreasing cost of extraction s0(x) such that s′0(x) < 0.
Unlike previously, we now allow the oil producer to invest in R&D which may result in discovery of new oil
sources. Borrowing notation from previously, we let

S(N−1) =

N−1
∑

i=1

si, and ρN =
1 + S(N−1)

N
.
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Figure 9: Simulation vs. time with increased relative cost for player 0 (exhaustible producer). In particular, we now
let s0(x) = .25e−.05x and s1(x) = .15(1 − e−.1x) + .35.

Letting (q0, . . . , qN−1) be the Markov strategies of production given any remaining stock x ∈ R+, the reserves
evolve according to

dXt = −q0(Xt)1{Xt>0} dt + δdNt.

Now, there are N players, but player 0 has a cost of extraction s0(x) which depends on the amount of
stock left. Denoting the cost of exploration with intensity a as C(a), the appropriate value function for the
oil producer is, given that we denote (q∗0 , . . . , q∗N−1) as a Markov perfect equilibrium,

v(x) = sup
q0,a

E

[

∫ ∞

0

e−rt

(

q0(Xt)

(

1 − q0(Xt) −

N−1
∑

i=1

q∗i (Xt) − s0(Xt)

)

− C(at)

)

dt
∣

∣X0 = x

]

.

As throughout the other games that we have considered, the value functions for the other players are not
needed for analysis of blockading and saturation points. However, for completeness, we have that

wi(x) = sup
qi

E





∫ ∞

0

e−rtqi(Xt)



1 − q∗0(Xt) −

N−1
∑

j=1,j 6=i

q∗j (Xt) − qi(Xt) − si



1{Xt>0}dt

+

∫ ∞

0

e−rt 1

(N + 1)2

(

1 − (N + 1)si +

N−1
∑

i=1

si

)2

1{Xt=0} dt
∣

∣X0 = x



 ,

for i ∈ {1, . . . , N − 1}.

The corresponding Hamilton-Jacobi equation is

rv(x) = sup
q0

{(

1 − q0 −

N−1
∑

i=1

q∗i

)

q0 − q0v
′(x)

}

+ sup
a

{−C(a) + aλ∆v(x)} .

It is easy to verify that assuming the same cost function for exploration, the expression for a∗(x) is given
by (20) as before, with the difference being internalized in the jump term ∆v(x). Further, we can note that
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the boundary condition (21) from before also holds. However, now that s0(x) is decreasing, we have that for
all x such that s0(x) > ρN , the oil producer does not play and the appropriate Hamilton-Jacobi equation in
that instance is simply

rv(x) =
1

γ
[max(λ∆v(x) − κ, 0)]γ .

As we did in Section 4.1.2, we recast the problem into a set of iterative ODEs which uniformly converge to
v(x). In particular, letting v0(x) be the solution where λ = 0 (the no-exploration case), which was analyzed
in Section 3.3, we define

rvn = (qn
0 (x))2 +

1

γ

(

max
(

λ(vn−1(x + δ) − vn(x)) − κ, 0
))γ

qn
0 (x) =











1

R + 2

(

1 − s0(x) − v′(x) +

R
∑

i=1

si

)

if s0(x) < ρN

0 if s0(x) ≥ ρN

vn(0) = sup
a≥0

λavn−1(δ) − C(a)

λa + r

vn(x ∈ (0, x∗)) = sup
a≥0

λavn−1(x + δ) − C(a)

λa + r

Here, x∗ is the value of x such that x∗ = inf{x ∈ R+ : s(x) < ρN} and R is the number of renewable players
who play at x. We can determine R by assuming that all players play, and then checking the quantity
produced by the highest cost player. We denote

qn =
1

n + 2

(

1 − (n + 2)sn + s0(x) + v′(x) + S(n)
)

R = min{n : qn < 0; n ∈ {1, . . . , N − 1}}.

4.4 N-player simulations

We numerically evaluate the game using the expressions above. We choose s0(x) = .2e−x and s1, . . . , s9 to
be 0.51, 0.52, . . . , 0.59 and depict the appropriate results in Figures 10 and 11. In particular, we note that
once again v(x) > v0(x) for all x, as expected. We note that as x increases, the market price decreases,
since a low cost option (oil) is available. When comparing the blockading points (denoted by vertical bars)
to the case where λ = 0 (no exploration), the blockading points are to the right. This follows intuitively,
since when the oil producer can explore, he is better off and hence is capable of driving the other players out
faster. Mathematically, the shadow cost v′ is lower in x with exploration, so at any given x, the oil producer
can produce at a lower effective cost when exploration is an option, driving the blockading points to the
right for the renewables.

In Figure 11, we simulate the game over time. We note that in this case, xsat is higher than the initial
quantity of reserves, so the oil producer always puts in a finite amount of exploration effort, a∗. Overall
production goes down over time, reflecting increased market price over time. Further, as the oil producer
runs out, the renewables produce more, but each discovery marks a resurgence of oil into the market while
the renewables temporarily cut back production.

Further, if we increase s0(x), then xsat is decreased. That is, when s0(x) increases, the value function
v(x) is lower everywhere than before because profits are lower. In particular, ∆v(x) is also lower since over
the interval (x, x + δ), the oil producer is not as well off with a higher cost of extraction, leading to lower
discounted profits and in turn a lower value for ∆v(x). Since a∗(x) is proportional to ∆v(x) when a∗(x) > 0
and since the threshold value xsat is also dependent on the magnitude of ∆v(x), an increased s0(x) marks
a lower xsat.
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Figure 10: We let N = 10 and initially start off with 9 renewable players and one exhaustible player. In particular,
s0(x) = .2e−x and s1, . . . , s9 to be 0.51, . . . , 0.59 respectively. The vertical dotted lines in the right figure denote
blockading points for each of the renewable players.
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Figure 11: We simulate the game over time t ∈ [0, 50] for the same structure as described previously in Figure 10.
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Intuitively, increasing s0(x) means that there is a relative disincentive to explore, since even if exploration
is successful, the marginal benefits are not as great because profit margins are lower. This suggests that in
terms of policy implications, increasing s0(x) must be offset by a decrease in κ, which is reflective of the cost
of exploration.

5 Application to Energy Policy

The above calculations demonstrate that the model that we have set forth is directly applicable to energy
policy. We consider two such examples below.

5.1 Taxing oil production but subsidizing research

We now apply the above stochastic differential game models to energy policy. As alluded to throughout this
paper, energy markets are similar to oligopoly models with varying costs and exploration. For simplicity, we
will consider the two player model most recently explored whose costs both vary in time. We consolidate all
finite stock based suppliers into one player (player 0) and all renewable players into a second (player 1).

In Figure 12, we model a policy option of taxing oil production but subsidizing their exploration costs.
That is, we lower C(a) but increase s0(x). Such a policy has the potential of being revenue neutral and
we lower κ significantly to model this. We note as a result that the oil producer is active on average for a
longer time, since a∗(x) is greater for all x in this situation. This follows immediately from C(a) being lower.
Further, we note that xsat is much higher. Specifically, xsat increases from 7.65 to xsat = 21.25. In addition,
since the oil producer has a lower cost of exploration, he stays in for a longer period of time, leading to a
lower market cost.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8
Reserve levels

Time t

R
es
er
ve
s

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time t

Q
u
an

ti
ty

p
ro
d
u
ce
d

Quantity produced over time

Oil production
Total renewable production
Total overall production

Figure 12: We now increase s0(x) to s0(x) = .5e−x but we lower κ → 0.01 from κ = 0.1. This models taxing
production but incentivizing R&D.

However, such policy is limited at best since this model assumes that the probability of finding additional
reserves is independent of the amount of discoveries already made, when in reality, such probability is not
independent. As we find additional reserves, the marginal probability of finding another one is lower in the
number of discoveries. However, it is of particular interest to note that lowering κ may have short term
benefits in terms of price stability but has long term harms in that the total number of possible reserves is
exhausted at a faster rate even if corrective action is taken in terms of increasing s0(x).
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5.2 Taxing oil vs. subsidizing green energy

We will now compare the policy options of taxing our oil player and subsidizing our green player. These are
both policy options that are currently on the table and have been implemented to some extent. However, to
truly compare welfare overall, we must also consider the third player, the consumer, who drives the inverse
demand function that we have assumed throughout. Assuming that demand is positive for both goods (as
reflected in our function), we can apply the Gorman Aggregation Theorem to note that there exists an
aggregate utility function that consolidates the preferences of the representative household. In particular,
the appropriate utility function for our inverse demand function can be verified to be

u(Q, m, x) = Q(x)

(

1 −
Q(x)

2

)

+ m(x),

where Q(x) = q0(x) + q1(x), the total quantity produced when x stock is remaining, and m(x) is the total
money the consumer has at time x. In particular, the consumer will seek to maximize the time discounted
integral of utility:

sup
Q(x(t))

E

[∫ ∞

0

(

e−ρtQ(x(t))

(

1 −
Q(x(t))

2

)

+ m(x(t))

)

dt

]

,

where the evolution of stock is given by

dXt = −q0(Xt)1{Xt>0} dt + δ dNt,

and ρ is the discounting factor of our consumer.
We will consider three states of the world. Notationally, we denote the set of costs and utilities by the

array (si
0, s

i
1, u

i(Qi, mi, x)). Here, si
0 refers to the cost function for the oil producer in state i and si

1 is
the cost function for the renewable player in state i. Additionally, ui(Qi, mi, x) refers to the utility of the
representative consumer in state i, with Qi the total production and mi the amount of disposable money.
Finally, we will let qi

0 and qi
1 be the quantities produced by the oil and renewable players respectively in

state i.
State 1 will be our control case. For our numerical simulations, we will let s1

0(x) = .3e−.05x and s1
1(x) =

.6(1 − e−.1x). The appropriate utility function in this case is simply u1(Q1, m1, x). State 2 will be the case
where we impose a tax on the oil producer. This is not to be conflated with a Pigouvian tax, which is
typically introduced to correct externalities. The utility function u(·) does not contain any direct disutility
from consuming oil and the inverse demand function has no differentiation from energy derived from oil or
renewable sources. Hence, this is merely a tax on finite resources, aimed at prolonging the time duration
for which the oil producer will play and also inducing further smoothing over time of oil production. For
numerical purposes, we will introduce a 33% tax, so s2

0 = .4e−.05x, s1
1(x) = .6(1− e−.1x) and u2(Q2, m2, x) =

u1(Q2, m2, x) + .1e−.1xq2
0 . We assume that the “government,” or agent taxing the oil producer redistributes

100% of the tax revenue to the consumer.
Finally, State 3 will be the case where subsidize green energy. We assume a 33% subsidy for sake of

consistency, so s3
0(x) = s1

0(x) = .3e−.05x, s3
1(x) = s1

1(x) − .2(1 − e−.1x) = .4(1 − e−.1x), and u3(Q3, m3, x) =
u1(Q3, m3, x) − .2e−.1xq3

1 .
We define the aggregate welfare W (x) to be W (x) = u(Q, m, x) + Π0(x) + Π1(x), where Πi(x) is the

profit of the ith firm at any point x in stock. We note that if at any given point x, if for two states i and j,
Wi(x) > Wj(x), then, state i is potentially Pareto improving over state j and hence preferable. In particular,
since aggregate welfare is higher, it is possible to make every player better off up to some redistribution of
profits.

In Figure 13, the top left panel plots oil profits over remaining stock. The control is clearly the best case
scenario for the oil producer, as either taxing the oil player or subsidizing green energy raises the relative cost
of oil, lowering profits. In particular, for low oil reserves, taxing oil is worse for oil profits than subsidizing
green, but the reverse is true for high reserve levels. The top right panel measures renewable profits; as
expected, the renewable producer is best off when his cost is subsidized and does marginally better when oil
is taxed, as doing so reduces the relative cost of green energy.
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Figure 13: Top left: plots oil (player 0’s) profits over remaining stock. Top right: computes renewable energy (player
1’s) profits for remaining stock Xt. Bottom left: plots consumer utility over Xt. Bottom right: plots exploration
intensity a∗ over Xt for all three policy options.
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Of particular interest is the bottom left panel of Figure 13, which measures consumer utility over re-
maining stock. The consumer is best off by subsidizing green energy at high reserve levels and at such high
reserve levels, taxing oil worsens the consumer’s situation. However, as oil begins to run out, the utility
derived from subsidizing green energy begins to diminish. The bottom right panel accounts for exploration
efforts. In particular, at high oil reserves, taxing oil incentivizes the oil player to conduct more research, but
as oil begins to run out, the additional taxation reduces the discounted profits for the oil player should he
discover, lowering discovery efforts.

Figure 14 consolidates the above welfare analysis, accounting for the welfare of both players and the
representative consumer. For high oil reserves, the best policy seems to be to do nothing, but as oil begins
to run out, subsidizing green energy is an effective policy, and as oil continues to deplete, taxation of oil
might result in a marginal increase in aggregate utility.

Finally, since the utility function that corresponds to the inverse demand function does not factor benefi-
cial macroeconomic effects such as price stability, we compare these in Figure 15, which depicts evolution of
production levels. The left panel suggests that taxing oil reduces oil production a bit, more so than subsidiz-
ing oil for low reserve levels, though subsidizing oil reduces oil production when reserves are large. However,
subsidizing oil is far better at stimulating green energy for all energy reserves. The right panel demonstrates
that subsidizing green energy also results in greatest price stability, while there is not as significant of a
difference between taxing oil and the control.
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Figure 14: Considers the aggregate welfare index W for three policy options: doing nothing (control), taxing oil, and
subsidizing green energy.

6 Conclusion

We developed a mathematical model for oligopoly markets with exhaustible resources, evolving extraction
costs, and discovery. For the case where all costs are constant and where one player plays when his resource
stock is non-negative and all others are renewable players, we presented a completely analytical solution,
extending the work presented in [8]. We then presented partially analytical results with numerical solutions
for the subcases where costs evolve over time but discovery is disabled, and finally when discovery of new
reserves is permitted.

We next demonstrated how this model can be applied to energy policy. Of particular interest is our
comparison of taxing oil and subsidizing green energy, two leading policy options that are currently being
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Figure 15: Considers evolution of market price and quantities produced by both players over stock.

considered. We compared the two in terms of aggregate welfare, which measures whether a policy option is
potentially Pareto improving. We found that for high reserve levels, taxation of exhaustible players should
be done only to correct for environmental externalities, and that subsidizing green energy later in our game,
when x(t) decreases beyond a threshold value, is potentially Pareto improving.

Future work may be considered in two directions. First, additional work may be done to solve this problem
in general for a constant prudence demand curve, as in equation (1), which may alter the results slightly.
We feel, however, that this should not significantly alter the policy implications that are demonstrated in
Section 5. Secondly, as evidenced by the two examples in Section 5, this model itself may be applied to
derive further policy implications.
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